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Abstract. We consider a general family of two step collocation methods for the numerical integration of Ordinary Differential 
Equations, which depends on the stage values at two consecutive step points. We describe two constructive techniques, discuss 
the order of the resulting methods, compute the nodes to obtain superconvergence and analyze their linear stability properties. 
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INTRODUCTION 

We are concerned with an extension of multistep collocation methods for the numerical integration of an Initial Value 
Problem 

y(x) = f(x,y(x)) 

j(x0) =yo-

We assume that x e / : = [ i o , I ] , / : / x O c R ' i ^ R d . Let//, = {x/, :xo <x\ < ... <XN =X} be an uniform grid on/, 
where h = ^ . 

Our aim is to derive a general class of multistep methods, which depends on the stage values at two consecutive step 
points, with the aim of higthen the order of the methods without increasing the computational cost. 

The idea of collocation is old and well known in Numerical Analysis [1, 2, 3]. In order to advance from x„ to xn+\, 
a collocation function is computed, usually an algebraic polynomial P(x), which interpolates the numerical solution 
in the step point xn, and satisfies the ODEs in the points x„ + c,7i, where {cj,C2, ...,cm} are m real numbers (typically 
between 0 and 1), called collocation abscissas, that is 

P(xn) = yn, (1) 
P'(xn + Cih) = f(xn + Cih,P(xn + Cih)), i=l,2,...,m. (2) 

A numerical method arises, which takes the solution inx„+i by 

y„+i=P(xn+i). (3) 

It is known that one step collocation methods are a subset of implicit Runge-Kutta methods, which can be repre­
sented by the Butcher array 
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where 

ciij = I Lj(t)dt, i=l,2,...,m bj = / Lj(t)dt, j=l,2,...,m 

and Lj(t),j=l,...,m,are fundamental Lagrange polynomials. Moreover the maximum attainable order is at most 2m, 
and it's obtained by using Gaussian collocation points [1,2]. 

Guillou & Soule introduced multistep collocation methods [4], by adding interpolation conditions in the previous k 
step points, so that the collocation polynomial is defined by 

P(x„+i)=y„+i / = 0 ,1 , . . . ,£ -1 ; (4) 

P/(xn+k-i+Cjh)=f(xn+k-i+Cjh,P(xn+k-i+cjh)) j=\,...,m. (5) 

The numerical solution is then 

yn+k = P(x„+k) (6) 
In [3] it is proved that the method is equivalent to a multistep Runge-Kutta method, and the points which guarantee 

the superconvergence are called Radau points. Lie and Norsett analyzed the order of the resulting methods [5]. 
In this paper we extend the idea of multistep collocations methods, by considering the case of k = 2, and by adding 

some extra collocation conditions, so that the resulting methods depend on stage values at two consecutive step points. 
More in details, the collocation polynomial is then defined by the following conditions: 

P{x»)=y», P(x„+i)=y„+i (7) 

P'(xn-i+Cih)=f(xn-i+Cih,P(xn-i+Cih)), i=\,2,...,m (8) 

P'(xn + Cih)=f(Xn + Cih,P(xn + Cih)), i = 1,2,..., m. (9) 

The previous problem constitutes a Hermite interpolation problem with incomplete data. Then the collocation polyno­
mials takes the form 

P(x„+sh) = ifa(s)y„-i + f (s)y„ + h£ Zj{s)f{P,{xn-\ +cjh)) + \j/j(s)f(P'(xn + Cjh)) 

with a e [0,1], n=\,2,...,N-\. 

(10) 

CONSTRUCTION OF THE METHOD 

Introducing the dimensionless coordinate t = x~x£+l, the expression of the basis functions <j>i(t) (i = 0,1), \j/j(t) and 
Xj(t) in (10) (J = 1,2, ...m) can be obtained by applying the conditions (7), (8), (9) of interpolation and collocation, 
i.e. 

<j>i(tj) = Stj i,j = 0,1 
ti(cj-l) = 0, 0/(c,-) = O / = 0,1, j=\,...,m 

Xi(tj) = 0 i=l,...,m, 7 = 0,1 
x'iicj-1) = Stj, X'i{cj) = 0 i,j=l,...,m 

Wi(tj) = 0 i=l,...,m, 7 = 0,1 
V'i(cj-1) = 0, y;(cj) = Sij i,j=l,...,m (11) 

where to = — 1, h = 0. 
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From the previous conditions some linear systems arise, whose unknowns are the coefficients of the polynomials of 
the generalized Lagrange basis. These linear systems can be solved (apart from some exceptional values for collocation 
abscissa), giving the expressions of the collocation poylnomial P{x). 

It is possible to prove that P(x) provides a uniform approximation to the solution of order 2m + 1 for any choice of 
the collocation abscissas {ci,C2, ... ,cm}. 

Theorem 1. 
The method above defined is equivalent to a General Two-Step Runge-Kutta (GTSRK) method [6, 7] 

^n+k 

yn+k 

= ujt iy„+k-2 + Uj,2yn+k- i+h^ [ajSf(x„+k-2 + csh, Y„+k_ x) + bjsf(xn+k- i+csh, Y°+k), 
s=l 

0iy„+k-2 + 02y„+k-i + h £ [vjf(xn+k-2 + cjh, Y^+k_2) + Wjf(xn+k-i + cjh, Yl+k_x) 

where 

(12) 
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Butcher's array of the new method is 
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wherec= (A+B)e-u, ande= [1,..., l ] r £Rm. 
The GTSRK method can also be regarded as a General Linear Method [8, 9]. 
The reason of interest in methods GTSRK lies in the fact that, advancing from X; to x i+i we only have to compute 

Y^+k, because Y^+k_1 have alreay been evaluated in the previous step. Therefore the computational cost of the method 
depends on the matrix B = (bij), while the matrix A = (aij) adds extra degrees of freedom, without need for extra 
function evaluation. TSRK methods based on algebraic and trigonometric polynomials have been considered in [10]; 
the extension of TSRK methods fo r / ' = f(x,y) have been introduced in [11]. 

The method can be derived by extending the technique used by Hairer and Wanner [3], and by Lie and Norsett 
[5]. Moreover, following the technique described in [5], we can compute the so-called Radau nodes, to obtain 
superconvergence. 
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LINEAR STABILITY ANALYSIS 

By applying the method to the test equation/ = Xy, Re{X) < 0, the following recurrence arises 

P(xn + Cjh) = Q[<j>0(Cj)yn-i + 0i (Cj)yn +zAP(xn-i + Cjh)} 

yn+\ = ((po(l)+zwTQ(po(c))y„-i + ((pi(l)+zwrQ(po(c))y„+z(vT + zwT QA)P{tn-\+ch) 

where A =\Xj(ci)}™j=1,B=iVj(ci)}™j=1,z=hX,Q= (I-zB)-\ 

In compact form, 

/ yn+\ \ ( yn \ 

\P(x„ + Cjh) J \P(x„-i + Cjh) J 

where the expression of the stability matrix is given by 

Pi(l) +zwTQ(pi(c) (p0(l)+zwTQ(p0(c) z(vT+zwTQA) 
M(z) = ( 1 0 0 

Q<Pi(c) Q<Po(c) zQA 

The method is A-stable if the eigenvalues of the stability matrix are less 1 for Re(X) < 0. 
We didn't find A-stable methods within this class, but wide stability regions exist, so that the methods are suitable 

for the numerical integration of stiff system. 
The knowledge of the collocation polynomial, which provides a continuous approximation of the solution, allows a 

cheap variable stepsize implementation. In [12] we introduce a modification in the technique, by relaxing some of the 
collocation conditions, in order to have free parameters in the method, to be used to get A-stability. 
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