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On the existence and uniqueness of constant mean
curvature hypersurfaces in hyperbolic space’

BARBARA NELLI AND JOEL SPRUCK

1. Introduction.

Let T be an embedded codimension one submanifold of O HM 1 (the
boundary at infinity of hyperbolic space). We study the problem of finding
a constant mean curvature hypersurface of HP*+! with prescribed asymp-
totic boundary I'. To state precisely our results, we must first give some
definitions.

Consider the halfspace model for hyperbolic space, e

IHI’H"]‘ == {(:L‘l, e .,.’L'n+1) = ]Rn+1 | Tn4l > 0}

with the hyperbolic metric ds? = Yoy ;{iﬁ: In the halfspace model, we
view T' = 9Q as a codimension one submanifold of euclidean space I, with
() a bounded C?® domain. We denote by Hr the mean curvature of I with
respect to the interior normal vector, computed in the Euclidean metric. We
say that I' is mean conves if Hp > 0 at each point of I'. We remark that
mean convexity is not an intrinsic hyperbolic notion.

We shall prove that any such mean convex I' is the asymptotic bound-
ary of a complete embedded hypersurface of it of constant mean curva-
ture I, for each H € (0,1) (here and in the following the mean curvature
is computed with respect to the upward normal vector). We construct the
desired M as a limit of constant mean curvature graphs over a fixed compach
domain in a horosphere, for constant boundary data. By graphs, we mean
graphs in the system of coordinates defined as follows: at a point p on the
horosphere {Tp41 =} = L(c) we associate a point on the geodesic passing
by p and orthogonal to the horosphere (i.e. the vertical geodesic passing
by p). Thus an important part of our study concerns the existence and
uniqueness of constant mean curvature hypersurfaces which are graphs over
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a bounded domain in a horosphere, whose boundary is mean convex. For
such graphs, we are able to prove existence and uniqueness for H € (0,1).
This leads to the following

Theorem 1.1. Let Q be o bounded domain in L(c), respectively OsoH'
such that T = 9% is of class C*® and mean convez. Then for each H € (0,1)
there exists o complete embedded hypersurface M of H+L of constant mean
curvature H with OM = T, respectively 0oM = T'. Moreover, M can be
represented as ¢ graph Ty = w(z) over Q with u € C*(Q) and there is a
unique such graph.

If T is mean convex and bounds a star-shaped domain {2, we have a
stronger uniqueness result. We say that T' is the asymptotic homological
boundary of a hypersurface M in H* L if, for each ¢ sufficiently small, M N
L(c) = I'(e), where I'(¢) = I' as ¢ — 0 and I'(¢) is homologous to 0 in M.
We denote the asymptotic homological boundary of M by 9,cM.

Theorem 1.2. Let © be a bounded domain in L(c), respectively dxH'H!
such that T = 89 is of class C>* and mean convez. Let M be an embedded
hypersurface of constant mean curvature H € (0,1) such that dM = T,
respectively oM =T and such that the mean curvature vector at the highest
point of M points upward. Then M 1s the unique graph constructed in
Theorem 1.1.

We remark that an embedded hypersurface of constant mean curvature
bigger than one, with asymptotic homological boundary a codimengion one
embedded submanifold of dH*t! does mot exist; this follows easily by
comparing such a hypersurface with horospheres.

The study of minimal hypersurfaces, H == 0, with prescribed asymptotic
boundary was initiated by Anderson [A} using methods of geometric measure
theory. The boundary regularity of these solutions was studied by Hardt and
Lin [HL] and Lin [L]. The extension of these results to constant H € (0, 1)
is due to Tonegawa [T] who makes a detailed study of boundary regularity,
using the methods of [L]. Our Theorem 1.2 says that the geometric measure
theory solution studied by Tonegawa is actually a topological disk when I
is mean convex and star-shaped.

In the case of intrinsic Gauss curvature between —1 and 0, Rosenberg
and Spruck [RS] completely answered the question of existence and unique-
ness of graph type solutions. They proved that any embedded codimension
one submanifold of 9,EP*! is the asymptotic homological boundary of a
complete embedded hypersurface of constant intrinsic Gauss curvature i,
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for each K € (—1,0); furthermore they proved that in H?, there are exactly
two such surfaces, each of one is a graph over one of the two components of
8. 1\ T. Our approach follows the spirit of [RS]. It is possible that the
graphical solutions of Theorem 1.1 always exist for any smooth { without
convexity condition (this is false for H = 0) but this is far from clear.

The first author wishes to thank her thesis advisor, Harold Rosenberg,
for his continuous support and interest in the present work.

2. Constant mean curvature graphs.

Theorem 2.1. Let © be a C2® subdomain of a horosphere L{c) such that
T = 90 is mean convezr. Then, for each H € (0,1) there erists a cPe
graph M over Q of constant mean curvature H such that M = T". Further-
more the graph M is unique.

We claim that if u: Q — B is a C>® solution of the following Dirichlet

problem
. {Vu nf, 1 .
F[T.L] = div (-‘_71"}“(;) - :{; (h, - [/Vu) 111 Q, (A)

w=c¢ onl,

where W, = +/1 -+ |Vu|?, then the graph of u is a hypersurface of constant
mean curvature H with boundary equal to I'. In fact, the hyperbolic metric
in the halfspace model is conformally equivalent to the Euclidean metric with
coefficient of conformality :1:;3_1, so the principal curvatures of M in Hr+t
are given by

b= Tpa1ke + Ny,

where k, is the Euclidean principal curvature and rn41 is the lagt component
of the unit (in the Buclidean metric) normal vector to M. So, if we denote
by H, the Euclidean mean curvature, we have

H =z, He + g1

The claim follows, if we substitute in the previous equality the well known
formula for the Euclidean mean curvature of a graph

1 Vi
. = —di ;
H, ” iv (Wu)
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Proof of Theorem 2.1. Set
§ = {t€[0,1]}3 v’ admissible solution of (AH 1.

Ry Remark 2.3, 0 € § # 0 so if we prove that S is open and closed, we
have S = {0,1] and the admissible solution is a solution of the Dirichlet
problem (A).

(i) First, we prove that we can solve (Af) in a neighborhood of t = 0 in
[0,1] with the aid of the Implicit Function Theorem.

Consider the linear operator £4: C%2(Q) — C%(§)) defined by

£hh = Fli(@)hij + bi(m)h; + ' (z)h

where
gF!
a3 - (r
Fifa) = g (o,
oF"
OF¢ n
d(z) = wa?(:r,,u,Vu) = W (tHW, -~ 1)
20 is invertible since c’(z} = —(—uﬁ»jn?w—w < @ (cf. Theorem 6.14 [GT]).

Then, by the Implicit Function Theorem (cf. Theorem 17.6 [GT}), there
exists fg > 0 such that for each ¢ € [0,%y) there exists a solution u’ of {Af)
and such that each w' varies continuously in ¢ in the norm C2%(Q2}. In
particular, there exists a positive constant M such that

[We — Wool| < Mty
hence

tHW . —1 < t{](I’VuU + Mt(])H -1

and the second term is negative if ty is small enough.

So, for each & [0, ¢}, we have found an admissible solution of {Al).

To prove that S is open and closed, we can assume & 2 tp > 0.

(ii) S is open in [0,1]. Let t; € S, t1 > fo, and let 2’ be an admissible
solution of (A"). The linear operator £, defined in (i} is invertible in Bt as
¢t(z) < 0 for each u € B, for each t > tg.

Then, by the Implicit Function Theorem, there exists €, 0 < e <y, such
that for each ¢ € (f; — €t + €) there exists a solution u® of (A") and such
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that u' varies continuously in ¢ in the C%%(}) norm. By the same argument
used in {i}), we obtain that (¢, — €, %1 +€) C S, hence § is open.

(iit) S isclosed in [0,1]. Let t € S, t > ty, and let {t,,} C S be a sequence
such that &, > to for each m, and t,, — ¢. Let {u™} be the corresponding
sequence of admissible solutions of (Alm).

For each m, £y Wym H —1 < 0, hence Wym < (t9H)!; so the set {u™} is
C%2(Q)) bounded by a constant not depending on m. Up to a subsequence
there exists ut € C22(Q1) such that ™ — v’ in C%*(Q2). By continuity u*
is a solution of (A') and tW,H —1<0.

To prove that «! is an admissible solution, we have to show that tW,. H —
1 <0

First we prove that the maximum of |Vu!| is on the boundary I" for each
solution of (A%) such that tW,.H — 1 < 0.

By differentiating equation Ft'[u] = 0 with respect to oz, K < n, we
obtain that v = u! satisfies a linear differential equation of the form

G.ij(.'E)’Uij 4 bi(iﬂ)’b‘l‘ + C(E)U = (), (1)

where ¢(z) = tHW, —1 < (. By the maximum principle, v attains its
maximum at the boundary and hence
sup |Vul| = sup |Vu!|.
o r
Now, we evaluate the maximum of Wy (i.e. |Vu!|) on the boundary T'.

Let 0 € T be a point of maximum of |Vuf] and choose coordinates
on L{c) so that the positive z,-axis is the interior normal to I' at 0 (ie.
ut (0) = |Vui|(0) and uu,(0) < 0). Near 0, we can represent I as a graph
iz, = plz'), where 2’ = (r1,...,Tp-1), p(0) = pa(0) =0, o < n.

Consider the constant function u = ¢; as Ftfy] = ~2(tH —1) > 0, u is
a subsolution of (A%), hence u! > ¢ in 2 and v!, > 0 on T' by the Hopf
boundary point lemma.

Since u!(z', p(z')) = ¢, differentiating with respect to o,y < n, we have

UEE.T(D) = _u;(o)pa’)‘(o)
Substituting in F'[u!] = 0 gives

7
Uhn (0) = Wikt (0) D paa(0) = —Wy(tH W —1) = 0.

a<n

Since Z Poe = (n— 1)Hp and v, <0, we obtain

a<n

b (0)(n — 1) Hr + —(EH Wy — 1) <0,

C
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As Hp > 0 and uf > 0 at each point of I, the last inequality implies at 0

tHW, —1<0
hence

max W < Inl'gx Wye < %
Thus »! is an admissible solution and S is closed.

We have proved the existence part of Theorem 2.1.

(iv} Uniqueness. Let u be an admissible solution of the Dirichlet prob-
lem (A) and v be an arbitrary solution; by Remark 2.2 u > ¢, v = ¢. Let
20 £ Q be such that the function w = v — u takes on its maximum at z"
(29 is interior); hence Viw(x®) = Vu(z?) — Vu(z?) = 0. As v is admissible,
in a neighborhood of 20 we have HW, — 1 = HW,, - 1 < 0. Thus w also
satisfies a linear equation of the form (1) and so, by the maximum principle
w < (. By reversing the role of u and v we find w = 0.

Theorem 2.1 is proved. (]

Theorem 2.5. Let Q be a C%® subdomain of OB such that T = 9 is
mean convezr. Then for cach constant H & (0,1) there exists a graph

M= {-'1711+§ = u(:r;), S ODO(Q) mCU,l(Q)}

over Q of constant mean curvature H such that O oM =T. Furthermore the
graph M is unique.

Proof. Let I'{c), 2{c) be the vertical translations of I' and §2 to L(c). By
Theorem 2.1, T'(c) is the boundary of a graph of a function v, over Q{c) of
constant mean curvature H.

To prove the theorem we will pass to the limit as ¢ — 0 for the Dirichlet

problems

{F[u] =0 i Q(c),

w=-c on ).
The sequence {u.} is decreasing with ¢. In fact, if ¢’ < ¢

Ue|r(e) — te|pe) =c—¢ >0
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hence, by the maximum principle (HW —1 < 0)
Ue — Uer 2 0 in S

Furthermore, 1, has a positive lower bound independent of ¢ in Q. In fact
equidistant spheres (i.e. the set of equidistant points from a hyperbolic hy-
perplane) with asymptotic boundary in €, of constant mean curvature H,
whose mean curvature vector points upward are lower barriers for u, for
all e. Therefore, by Schauder estimates, we have uniform bounds for . in
COH(§)) N C* () for any compact subdomain Q' strictly contained in £,
independent of ¢. So, we can pass to the limit {up to subsequence) for ¢ — 0
and obtain a solution u € C%1(2) N C%*(2) of the Dirichlet problem

Flu] =0 in, (A%)

w=0 onT.

By standard elliptic regularity u € Co().
Uniqueness is obtained as in (iv) of Theorem 2.1. O

3. Higher regularity.

The graph M of Theorem 2.5 was obtained by constructing a solution
u € C®(Q) N C%1() of the degenerate Dirichlet problem

. {Vu ) 1 i
Flu] = div (T/Vu) - (h. - VV:) in 0, (A%)

wv=c¢ onl,

where Wy, = /1 + [Vu]? < H L. )
We will show in fact that v € C?%{(Q). Define v(z) = Ad(z), where

A= ——-—"11}H' and d(z) is the distance from = to 952

Lemma 3.1. u(zx) <v(z) in .

Proof. Suppose T' = sup(u —v) > 0 and u(zg) — v(ze) = T, zo0 € (1. Let
Q

yo € 09 be a closest point fo zg Le. |ro —wyol == d(zq), and choose coordinates
{(Y1,-.-,Yn) at yo such that e, is the interior unit normal and &5} is locally
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represented as a graph yn = p{y1,...,¥n—1) with p(0) = pa(0) = 0 and
Pag(0) = Kadag, o, § < n, where #, are the principal curvatures of 82 at yg
with respect to the normal e,,. Then u(z) —u(zo) < v(z)—v(zg) < Ao —30],

u(yo + sen) < v{yo +sen) + T < As+ T, 0< s < d{z)
and
u(yo + d(zo)en) = u(zo) = v{zo) + T = Md(zg) + T.
Thus

|Vu(zo)i = un(za) = A, tnn(zo) < 0.
Consider now the level set
Fo={zeQ|ulz)=Ad(ze) +T}

passing through zg; since [Vu(xg)| = A, Ty is smooth near z; and also
d(x) > d(zg) on I'y. Hence we can find a small ball B.(zg) (hence also
d(x) > d(zg) on Be(zn)). According to the geometric meaning of d(zx), the
ball of radius d(zg) + ¢ centered at zq is contained in © (for otherwise there
exists z € B.(zo) with d(z) < d(zo); a contradiction). This implies that
zg = yo + (d(xp) + €)e,, and moreover

d(zg) €
d{zg) +¢e  d{zg) +¢

1 —#i(yo)d{mo) 2 1 — >0, i=1,...,n—1L

It follows that d(x) is actually C? near zg and satisfies

|Vd| =1,
didjdij =0
near .
Ad S nlw) < 1)H 0
d(wo) = Zl—myg )_—(””’ JHr(yo) < 0.

Therefore v — Ad(z) satisfies
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at zp-
Since v — v has its maximum at zg

div (%) < div (%) <0, HW,-1=HW,-1=10
ab zg.
This gives Flu] <0 af xp; 2 contradiction. [

Remark 3.2. The above argument really shows that v = Ad(z) is a strict
viscosity supersolution of (A%},

Now fix dp so small that each point P & I" can be touched by an inte-
rior tangent ball Bj, of radius §o. Choosing P as origin and introducing
coordinates (31,...,%n) with e, the interior normal to T at 0, there is an
equidistant sphere solution w(z) < ulz) of (A%®) which is a graph over
Bj, (8aen) given by

) . q 8o
w(z) = —RH + [R?=_ w? — (zn — 6o)?, R:vﬁﬁﬁ

<

Expanding w and v = Ad(z) in a Taylor series about the origin, we find
(with A = ——"lz,“l‘r‘u)

w(z) = Azp + Oz,

v(x) = Az + O(|z|%).
Since w < w < v in Bsy{dpen) this gives
Temma 3.3. Let ©p = dey,, § < g and lef x € Bs(zg). Then

ju(z) — Aag| < s

with C' independent of 6.

Now observe that I{z) = Az, is also a solution of F = 0. Since homothety
from 0 € T is a hyperbolic isometry, the rescaled functions
1 1
W' (z) = zu(dz), () = $1(dx) = I(z)
) )
are solutions of F = 0 in Bi(es). By standard interior estimates (since

|V*u.5} < ?17, f‘ﬁ < uf < 10M in By(en)) all derivatives of u’ are uniformly
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bounded in B (e,). Therefore the difference ud — 1% satisfies a uniformly
]
elliptic equation with nice coefficients. This implies that

sup |V(u' —1%)| < C(H) sup |u® -1 < C3,

By (en) B) (en)
sup |V ~ 1) < C(H) sup |[u° =19 <C6
By en) By (en)

by Lemma 3.3. Returning o the original variables, this gives
|Vu(zg) — Aen| € C6,  [V2u(zg)| < C
with € independent of §. Thus we have proved

Theorem 3.4. Let w € C°(Q) N CH(Q) be a solution of (A™). Then
we CHHQ) and W, = H~! on 99Q.

We will now utilize the work of Tonegawa (cf. [T]) to show that u €
C?2(Q). Let 0 € 08 and represent 9§ near 0 as a graph z, = p(z),
p(0) = pa (0} = 0, @ < n with e, the interior normal to 8§ at 0.

We flatten 99 near 0 by the transformation

y = (', u(z)).

Since u,(0) = A > 0, there is a local inverse map z, = ¥(y) (the zeroth
order Legendre transform in terminology of [KNS]) defined on a small upper
half-ball B ; (0). Using the transformation rules

Paly)
Upld) = — , < Ti,
() tn(y)
1
Uplw) = ———,
(@) tn(y)
J d o O
_— - o < n,

Jixg N M Py 5?)'117
§ 19
Oy Pa Byn

it follows that ¢ € CUI(B(0)) satisfies

(a,;,- - "/’””»"') iy = - — HWy) in B} (0),

172
W by

(', 0) = ply")  on {yn =0}.
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Geometrically, this is just the representations of the graph @, = u(z)
over the vertical plane passing through the tangent plane to 941 at the origin
and (*) is just the equation of constant H in these coordinates.

This is precisely the situation studied in [T]. Applying his Theorem 2.14,
we obtain that 9 € C%%(B](0)). This gives

Theorem 3.5. Let u € CO(Q) N CU(EY) be a solution of (A™). Then
u € C(0).

For further regularity results see [T].
4. A uniqueness result.

Let M be an embedded hypersurface of H'FL such that 9M =T <
L(c), ¢ > 0; let  be the compact domain in L(c) such that 8Q = I
By Remark 2.2, if M has constant mean curvature H € (0,1), then it
lies above L(c); hence M divides H'*! N {z,41 > ¢} in two connected
components. We denote by B the component of (H' \ M) i {a,41 = ¢}
that does not contain Q. As H is constant, the mean curvature vector of M
points towards the same component at each point of M.

Theorem 4.1. Let § be a star-shaped (with respect to some interior point)
subdomain of a horosphere L{c) (respectively O H' T ) such that T = 0Q is
mean convex. Let M be an embedded hypersurfoce of constant mean cur-
vature H € (0,1) such that M =T (respectively O M = T'), with meun
curvature vector that points towards B. Then M is o graph over 8, so M
is the unique disk given by Theorem 2.1 (respectively 2.5).

Proof. We start by proving uniqueness for a hypersurface with boundary at
infinity. By Theorem 2.5, there exists a graph S over {2 of constant mean cur-
vature H, with asymptotic boundary T". Denote by 0 the point with respect
to which Q is star-shaped and consider the family of hyperbolic isometries
{H}ter generated by translations along the vertical geodesic passing by 0;
each H; is an Euclidean homothety and we can choose the parameter £ such
that H; = Id. The fact that Q is star-shaped with respect to 0 guarantees
that, if £ # 1, then H(T) N M = 0. For t big enough, H:(S) N M =0 and
H,(S)} is above M. Then, decrease ¢ until we have a first point of contact
between H:(S) and M; by the maximum principle, the first point of contact
must be on the boundary or M = 5. Hence, S is above M or equal to it.
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Now, let ¢ be small enough to have F,(S) N AM = § and H;(S) below M. By
increasing f, we find a first point of contact, that cannot be interior by the
maximum principle. Hence § is below M. So, M = 5.

Now let M have compact boundary I' on L{c). Consider the family
{hi}iep of horizontal homotheties about the point 0 € Q, such that iy = Id.
As Q is star-shaped with respect to 0, the family {h/(I)}iem = {Cilien is
a foliation of L(c) by mean convex codimension one submanifolds that are
the boundaries of star-shaped domains £, in L{c).

By Theorem 2.1, for each #, there exists a unique graph N, over {; of
constant mean curvature H, such that N, = C;. We can choose 7,0 € I,
T < 1, ¢ > 1, such that N, is below M and N, is above M (Figure 1).

Figure }.

In fact we can find an equidistant spheres 5 of constant mean cur-
vature H with constant mean curvature vector that points upward, lying
below M and one such equidistant sphere S; lying above M. Let I'y and T's
be the codimension one spheres in L(c) such that I'; = d5; and Ty = 055,

Choose T and & such that O; is interior to 'y and C; is exterior to s,
Then N, must lie below Si, hence below M and N, must lie above Sa,
hence above M (by the argument used at the beginning of the proof of this
theorem).

We claim that the family § = {N;}, ¢ € [7,0], is a foliation of the region
{that contains M) bounded by N, U N, U[(R2 \ ;) N L{(c)]. In fact, by the
maximum principle, two distinct N;’s cannot intersect, so we have only to
prove that N, varies continuously with £.

Fix tg € B; for € small enough, for each ¢ € [ty — €, fp + €], there exists a
diffeomorphism f;: Q4 ~+ Q with the property || fill ez(n,) < €
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Let F be defined as in Section 2 and for each ¢ € [ty — €, %, + €] consider
the two families of equivalent Dirichlet problems

F{u a ft] =0 in Qm, (D{)
u=c onCy,
Flu| =0 in £, (EY)
w=-c on (],

By Theorem 2.1, there exists a unique admissible solution u'0 of (E'); as
1’ is admissible, HW,, — 1 < 0. Then, as ”ff-”C?(ﬂt[,) < g, we have

fIWufﬁcJ"fo -1 <0,

so the linearized operator associated to (D%} as in Theorem 2.1, is invertible.
Hence, by Implicit Function Theorem, there exists §, 0 < § < ¢, such that
for each t € [tg — 4,y -+ 4] there exists a solution v* of (D*) that depends
continuously on ¢. Thus v! = v o (f*)~! is the unique solution of (Ef) and
depends continuously on ¢ and so § = {V,} is a foliation.

Now, using the foliation §, we prove that M = N, hence it is a graph
and it is unique by Theorem 2.1.

For t < 1 no N, intersect M. Otherwise, for the smallest such £, N} is on
one side of M at an intersection point (necessarily interior) and their mean
curvature vectors both point towards 93, so N, would be equal to M by the
maximum principle. This is impossible as dN; # dM for £ < 1. Thus M is
above N (or equal to it). We repeat the same argument starting with N,
and decreasing to N7 and, as before, we conclude that M is below N;. So

M = Ny and the Theorem 3.1 is proved. O
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