Dispensa LEX

Lex: architettura software

11 tool Lex € uno strumento software per la generazione automatica di analizzatori lessicali a partire
da una specifica input scritta in un’appropriata sintassi e basata su espressioni regolari. Grazie alla
presenza di “azioni” (cio¢ frammenti di programmi scritti in linguaggio C) accanto alle espressioni
regolari, quello che Lex genera ¢ un traduttore input/output che oltre a fare ’analisi lessicale di
costrutti input ne fa anche Ia traslazione in un determinato output come specificato dalle azioni.

I’architettura software che mostra il contesto d™uso di Lex & la seguente. Nell’architettura i nomi
dei files generati (lex.yy.c e a.ouf) sono dipendenti da sistema, per esempio in questo caso si &
considerato il sistema Unix.

<nome_file>.]1 = Lex = lex.yy.c
lex.yy.c = Compilatore C = a.out

input = a.out = output (sequenza di token)

Il formato generale di una specifica sorgente Lex ¢ costituito da tre sezioni ed ha ia seguente
struttura:

DICHIARAZIONI

%%

REGOLE DI TRASLAZIONE
% %o

PROCEDURE AUSILIARIE

La sezione “REGOLE DI TRASLAZIONE?” ¢ il cuore della specifica Lex in quanto ¢ in essa che

sono scritte le espressioni regolari. I simboli speciali %% ne delimitano I’inizio e la fine (il primo &
obbligatorio, il secondo ¢ opzionale ¢ si omette nel caso la terza sezione sia vuota). Le sezioni
“DICHIARAZIONI” e “PROCEDURE AUSILIARIE” contengono rispettivamente tutte le

dichiarazioni (delimitate dai simboli speciali %{ e %}) e le routines utili alle Regole. La sezione
Regole di Traslazione ¢ strutturata come una tabelfa:

D1 {action }
P2 {actions}

o {action,}

dove ogni pi &€ un’espressione regolare scritta in sintassi Lex che descrive un pattern per un token
del linguaggio sorgente, e ogni action; & un’azione, ossia un frammento di programma in codice C.
Se Lex ¢ usato nel contesto analisi lessicale — parsing, le azioni conterranno sostanzialmente delle
istruzioni di return con le quali I'analizzatore lessicale generato passera al parser i token

individuati. Pit in generale, il ruolo del programma generato da Lex, ossia del traduttore
input/output finale, puo essere cosi formalizzato:

“il programma finale generato da Lex legge il suo rimanente input un carattere alla volta
da sinistra a destra finché trova il pitt lungo prefisso di input (quello sara il corrente

lessema) che fa match con uno dei pattern p;, allora esegue action;”

In questo processo si possono presentare due tipologie di conflitti che Lex risolve grazie a due
regole (euristiche) di cui & fornito:

1) Se ¢’¢ piu di un match, viene preferito il pitt lungo lessema che fa match con qualche pattern

2) Se ci sono due o piu pattern che fanno match col pit lungo lessema, viene preferito il pattern
listato pitt in alto nella sezione delle Regole di Traslazione.

Lex: sintassi

http://dinosaur.compilertools.netflex/index.iﬁ‘ml (Appendice A)

Lex: esempi di specifiche
Eserciziol: :
Si consideri il token PIPPO definito dal seguente pattern: “PIPPO & una sequenza non vuota di

vocali che pud iniziare oppure no con una cifra”. Scrivere un programma Lex per generare un
traduttore input/output che riconosca i lessemi di PIPPO e ne stampi la prima vocale della sequenza.

Possibile soluzione:

%{#include <stdio.h> %}

%%

[0-91?1AEIOUaeiou]+ { if isdigit(yytext[0]) printf ("%c”, yytext[1]);
else printf (“%c”, yytext{01); }

Esercizio2:

Scrivere un programma Lex contenente la coppia p action dove:

- p & un pattern che ha come lessemi sequenze (possibilmente vuote) di cifre seguite da sequenze
(non vuote) di lettere con la condizione che queste sequenze sono separate dal carattere '?'

- gction € un’azione che stampa in output la prima lettera che compare nei lessemi input

Possibile soluzione:

%{#include <stdio.h>
inti; %}
%%
[0-9]1+"?" [A~Za-z]+ {i=0;
while(yytext[i]!="7")
=i+ 1
printf (“%c”, yytextli+ 11); }

9.2, lex Regular
Expressions

e

; Operators]
i .
_'&—5:‘5

Appendice A

The definitions of regular expressions are very similar to those in the editors
ex(1) and vi(1). A regular expression specifies a set of strings to be matched. It
contains text characters (which match the corresponding characters in the strings
being compared) and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text charac-

ters; thus the regular expression
integer

matches the string integer wherever it appears and the expression
asinb

looks for the string a57D.

The operator characters are

"NELY =20k] () S/ %< >
and if they are to be used as text characters, an escape must be used. The quota-
tion mark operator (") indicates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus

xyz" "

matches the string xy z++ when it appears, Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"Xyz++m
is the same as the one above. Thus by quoting every non-alphanumeric character

being used as a text character, the programmer can avoid remembering the list
above of current operator characters, and is safe should further extensions to lex

lengthen the list.
An operator character may also be turned into a text character by preceding it
with\ asin

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use
of the quoting mechanism is to get a blank into an expression; normally, as

Sun Revision A of 27 March 1990

miciosystams

208 Pregramming Utilities and Libraries

‘Character Classes

Arbitrary Character

- EBCDIC. [fitis.desired:to include the:character

explained above, blanks or tabs end a rule, Any blank character not contained
within [] (see below) must be quoted. Several normal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is backspace. To enter\ itself, use \.
Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character,

Classes of characters can be specified using the operator pair {]. The construc-
tion {abc] matches a single character, which may be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three characters are special;
\,— and ~. The — character indicates ranges. For example,

[a—z0-9<> 1]

indicates the character class containing all the lower case letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using —
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation-dependent and generates a warning
message. For example, [0~z] in ASCII is many more characters than it is in
In-a characterclass, it should

e first or last, thus:
[—+0—-9]
matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character after the left
bracket; it indicates that the resulting string is to be complemented with respect
to the system’s character set, Thus

,m1

{“abc])

matches all characters except a, b, or ¢, including all special or control charac-
ters; and

["a=zA~2Z]

is any character which is not a letter. The\ character provides the usual escapes
within character class brackets,

To match almost any character, the operator character
[

(period) is the class of all characters except newline. Escziping into octal is possi-
ble although non-portable:

[\40-\1786]

matches all printable characters in the ASCII character set, from octal 40 (blank)
to octal 176 (tilde),

1l Revision A of 27 March 1990
s

Chapter 9 — lex — a Lexical Analyzer Generator 20

Optional Expressions

-4

Repeated Expressions

Altémation and Grouping

‘Context Sensitivity -

The operator 2 indicates an optional element of an expression. Thus
ab?c

matches either ac¢ or abce.

Repetitions of classes are indicated by the operators * and +.
ax
is any number of consecutive a characters, including zero; while
a+
is one or more instances of a. For exampie,
[a~z]+
is all strings of lower case letiers. And
[A~Za=-z] [A-Za-z(0-9]*

indicates all alphanumeric stringé with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

The operator | indicates altermation:
{ab | cd)
matches either ab or cd. Note that parentheses are used for grouping, although
they are not necessary on the outside level;
ablecd
would have sufficed. Parentheses can be used for more complex expressions:
(ab | cd+) ? (ef) »

matches such strings as abefef, efefef, cdef, or cddd; but not abe,
abed, or abedef.

lex recognizes a small amount of surrounding context. The two simplest opera-
tors for this are ™ and $. If the first character of an expression is ~, the expres-
sion is only be matched at the beginning of a line This can never conflict with the
other meaning of ~, complementation of character classes, since that only
applies within the [] operators. If the very last character is $, the expression is
only be matched at the end of a line (when immediately followed by newline).

n Revision A of 27 March 1990
oIms .

210 Programming Ulilities and Libraries

Repetitions and Definitions

2.3, lex Actions

The latter operator is a special case of the / operator character, 'which indicates
trailing context. The expression

ab/cd

jnatches the string ab, but only if it is followed by cd. Thus
abs

is the same as
ab/\n.

Left context is handled in 1ex by start conditions as explained in section 9.9 ~—
Left Context-Sensitivity. 1f a rule is only to be executed when the lex automa-
ton interpreter is in start condition x, the rule should be prefixed by

<xX>
using the angle bracket operator characters, If we considered ‘being at the begin-

ning of a line’ to be start condition ONE, then the " operator would be equivalent
to

<ONE>,

Start conditions are explained more fully below.

The operators { }. specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}
looks for a predefined string named diqgit and inserts it at that point in the

expression. The definitions are given in the first part of the lex input, before the
rules. In contrast,

a{l,5}
looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for 1ex source segments,

When an expression written as above is matched, 1ex executes the correspond-
ing action. This section describes some features of Lex which aid in writing
actions. Note that there is a default action, which consists of copying the input to
the output. This is performed on all strings not otherwise matched. Thus the
lex programmer who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. One may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combination which is omitted
from the rules and which appears as input is likely to be printed on the output,
thus calling attention to the gap in the rules.

n Revision A of 27 March 1990
BmS

Chapter 9 — l.ex -— & ' .exical Analyzer Generator 211

Actual Text that Matched

Length of Matched Text

One of the simplest things that can be done is to ignore the input. Specifying a
Cnull statement, ; as an action does this. A frequent rule is

[\t\n] 7
which ignores the three spacing characters (blank, tab, and newline).

Another easy way to avoid writing actions is the action character |, which indi-
cates that the action to be used for this rule is the action given for the next rule.
The previous example could also have been written

won !

ll\tll) I
u\nn ;

with the same result. The quotes around \n and \t are not required.

In more complex actions, the programmer often wants to know the actual text
that matched some expression like [a-~z]1+. Lex leaves this text in an external
character array named yytext.

Thus, to print the name found, a rule like

[a—z]+ printf("%s", yytext):

prints the string in yytext. The C function print £ accepts a format argument
and data to be printed; in this case, the format is ‘print string’ (% indicating data
conversion, and s indicating string type), and the data are the characters in
yytext. So this just places the matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ ECHO; ‘ 4

is the same as the above. Since L_he'*‘fiefault action is just to print the characters
found, one might ask why give a rule, like this one, which merely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not desired. For example, if there is a rule which matches read () it
normally matches the instances of read contained in bread or readjust; to
avoid this, a rule of the form {a—z]+ is needed. This is explained further

below.

Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count yyleng of the number of characters matched, To
count both the number of words and the number of characters in words in the
input, the programmer might write

f,[a—zAwZ}+-.._ {words++; chars += yyleng;}

which accumulates in chazx s the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext [yyleng-17.- .

2 sun Revision A of 27 March 1990

microsysiams

Table 9-2

Regular Expression Operators in lex

Operator Meaning
X the character "x"

TR an "x", even if X is an operator
\x an "x", even if x is an operator
[2xy] the character x or y

[x—z} the characters x, yorz

[“x] any character but x

. any character but newline

“x

an x at the beginning of a line

an x at the end of a line

%7 an optional x
X* 0,1,2, ... instances of x
| %+ 1,2,3, ... instances of x
Xy anxoray
(3t) anx
x/y an x but only if followed by

Revision A of 27 March 1990

[IATAS

