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Abstract New classes of continuous two-step Runge-Kutta methods for the numerical

solution of ordinary differential equations are derived. These methods are developed

imposing some interpolation and collocation conditions, in order to obtain desirable

stability properties such as A-stability and L-stability. Particular structures of the

stability polynomial are also investigated.
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1 Introduction

It is the purpose of this paper to develop a special family of two-step continuous

methods of the type
P (tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn

+ h

m∑
j=1

(
χj(s)f(P (tn−1 + cjh)) + ψj(s)f(P (tn + cjh))

)
,

yn+1 = P (tn+1),

(1.1)
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with s ∈ (0, 1], n = 1, 2, . . . , N − 1, where N is the number of grid points, for the

numerical solution of initial value problems based on ordinary differential equations{
y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd,
(1.2)

with f : [t0, T ]× Rd → Rd. It is assumed that the function f is sufficiently smooth, in

such a way that the problem (1.2) is well-posed. Setting

Y
[n−1]
j = P (tn−1 + cjh), Y

[n]
j = P (tn + cjh), j = 1, 2, . . . ,m,

the method (1.1) can be written as two-step Runge-Kutta (TSRK) method of the form
yn+1 = θyn−1 + θ̃yn + h

m∑
j=1

(
vjf(Y

[n−1]
j ) + wjf(Y

[n]
j )

)
,

Y
[n]
i = uiyn−1 + ũiyn + h

m∑
j=1

(
aijf(Y

[n−1]
j ) + bijf(Y

[n]
j )

)
,

(1.3)

with i = 1, 2, . . . ,m, n = 1, 2, . . . , N − 1 and

θ = ϕ0(1), θ̃ = ϕ1(1), vj = χj(1), wj = ψj(1),

ui = ϕ0(ci), ũi = ϕ1(ci), aij = χj(ci), bij = ψj(ci).

TSRK methods were introduced by Jackiewicz and Tracogna [22] and further investi-

gated in [1], [3], [9], [10], [11], [18], [21],[24], [30], and [31]. Continuous methods (1.1)

provide an approximation to the solution y(t) of (1.2) on the whole interval of inte-

gration, and not only in the gridpoints {tn} as in the case of discrete TSRK methods

(1.3).

Different approaches to the construction of continuous TSRK methods are pre-

sented in [4], [6] and [23]. TSRK methods for delay differential equations are considered

in [2], [5] and for Volterra integral equations in [12].

The continuous approximant P (tn + sh) in (1.1), expressed as linear combination

of the basis functions

{ϕ0(s), ϕ1(s), χj(s), ψj(s), j = 1, 2, . . . ,m},

is an algebraic polynomial satisfying some appropriate interpolation and collocation

conditions. We relax some of these conditions, in order to derive continuous TSRK

methods of order p = m up to 4, having strong stability properties, such as A-stability

and L-stability. We also discuss the conditions to impose on the parameters of the

methods in order to obtain Runge–Kutta stability (i.e. the stability matrix has only one

nonzero eigenvalue, see [8,21] and references therein) or quadratic stability polynomials

[11].

The paper is organized as follows: in section 1 we discuss the general strategy we

follow in order to derive continuous A-stable and L-stable methods with appropriate

properties, e.g. θ=0, u = 0 and FSAL (i.e. the first stage of the next step is the same

as the last stage of the current step, see [8,25]). In sections 2, 3, 4 and 5 we derive

methods of order p = m = 1, 2, 3 and 4, possessing the mentioned properties. In section

6 we discuss the conditions to obtain Runge–Kutta stability. Section 7 contains some

examples of methods derived using the results obtained in the previous sections. In

section 8 we make some concluding remarks.
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2 Construction of methods

The methods we aim to derive can be recognized as special multistep collocation

methods [13], [14], [15] [16], [17], [20], [26], in the sense that, in order to advance from

the point tn to the point tn+1, the continuous approximant (1.1) is derived imposing

some appropriate interpolation and collocation conditions, only with respect to the

points tn and tn + cjh, i.e.

P (tn) = yn, (2.1)

P ′(tn + cjh) = f(P (tn + cjh)), j = 1, 2, . . . ,m. (2.2)

These conditions imply that

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0, (2.3)

ϕ′0(ci) = 0, ϕ′1(ci) = 0, χ′j(ci) = 0, ψ′j(ci) = δij , (2.4)

for i, j= 1, 2, . . . , m, where δij is the usual Kronecker delta. We propose two different

classes of continuous methods of this form. First, we impose the interpolation condition

(2.1) only, obtaining a family of interpolation based TSRK methods. Then we follow the

more general appoach and impose the whole set of conditions (2.1), (2.2), achieving a

class of interpolation-collocation based TSRK methods. The strategy we follow in the

construction of these methods can be summarized as follows.

First of all, we fix the polynomials ϕ0(s), χj(s), j=1, 2, . . . , m. Interpolation based

TSRK methods with m = 1 (which can be exploited in a complete systematic way)

are derived imposing

ϕ0(s) = p0s, χ(s) = q0s, (2.5)

with p0, q0 ∈ R, while for interpolation-collocation TSRK methods with m = 1, we

infer from (2.4) that

ϕ′0(s) = χ′j(s) = (s− c),

therefore, if π1(s) is the primitive function of ϕ′0(s) and χ′(s) such that ϕ0(0) = χ(0) =

0, we impose

ϕ0(s) = α0π1(s), χ(s) = β0π1(s), (2.6)

with α0, β0 ∈ R. In the case m ≥ 2, in order to carry out a more general analysis, we

also ask for methods such that θ = 0 and u = 0. This choice is desirable in order to

simplify the systems of order conditions, without loss in terms of stability and order, as

Jackiewicz and Tracogna themselves stated in [22], where they first introduced TSRK

methods. As a consequence of these choices, new conditions on ϕ0(s) arise, i.e.

ϕ0(1) = 0, ϕ0(ci) = 0, i = 1, 2, . . . ,m, (2.7)

which can be fulfilled in the following ways:

• for interpolation based methods, we choose c1 = 0, cm = 1, in order to obtain a

family of FSAL methods with

ϕ0(s) = s(s− c2) · · · (s− cm−1)(s− 1), χj(s) = qjs, j = 1, 2, . . . ,m, (2.8)

with qj ∈ R, j = 1, 2, . . . ,m. It is well known that FSAL methods are suitable for

efficient implementation (see [8,25]).
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• for interpolation-collocation based methods with m ≥ 2, we impose

ϕ0(s) = 0, χj(s) = βjπm(s), j = 1, 2, . . . ,m, (2.9)

with βj ∈ R, j = 1, 2, . . . ,m, where πm(s) is the primitive function of χ′j(s) such

that χj(0) = 0.

As we aim for methods of order p = m, we impose the corresponding set of order

conditions, stated in the following theorem (see [13], [14]).

Theorem 2.1 Assume that the function f(y) is sufficiently smooth. Then the method

(1.1) has uniform order p if the following conditions are satisfied
ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m∑
j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)
=
sk

k!
,

(2.10)

s ∈ [0, 1], k = 1, 2, . . . , p. �

The unknown basis functions ϕ1(s), ψj(s), j=1, 2, . . . , m, can then be computed as

solutions of (2.10).

We next compute the stability polynomial of the obtained methods, i.e. the char-

acteristic polynomial of the stability matrix related to the class of methods (1.1). The

general expression of the stability matrix of (1.1) has already been derived in [13], [14]

and takes the following form

M(z) =


M11(z) M12(z) M13(z)

1 0 0

Qϕ1(c) Qϕ0(c) zQA

 ∈ C(m+2)×(m+2), (2.11)

where

M11(z) = ϕ1(1) + zwTQϕ1(c),

M12(z) = ϕ0(1) + zwTQϕ0(c),

M13(z) = z(vT + zwTQA),

and

Q = (I − zB)−1 ∈ Cm×m,

in order to investigate the stability properties of the developed methods. It is possible

to prove that, in correspondence of the above stated choices of the basis functions, the

stability polynomial is of the type

p(ω, z) = ωm(p2(z)ω
2 + p1(z)ω + p0(z)), (2.12)

and, therefore, the stability properties of the corresponding methods depend on the

quadratic function (cfr. [11])

p̃(ω, z) = p2(z)ω
2 + p1(z)ω + p0(z). (2.13)

Such an expression of the stability polynomial is suitable and desirable for many rea-

sons. In fact, it is well known that the construction of high order methods which are

A-stable (i.e. the roots ω1, ω2 of the polynomial p̃(ω, z) defined by (2.13) lie in the unit
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circle, for all z ∈ C such that Re(z) ≤ 0) and L-stable (i.e. the roots of the polynomial

p̃(ω, z)/p2(z) tend to zero as z → −∞) is a strongly nontrivial task. A very helpful tool

in this context is the Schur criterion [29] (see also [25]), which allows us to determine

the parameters of A-stable methods. The Schur criterion for a general kth polynomial

can be formulated as follows. Consider the polynomial

φ(w) = dkw
k + dk−1w

k−1 + · · ·+ d1w + d0,

where di are complex coefficients, dk 6= 0 and d0 6= 0. φ(w) is said to be a Schur

polynomial if all its roots wi, i = 1, 2, . . . , k, are inside of the unit circle. Define

φ̂(w) = d0w
k + d1w

k−1 + · · ·+ dk−1w + dk,

where di is the complex conjugate of di. Define also the polynomial

φ1(w) =
1

w

(
φ̂(0)φ(w)− φ(0)φ̂(w)

)
of degree at most k − 1. We have the following theorem.

Theorem 2.2 (Schur [29]). φ(w) is a Schur polynomial if and only if

|φ̂(0)| > |φ(0)|

and φ1(w) is a Schur polynomial.

Roughly speaking, the Schur criterion allows us to investigate the stability proper-

ties of a kth degree polynomial, looking at the roots of a polynomial of lower degree

(i.e. k − 1). Iterating this process, the last step consists in the investigation of the

root of a linear polynomial, plus some additional conditions. Of course, we can succeed

in finding A-stable methods implementing the Schur criterion in a symbolic environ-

ment only if the stability polynomial has low degree. For TSRK methods, it is natural

to investigate the conditions to impose in order to force the stability properties to

depend on a polynomial of degree 2, as discussed in [11], or on a linear polynomial.

For this reason, we also discuss the conditions to accomplish in order to achieve the

so-called Runge–Kutta stability (i.e. the stability matrix has one nonzero eigenvalues

and, therefore, the stability properties of the corresponding methods depend on a linear

polynomial).

Once we have obtained A-stability, L-stable is obtained by requiring that the pa-

rameters satisfy the nonlinear system of equations

lim
z→−∞

p0(z)

p2(z)
= 0, lim

z→−∞
p1(z)

p2(z)
= 0. (2.14)

In the following sections, we discuss the details of the construction of highly stable

m-stage methods, with m = 1, 2, 3, 4.



6

3 Analysis of methods with m = 1

In this section we focus our attention on one stage continuous methods (1.1). We first

assume that the polynomial P (tn + sh) in (1.1) satisfies the interpolation condition

(2.1) only. As a consequence, we need to impose conditions (2.3) on the basis functions,

i.e.

ϕ0(0) = 0, ϕ1(0) = 1, χ(0) = 0, ψ(0) = 0. (3.1)

Correspondingly, according to the assumption (2.5), we fix

ϕ0(s) = p0s, χ(s) = q0s, (3.2)

and derive ϕ1(s) and ψ(s) imposing the order conditions (2.10), obtaining

ϕ1(s) = 1− p0s, ψ(s) = (1 + p0 − q0)s. (3.3)

Therefore, the basis functions depend on p0 and q0, which must be determined in order

to achieve high stability properties. We know from the general theory of TSRK (see

[22]), that a TSRK method is zero–stable if and only if −1 < θ ≤ 1: in our case, as

θ = ϕ0(1) = p0, it must be

−1 < p0 ≤ 1. (3.4)

We next compute the stability function (2.12) of the method: in this case we have

p(ω, z) = p0(z) + p1(z)ω + p2(z)ω
2 (3.5)

with

p0(z) = −p0 − (1− c)q0z, (3.6)

p1(z) = −1 + p0 + (−1 + c− p0 + cp0 + q0 − 2cq0)z, (3.7)

p2(z) = 1− c(1 + p0 + q0)z. (3.8)

In order to determine the values of the parameters p0, q0 and c achieving A-stability,

we apply the Schur criterion to the stability function (3.5), obtaining the following

result.

Theorem 3.1 One stage interpolation based continuous methods (1.1), with basis func-

tions (3.2), (3.3) are A-stable if and only if the parameters p0, q0 and c satisfy the

following system of inequalities
−1 < p0 < 1,

p0 + 2c(1 + p0) > 1 + 2q0,

(−1 + 2c)(1 + p0 − 2q0) > 0,

(c+ cp0 − q0)
(
c(1 + p0 − 2q0) + q0

)
> 0.

(3.9)

Proof. In order to achieve A-stability, the roots of the polynomial (3.5) must lie inside

the unit circle for any z ∈ C such that Re(z) < 0. By the maximum principle, this is

the case if

1. the polynomial (3.5) has no poles in the negative half plane;

2. the roots of p(ω, iy) are inside the unit circle ∀y ∈ R.
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Condition 1 is trivially satisfied. We analyse condition 2 applying the Schur criterion

described in theorem 2.2 to the polynomial p(ω, iy) that we will next denote as p(ω, y).

In order to use the results in theorem 2.2, we first compute the polynomial

p̂(ω, y) = p2(z)ω
2 + p1(z)ω + p0(z)

where p2(z), p1(z) and p0(z) are the complex conjugate polynomials associated to

p2(z), p1(z) and p0(z) respectively. We next compute the polynomial

α(ω, y) =
1

ω
(p̂(0, y)p̃(ω, y)− p̃(0, y)p̂(0, y))

of degree 1. According to Schur criterion, p(ω, y) is a Schur polynomial if and only if

|p̂(0, y)| > |p(0, y)| (3.10)

and α(ω, y) is a Schur polynomial. Condition (3.10) is satisfied if and only if

1− p20 > 0, (c+ cp0 − q0)
(
c(1 + p0 − 2q0) + q0

)
> 0. (3.11)

In order to investigate on the polynomial α(ω, y), we apply the same procedure, i.e. we

derive the corresponding polynomials α̂(ω, y) and

β(ω, y) =
1

ω
(α̂(0, y)α̃(ω, y)− α̃(0, y)α̂(0, y)),

and the conditions imposed by the Schur criterion are satisfied for

−1 + p0 + 2c(1 + p0)− 2q0 > 0, (−1 + 2c)(1 + p0 − 2q0) > 0. (3.12)

Conditions (3.11) and (3.12) together give the system of inequalities (3.9). 2

Fig. 3.1 shows some regions of A-stability in the parameter space (p0, q0), in cor-

respondence of some values of the collocation abscissa c.

c = 3
4

c = 1

Fig. 3.1 Regions of A-stability in the (p0, q0)-plane for two-step methods (1.1) with p = m =
1, for somevalues of the abscissa c.

We next look for L-stable methods: in this case, conditions (2.14) take the form

q0(1− c) = 0, 1− c+ p0(1− c)− q0(1− 2c) = 0,

whose solution is (p0, q0) = (−1, 1), which is not acceptable because it violates the

zero-stability requirement (3.4). However, if we set c = 1 and q0 = 0, the above system

is automatically satisfied, for any p0 ∈ (−1, 1], i.e. the corresponding methods are L-

stable. In other words, if c = 1 and the basis polynomial χ(s) is identically zero, the

resulting methods are all L-stable.

We now assume that the polynomial P (tn + sh) in (1.1) satisfies the whole set of

conditions (2.3), (2.4), i.e.

ϕ0(0) = 0, ϕ1(0) = 1, χ(0) = 0, ψ(0) = 0,

ϕ′0(c) = 0, ϕ′1(c) = 0, χ(c) = 0, ψ(c) = 1.
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Correspondingly, we assume

ϕ0(s) = απ1(s), χ(s) = βπ1(s), (3.13)

and compute ϕ1(s) and ψ(s) from the order conditions (2.10), obtaining

ϕ1(s) = 1 + αcs2 − 1

2
αs3, ψ(s) = s− (α− β)cs2 +

1

2
(α− β)s3. (3.14)

As θ = ϕ0(1) = α( 1
2 − c), zero-stability is accomplished if and only if

−1 < α(
1

2
− c) ≤ 1. (3.15)

We now investigate on the stability properties of the methods in analysis, considering

the stability function (2.12). Following the lines drawn in Theorem 3.1, we obtain the

following result.

Theorem 3.2 One stage interpolation-collocation based continuous methods (1.1), with

basis functions (3.13), (3.14) are A-stable if and only if the parameters α, β and c sat-

isfy the following system of inequalities
α2(1− 2c)2 < 4

(−β + 2c+ αc+ 2βc− 2αc2)(β + 2c− αc− 2βc+ 2αc2 − 2αc3 + 2βc3) > 0

(−2− α+ 2αc)(2 + α− 2β − 4c+ 4βc− 4αc2 + 4αc3 − 4βc3) > 0

(−1 + 2c)(α− 2(1 + β) + 2αc)(2 + α(−1 + 2c)) < 0

We have drawn some regions of A-stability in the parameter space (α, β), using the

results stated in Theorem 3.2: fig. 3.2 shows the results we have obtained for particular

values of c.

c = 3
4

c = 1

Fig. 3.2 Regions of A-stability in the (α, β)-plane for interpolation-collocation based methods
(1.1) with p = m = 1, for different values of the abscissa c.

We finally compute the values of α and β achieving L-stability, solving the system

(2.14): it can be easily proved that those values are

α = 2
−1 + c+ c2

1− 2c− c2 + 2c3
, β =

2c

−1 + c+ 2c2
.

4 Analysis of methods with m = 2

We now consider two-step continuous methods (1.1) with p = m = 2 and general

abscissa vector, satisfying the interpolation condition (2.1). We assume

ϕ0(s) = 0, χ1(s) = q1s, χ2(s) = q2s, (4.1)
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solve the system of order conditions (2.10) with respect to ϕ1(s), ψ1(s), ψ2(s), and

compute the corresponding stability function (2.13), where p0(z), p1(z), p2(z) are poly-

nomials of degree 2 with respect to z. In this case, the system (2.14) can be solved

setting c2 = 1 and q2 = −q1. We finally apply the Schur criterion in order to localize

the whole set of possible values of c1 and q1 such that the corresponding methods are

L-stable. The results are shown in fig. 4.1.

Fig. 4.1 Region of L-stability in the (c1, q1)-plane for two-step methods (1.1) with p = m = 2
and c2 = 1.

We next consider interpolation-collocation methods of type (1.1) with p = m = 2.

According to assumption (2.9), we set

ϕ0(s) = 0, χ1(s) = β1π2(s), χ2(s) = β2π2(s),

and derive ϕ1(s), ψ1(s) and ψ2(s) from the set of order conditions (2.10). We compute

the stability function (2.13) where p0(z), p1(z) and p2(z) are polynomials of degree 2

with respect to z, and look for values of the parameters β1 and β2 achieving L-stability,

solving the system (2.14), obtaining

β1 =
3

γ
(−1 + c1)(−1 + c2)

2, β2 =
3

γ
(−1 + 2c1 − c21 + c2 − 2c1c2 + c21c2),

where

γ = 4− 8c1 + 5c21 − c31 − 8c2 + 14c1c2 − 7c21c2 + 2c31c2 + 5c22 − 7c1c
2
2 − c32 + 2c1c

3
2.

Finally, we draw the L–stability region in the parameter space (c1, c2), performing a

computer search based on the Schur criterion. Fig. 4.2 shows the result we obtained.

Fig. 4.2 Region of L-stability in the (c1, c2)-plane for two-step methods (1.1) with p = m = 2.

5 Construction of methods with m = 3

We now consider three stage continuous methods (1.1) with p = m = 3. Let us first

derive FSAL interpolation based methods of order 3, corrisponding to the abscissa

vector (c1, c2, c3) = (0, c2, 1). Following the assumptions in (2.8), we set

ϕ0(s) = s(s− c2)(s− 1), χ1(s) = q1s, χ2(s) = q2s, χ3(s) = q3s,

and derive ϕ1(s), ψ1(s), ψ2(s), ψ3(s), imposing the set of conditions (2.10). We omit

for brevity the expression of the resulting basis polynomials, which can be easily rec-

ognized. We then derive the stability function (2.13), where p0(z), p1(z), p2(z) are
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polynomials of degree 3 with respect to z, and next look for the values of the parame-

ters achieving L–stability. In this case, the solutions of the system (2.14) are

q1 = −1− c22
18c2

, q2 =
1− 2c2
18c2

.

By using the Schur criterion, it can be recognized that (2.13) is a Schur polynomial if

and only if c2 >
1
2 . We notice that q3 has no influence in the construction, so we set it

equal to 0.

We next develop interpolation-collocation based methods, assuming

ϕ0(s) = 0, χ1(s) = β1π3(s), χ2(s) = β2π3(s), χ3(s) = β3π3(s).

We impose the set of order conditions (2.10), derive ψ1(s), ψ2(s), ψ3(s), and compute

β1 and β2 as solutions of the system (2.14), in order to gain L-stability. Finally, using

the Schur criterion, we draw some regions of L–stability in the parameters space (c1, c2),

for different values of β3 and c3 = 1, as shown in fig. 5.1.

β3 = 0 β3 = 1
2

β3 = 1 β3 = 2

Fig. 5.1 Regions of L-stability in the (c1, c2)-plane for two-step methods (1.1) with p = m =
3, c3 = 1 and different values of the parameter β3.

6 Construction of methods with m = 4

We now focus our attention on the development of two-step continuous methods (1.1)

with p = m = 4, first considering interpolation based methods. According to assump-

tions (2.8), we fix

ϕ0(s) = s(s− c2)(s− c3)(s− 1), χ1(s) = sq1,

χ2(s) = sq2, χ3(s) = sq3, χ4(s) = sq4,

and derive ϕ1(s), ψ1(s), ψ2(s), ψ3(s), ψ4(s), imposing the set of order conditions

(2.10) for p = 4. We omit for brevity the expression of the resulting basis polynomials,

which can be easily recognized also in this case. We next derive the stability polynomial

(2.13), where p0(z), p1(z), p2(z) are polynomials of degree 4 with respect to z, and

look for the values of the parameters achieving L–stability, solving the system (2.14),

with respect to q1 and q2. Fig. 6.1 shows some regions of L-stability in the parameter

space (c3, q3), for some values of c2, drawn using the Schur criterion. We notice that

q4 does not play any rule in the derivation of the methods, so it can be put equal to

zero.
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c2 = 1
2

c2 = 3
5

c2 = 13
20

c2 = 2
3

Fig. 6.1 Regions of L-stability in the (c3, q3)-plane for two-step methods (1.1), for specific
values of the abscissa c2.

We now consider continuous four stage methods (1.1), obtained by imposing inter-

polation and collocation conditions (2.1), (2.2), and asking for θ = 0, u = 0. In line

with assumptions (2.9), we impose

ϕ0(s) = 0, χ1(s) = β1π4(s), χ2(s) = β2π4(s),

χ3(s) = β3π4(s), χ4(s) = β3π4(s),

and, from the set of order conditions (2.10), we derive ψ1(s), ψ2(s), ψ3(s) and ψ4(s).

We compute the stability function (2.13) and determine β2 and β3 as solutions of

(2.14), in order to gain L-stability. Finally, using the Schur criterion, we draw some

regions of L-stability in the parameters space (c2, c3), for different values of β1, as

shown in fig. 6.2.

β1 = 0 β1 = 1
2

β1 = 1 β1 = 2

Fig. 6.2 Regions of L-stability in the (c2, c3)-plane for two-step methods (1.1) with p = m =
4, for specific values of the parameter β1.

7 Runge–Kutta stability

In this section we investigate the existence of continuous TSRK methods having the

so-called Runge-Kutta stability, i.e. methods such that the stability matrix has one

nonzero eigenvalue only, which is in general a very complicate requirement. We restrict

our attention to one-stage continuous methods, whose general construction has been

treated in section 3. We infer the following result.

Theorem 7.1 For c ∈ [0, 1), the only interpolation based TSRK methods with m = 1

having Runge–Kutta stability are Runge–Kutta methods themselves. In the special case

c = 1, p0 = 0, all the corresponding methods posses Runge–Kutta stability, for any

q0 ∈ R.

Proof. It is sufficient to annihilate p0(z) in (3.6), in order to obtain a stability polyno-

mial of the form

p(w, z) = w2
(
p2(z)w + p1(z)

)
, (7.1)
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having only one nonzero root. The conditions to impose in order to have p0(z) identi-

cally equal to 0 are

p0 = 0, (1− c)q0 = 0.

The solution of this system is p0 = q0 = 0 and, correspondingly, the basis polynomials

take the form

ϕ0(s) = 0, ϕ1(s) = 1, χ(s) = 0, ψ(s) = s,

and the continuous approximant (1.1) is

P (tn + sh) = yn + hsf
(
P (tn + ch)

)
. (7.2)

The last part of the thesis is achieved simply setting c = 1 and p0 = 0 in (3.6). 2

With similar considerations, we can state an analogous result for interpolation-

collocation TSRK methods with m = 1.

Theorem 7.2 For c ∈ [0, 1] and c 6= 1
2 , the only interpolation-collocation methods

(1.1) having Runge-Kutta stability are Runge-Kutta methods themselves. For c = 1
2

and α = β, the corrisponding TSRK methods have Runge–Kutta stability.

8 Examples of methods

In this section we derive examples of A-stable and L-stable continuous TSRK methods

(2.13) for m = 1, 2, 3, and 4. It is always assumed that θ = 0 and u = 0.

8.1 Examples of interpolation based methods

Example 1. Assuming p = m = 1, we set c = 3
4 and obtain an A-stable ethod of type

(1.1), with

ϕ0(s) = 0, ϕ1(s) = 1, χ(s) = −s, ψ(s) = 2s.

We notice that the L-stable method with c = 1, q0 = 0 and p0 = 0 is equivalent to the

backward Euler method.

Example 2. Referring to the results derived in section 4, the basis functions of the

L-stable method of order p = m = 2 corresponding to the abscissa vector c = [34 , 1]T

are

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = s, χ2(s) = −s,
ψ1(s) = s(9− 2s), ψ2(s) = 2s(s− 1).

We also show an example of A-stable FSAL method, setting q0 = 1, q1 = 1 and q2 = 0,

i.e.

ϕ0(s) = s(s− 1), ϕ1(s) = 1 + s− s2, χ1(s) = s, χ2(s) = 0,

ψ1(s) = 1
2s(−5 + 2s), ψ2(s) = 9

2s.

Example 3. Following the results contained in section 5, we show the basis functions

of a FSAL L-stable method with p = q = m = 3, corresponding to the abscissa vector

c = [0, 3
4 , 1]T :
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ϕ0(s) = s
4 (s− 1 + s)(4s− 3), ϕ1(s) = 1− 3

4s+ 7
4s

2 − s3

χ1(s) = − 7s
216 , χ2(s) = − s

27 , χ3(s) = 0

ψ1(s) = s
(

685
216 −

413
72 s+ 55

18s
2
)
, ψ2(s) = −s

(
101
27 − 94

9 s+ 56
9 s

2
)

ψ3(s) = s
(

43
18 −

155
24 s+ 25

6 s
2
)
.

Example 4. We next derive a FSAL L-stable method (1.1) with p = m = 4, corre-

sponding to abscissa the vector c = [0, 1
2 ,

3
4 , 1]T . The basis functions of this method

are

ϕ0(s) = s
8 (s− 1)(2s− 1)(4s− 3), ϕ1(s) = 1 + 3

8s−
13
8 s

2 + 9
4s

3 − s4,

χ1(s) = − 149
264s, χ2(s) = 233

132s, χ3(s) = s, χ4(s) = 0,

ψ1(s) = −s
(

2435
528 − 117

16 s+ 89
8 s

2 − 31
6 s

3
)

ψ2(s) = s
(

235
33 − 305

12 s+ 205
6 s2 − 46

3 s
3
)

ψ3(s) = −s
(

169
33 − 88

3 s+ 112
3 s2 − 16s3

)
ψ4(s) = s

(
547
528 −

461
48 s+ 289

24 s
2 − 29

6 s
3
)
.

8.2 Examples of interpolation-collocation based methods.

Example 5. Referring to the results derived in section 3, we set c = 3
4 , obtaining a

L-stable interpolation-collocation method with p = m = 1, whose basis functions are

ϕ0(s) = s2
(

15
7 − 10

7 s
)
, ϕ1(s) = 1− 15

7 s
2 + 10

7 s
3,

χ(s) = −s2
(

9
7 −

6
7s

)
, ψ(s) = 1 + 24

7 s
2 − 16

7 s
3.

Example 6. Referring to the results derived in section 4, we show the basis functions

of the L-stable interpolation-collocation method (1.1) with p = m = 2, corresponding

to the abscissa vector c = [12 ,
9
10 ]T , i.e.

ϕ0(s) = 0, ϕ1(s) = 1,

χ1(s) = −s
(

3
4 −

7
60s+ 1

18s
2
)
, χ2(s) = −s

(
3
8 −

7
12s+ 5

18s
2
)
,

ψ1(s) = s
(

69
20 −

187
60 s+ 8

9s
2
)
, ψ2(s) = −s

(
2− 29

12s+ 5
9s

2
)
.

Example 7. Following the results contained in section 5 we show the basis functions of

a FSAL L-stable interpolation-collocation method (1.1) with p = m = 3, corresponding

to the abscissa vector c = [0, 3
5 , 1]T :

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = −s3
(

240
337 −

1280
1011s+ 200

337s
2
)
,

χ2(s) = s3
(

1125
337 − 2000

337 s+ 1857
674 s

2
)
, χ3(s) = s3

(
3
10 −

8
15s+ 1

4s
2
)
,

ψ1(s) = s
(
1− 4

3s−
113299
30330 s

2 + 115688
15165 s

3 − 14461
4044 s

4
)
,

ψ2(s) = 25s2
(

1
12 + 113

6066s−
400
3033s

2 + 125
2022s

3
)

ψ3(s) = −s2
(

3
4 −

695
2022s−

880
1011s

2 + 275
674s

3
)
.
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Example 8. We now consider the FSAL L-stable method (1.1) with p = m = 4, θ = 0,

u = 0, corresponding to the abscissa vector c = [0, 7
10 ,

9
10 , 1]T , whose basis functions

are

ϕ0(s) = 0, ϕ1(s) = 1, χ1(s) = −s3
(

63
100 −

223
150s+ 13

10s
2 − 2

5s
3
)
,

χ2(s) = 125840873
10156165010s

3
(
189− 446s+ 390s2 − 120s3

)
,

χ3(s) = 313000831
6093699006s

3(189− 446s+ 390s2 − 120s3), χ4(s) = 0,

ψ1(s) = s
(
1− 223

126s−
110596774973233
9597575934450 s2 + 48055456715852

1599595989075 s
3

− 2838443145187
106639732605 s

4 + 873367121596
106639732605s

5
)
,

ψ2(s) = s2
(

75
7 − 13154611771291

639838395630 s+ 671254535668
35546577535 s

2 − 80390326549
7109315507 s

3 + 24735485092
7109315507 s

4
)
,

ψ3(s) = −s2
(

175
9 − 2867265551881

54843291054 s+ 575594042414
9140548509 s2 − 130770083795

3046849503 s3 + 40236948860
3046849503 s

4
)
,

ψ4(s) = s2
(

21
2 − 28900702732187

914054850900 s+ 2081690316751
50780825050 s2 − 290054503193

10156165010 s
3 + 44623769722

5078082505 s
4
)
.

9 Numerical experiments

In this section we will demonstrate that continuous TSRK methods of order p and

stage order do not suffer from order reduction in the integration of stiff differential

systems, which is the case for classical Runge-Kutta formulae. This phenomenon, in

fact, does not occur for continuous TSRK methods because they possess high stage

order equal to their uniform order of convergence over the entire integration interval.

On the other hand, Runge-Kutta methods do not possess the same feature, because

their stage order is only equal to m, where m is the number of stages. To illustrate this

we have applied the two-stage Runge-Kutta-Gauss method of order p = 4 and stage

order q = 2 and the continuous TSRK method of uniform order p = 4 given in the

Example 8 of Section 8 to the following problems:

1. the Prothero-Robinson problem [28]{
y′(t) = λ

(
y(t)− F (t)

)
+ F ′(t), t ∈ [t0, T ],

y(t0) = y0,

where Re(λ) < 0 and F (t) is a slowly varying function on the interval [t0, T ]. In our

experiments, we have considered F (t) = sin(t). As observed by Hairer and Wanner

[20] in the context of Runge-Kutta methods this equation provides much new insight

into the behavoiur of numerical methods for stiff problems. This equation with

t0 = 0, F (t) = exp(µt), and y0 = 1, was also used by Butcher [7] to investigate

order reduction for Runge-Kutta-Gauss methods of order p = 2s;

2. the van der Pol oscillator (see VDPOL problem in [20]) y′1 = y2, y1(0) = 2,

y′2 =
(
(1− y2

1)y2 − y1
)
/ε, y2(0) = −2/3,

(9.1)

t ∈ [0, T ], with stiffness parameter ε;



15

λ = −103 λ = −105

k eRKG
h (T ) p k eRKG

h (T ) p

10 1.55 · 10−5

11 7.80 · 10−7 3.89 7 1.11 · 10−3

12 4.94 · 10−8 3.98 8 2.78 · 10−4 2.00

13 3.09 · 10−9 3.99 9 6.80 · 10−5 2.02

14 1.93 · 10−10 4.00 10 1.68 · 10−5 2.01

Table 9.1 Numerical results for Runge-Kutta-Gauss method of order p = 4 and stage order
q = 2 for the Prothero-Robinson problem

3. the Hires problem in [20]

y′1 = −1.71y1 + 0.43y2 + 8.32y3 + 0.0007

y′2 = 1.71y1 − 8.75y2

y′3 = −10.03y3 + 0.43y4 + 0.035y5

y′4 = 8.32y2 + 1.71y3 − 1.12y4

y′5 = −1.745y5 + 0.43y6 + 0.43y7

y′6 = −280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7

y′7 = 280y6y8 − 1.81y7

y′8 = −280y6y8 + 1.81y7

y1(0) = 1, y2(0) = . . . = y7(0) = 1 y8(0) = 0.0057,

with t ∈ [0, 321.8122].

For each problem, we have implemented both methods with a fixed stepsize

h = (T − t0)/2
k,

with several integer values of k, and listed norms of errors ‖eRKG
h (T )‖ and ‖eTSRK

h (T )‖
at the endpoint of integration T and the observed order of convergence p computed

from the formula

p =
log

(
‖eh(T )‖/‖eh/2(T )‖

)
log(2)

,

where eh(T ) and eh/2(T ) are errors corresponding to stepsizes h and h/2 for Runge-

Kutta-Gauss and TSRK methods.

Let us first consider the results obtained for the Prothero-Robinson problem in the

interval [0, 50], which are presented in Table 9.1 and Table 9.2, for the Runge-Kutta-

Gauss method and the continuous TSRK one respectively, in correspondence of several

values for the stiffness parameter λ.

We can observe that in the case λ = −103, for which the Prothero-Robinson prob-

lem is mildly stiff, both methods are convergent with expected order p = 4. However,
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λ = −103 λ = −105

k eTSRK
h (T ) p k eTSRK

h (T ) p

10 3.29 · 10−11

11 2.11 · 10−12 3.97 7 1.12 · 10−9

12 1.34 · 10−13 3.98 8 7.75 · 10−11 3.86

13 8.43 · 10−15 3.98 9 4.97 · 10−12 3.96

14 5.55 · 10−16 3.92 10 3.03 · 10−13 4.03

Table 9.2 Numerical results for continuous TSRK method of uniform order p = 4 for the
Prothero-Robinson problem

ε = 10−1 ε = 10−3 ε = 10−6

k ‖eRKG
h (T )‖ p ‖eRKG

h (T )‖ p ‖eRKG
h (T )‖ p

6 1.88 · 10−8 2.25 · 10−4 1.49 · 10−3

7 1.18 · 10−9 4.00 1.68 · 10−5 3.74 3.71 · 10−4 2.01

8 8.21 · 10−11 3.84 1.11 · 10−6 3.93 8.84 · 10−5 2.07

9 1.43 · 10−11 2.52 7.02 · 10−8 3.98 1.87 · 10−5 2.24

Table 9.3 Numerical results for Runge-Kutta-Gauss method of order p = 4 and stage order
q = 2 for the Van der Pol problem

for λ = −105, the problem in stiff and the Runge-Kutta-Gauss method exhibits the

order reduction phenomenon and its order of convergence drops to about p = 2 which

corresponds to the stage order q = 2. This is not the case for TSRK method which

preserves order of convergence p = q = 4, which leads to higher accuracy.

We next consider the Van der Pol oscillator, which is observed in the interval

[0, 3/4], i.e. for the slowly varying parts of the solution, where the problem is stiff for

small values of the parameter ε (the problem is not stiff on the interval where the

solution is changing rapidly). The results are presented in Table 9.3 and Table 9.4, for

several values of the parameter ε.

Also in this case we can observe that for the values of ε = 10−1 and ε = 10−3

for which the problem (9.1) is not stiff and mildly stiff both methods are convergent

with expected order p = 4. However, for small values of ε (ε = 10−6) for which the

van der Pol oscillator is stiff the Runge-Kutta-Gauss method exhibits order reduction

phenomenon and its order of convergence drops to about p = 2 which corresponds to

the stage order q = 2. This is not the case for TSRK method which preserves order of

convergence p = q = 4, which leads to higher accuracy.

We conclude our analysis presenting the results obtained for the Hires problem,

included in Table 9.5 and Table 9.6. Also in this case, the order reduction phenomenon

is evident for the Runge-Kutta-Gauss method, while it is not present on the continuous

TSRK method considered.
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ε = 10−1 ε = 10−3 ε = 10−6

k ‖eTSRK
h (T )‖ p ‖eTSRK

h (T )‖ p ‖eTSRK
h (T )‖ p

6 5.82 · 10−8 1.58 · 10−5 1.54 · 10−5

7 3.66 · 10−9 3.99 1.17 · 10−6 3.75 1.09 · 10−6 3.81

8 2.32 · 10−10 3.98 7.85 · 10−8 3.90 7.34 · 10−8 3.90

9 1.46 · 10−11 3.99 4.80 · 10−9 4.03 4.75 · 10−9 3.94

Table 9.4 Numerical results for TSRK method of order p = 4 and stage order q = 4 for the
Van der Pol problem

k ‖eRKG
h (T )‖ p

8 3.05 · 10−6

9 6.42 · 10−7 2.25

10 1.47 · 10−7 2.12

11 3.52 · 10−8 2.06

12 8.62 · 10−9 2.03

Table 9.5 Numerical results for Runge-Kutta-Gauss method of order p = 4 and stage order
q = 2 for the Hires problem

k ‖eTSRK
h (T )‖ p

6 4.85 · 10−5

7 3.31 · 10−6 3.87

8 2.16 · 10−7 3.93

Table 9.6 Numerical results for TSRK method of order p = 4 and stage order q = 4 for the
Hires problem

Additional results which confirm that continuous TSRK methods constructed in

this paper preserve the order of convergence for stiff problems are given in [13].

It would be also interesting to compare these methods in variable stepsize imple-

mentations. However before this can be done, the investigation of many implementation

issues is required, such as a choice of appropriate starting procedures, estimation of

local discretization errors for small and large stepsizes, filtering error estimates for stiff

problems, the design of stepsize and order changing strategies, and the design of strate-

gies for efficient solution of nonlinear systems of equations at each integration step. All

these implementation issues require different techniques than the ones employed in this

paper, which is only devoted to the construction of highly stable continuous methods,

and their investigation and comparison of methods in variable stepsize environments

is subject of [16].
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10 Conclusions and future work

We proposed new families of highly–stable continuous two-stepm-stage methods for the

numerical solution of ordinary differential equations, which is, in general, a nontrivial

task. These methods are of uniform order p equal to the stage order and as a result

they do not suffer from order reduction phenomenon (see [7], [8], [20]) persistent with

methods of low stage order. They are constructed using the some interpolation and

collocation conditions, deriving the parameters such that the resulting methods are A-

stable and L-stable. Runge–Kutta stability is also discussed and example of methods

with m = 1, 2, 3, 4 are also given. Future work will address various implementation

issues such as the choice of appropriate starting procedures, stepsize and order changing

strategy, solving nonlinear systems of equations by modified Newton methods and local

error estimation for large stepsizes, in order to efficiently implement stiff differential

systems [16].

Acknowledgements The results contained in this paper constitute part of the research car-
ried out during the visit of the first author (RD) to the Arizona State University in 2008.
This author wishes to express his gratitude to prof. Beatrice Paternoster for making this visit
possible.

References

1. Z. Bartoszewski and Z. Jackiewicz, Construction of two-step Runge-Kutta methods of high
order for ordinary differential equations, Numer. Algorithms, 18, 51–70 (1998)

2. Z. Bartoszewski and Z. Jackiewicz, Stability analysis of two-step Runge-Kutta methods for
delay differential equations, Comput. Math. Appl., 44, 83–93 (2002)

3. Z. Bartoszewski and Z. Jackiewicz, Nordsieck representation of two-step Runge-Kutta meth-
ods for ordinary differential equations, Appl. Numer. Math., 53, 149–163 (2005)

4. Z. Bartoszewski and Z. Jackiewicz, Derivation of continuous explicit two-step Runge-Kutta
methods of order three, J. Comput. Appl. Math., 205, 764–776 (2007)

5. Z. Bartoszewski and Z. Jackiewicz, Construction of highly stable parallel two-step Runge-
Kutta methods for delay differential equations, J. Comput. Appl. Math., 1-2(220), 257-270,
(2008)

6. Z. Bartoszewski, H. Podhaisky and R. Weiner, Construction of stiffly accurate two-step
Runge-Kutta methods of order three and their continuous extensions, in preparation.

7. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta
and General Linear Methods, xvi+512 pp. John Wiley Sons, Chichester, New York (1987).

8. J.C. Butcher, Numerical Methods for Ordinary Differential Equations. Second Edition,
xx+463 pp. John Wiley & Sons, Chichester (2008).

9. J.C. Butcher and S. Tracogna, Order conditions for two-step Runge-Kutta methods, Appl.
Numer. Math. 24, 351–364 (1997).

10. J. Chollom and Z. Jackiewicz, Construction of two-step Runge-Kutta methods with large
regions of absolute stability, J. Comput. Appl. Math. 157, 125–137 (2003).

11. D. Conte, R. D’Ambrosio, Z. Jackiewicz, Two-step Runge-Kutta methods with quadratic
stability functions, submitted.

12. D. Conte, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for Volterra
integral equations, Appl. Math. Comput. 204, 839–853 (2008).

13. R. D’Ambrosio, Two-step collocation methods for ordinary differential equations, Ph.D.
thesis, University of Salerno, in preparation.

14. R. D’Ambrosio, M. Ferro, Z. Jackiewicz, B. Paternoster, Two-step almost collocation meth-
ods for ordinary differential equations, in press on Numer. Algorithms (doi: 10.1007/s11075-
009-9280-5).

15. R. D’Ambrosio, M. Ferro, B. Paternoster, Collocation based two step Runge–Kutta methods
for Ordinary Differential Equations, in ICCSA 2008, Lecture Notes in Comput. Sci., Part II
5073 (Edited by O. Gervasi et al.), 736–751, Springer, New York (2008).



19

16. R. D’Ambrosio, Z. Jackiewicz, Construction and implementation of highly stable two-step
collocation methods for stiff differential systems, in preparation.
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