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1 - Introduction

The present paper summarizes and extends some of the recent works of the
authors concering the construction and the analysis of both efficient and highly
stable numerical methods for Volterra Integral Equations (VIEs), which arise
in many models of evolutionary phenomena with memory. We will particularly
consider VIEs of the second kind, having the form

(1) y(t) = g(t) +

∫ t

0

k(t, τ, y(τ))dτ, t ∈ [0, T ],



where the forcing function g : R → R
d and the kernel k : R

2 × R
d → R

d are
assumed to be sufficiently smooth. Such equations and their classical numerical
treatment has been widely described in [3, 4] and the related bibliography. In
particular, after defining a uniform mesh

Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T} ,

usually the equation (1) is expressed in the following way

y(t) = F [n](t, y(·)) + Φ[n+1](t, y(·)), t ∈ [tn, tn+1],

where

F [n](t, y(·)) := g(t) +

∫ tn

0

k(t, τ, y(τ))dτ, Φ[n+1](t, y(·)) :=

∫ t

tn

k(t, τ, y(τ))dτ

are the lag term and the increment term respectively. A special interest in lit-
erature has been reserved to collocation methods, which are based on the idea
of approximating the exact solution with a suitable function belonging to a fi-
nite dimensional space, usally a piecewise algebraic polynomial, which exactly
satisfies the equation on a certain subset of the integration interval, called the
set of collocation points. In order to improve the properties of classical one-
step collocation methods, Two-Step Almost Collocation (TSAC) methods have
been introduced in [9]: the resulting methods possess higher order of conver-
gence without any additional computational cost and preserve strong stability
properties.

Let us consider m collocation parameters c1, . . . , cm, which identify m in-
ternal points tnj = tn + cjh inside the generic interval [tn, tn+1]. Then TSAC
methods for VIEs [9] assume the form
(2)






Pn(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m
∑

j=1

χj(s)Y
[n]
j +

m
∑

j=1

ψj(s)(F
[n]
j + Φ

[n+1]
j )

yn+1 = P (tn+1),

where the algebraic polynomial Pn(tn + sh), s ∈ [0, 1], provides a continuous
approximation to the solution y(tn + sh) in the interval [tn, tn+1]. Such poly-
nomial is expressed as linear combination of the basis functions ϕ0(s), ϕ1(s),
χj(s) and ψj(s), j = 1, 2, . . . ,m, which are determined from the continuous
order conditions provided in [9]. Moreover, the polynomial employs the infor-
mation about the equation on two consecutive steps and suitable sufficiently
high order quadrature formulae
(3)

F
[n]
j = g(tnj)+h

n
∑

ν=1

(

b0k(tnj , tν−1, yν−1)+

m
∑

l=1

blk(tnj , tν−1,l, Y
[ν]
l )+bm+1k(tnj , tν , yν)

)

,

and
(4)

Φ
[n+1]
j = h

(

wj0k(tnj , tn, yn)+

m
∑

l=1

wjlk(tnj , tnl, Y
[n+1]
l )+wj,m+1k(tnj , tn+1, yn+1)

)

,
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for the discretization of F [n](tnj , P (·)) and Φ[n+1](tnj , P (·)) respectively, where

Y
[n]
i = Pn−1(tn−1,i) are the stage values and b0, bl, bm+1, wj0, wjl, wj,m+1 are

given weights. The polynomial Pn(tn + sh) is explicitly defined after solving,
at each step, the following system of (m+ 1)d nonlinear equations in the stage

values Y
[n+1]
i and yn+1, obtained by computing (2) for s = ci, i = 1, 2, . . . ,m,

and s = 1:
(5)






















Y
[n+1]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn +

m
∑

j=1

χj(ci)Y
[n]
j +

m
∑

j=1

ψj(ci)
(

F
[n]
j + Φ

[n+1]
j

)

,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑

j=1

χj(1)Y
[n]
j +

m
∑

j=1

ψj(1)
(

F
[n]
j + Φ

[n+1]
j

)

,

n = 1, 2, . . . , N − 1. The approximation P (t) of the solution y(t) of (1) on [0, T ]
is then obtained by considering

P (t)|(tn,tn+1] = Pn(t).

The aim of this paper is to describe how to reduce the computational cost
associated to the solution of the nonlinear system (5), by suitably extending
a widespread strategy used in the context of Ordinary Differential Equations
(ODEs). This strategy consists in making the coefficient matrix have a struc-
tured shape, e.g. lower triangular or diagonal. In fact, a lower triangular matrix
allows to solve the equations in m successive stages, with only a d-dimensional
system to be solved at each stage. Moreover, if all the elements on the diagonal
are equal, in solving the nonlinear systems by means of Newton-type iterations,
one may hope to use repeatedly the stored LU factorization of the Jacobian. If
the structure is diagonal, the problem reduces to the solution of m independent
systems of dimension d, and can therefore be solved in a parallel environment.

The paper is structured as follows. In Section 2 we recall the main ideas
regarding diagonally-implicit TSAC methods [8]. Section 3 is devoted to the
presentation of a new constructive technique, while Section 4 contains examples
of A-stable methods. Some conclusions and future developements are remarked
in Section 5.

2 - Two-step diagonally-implicit almost collocation methods: frame-

work

In this section we recall the main results obtained in [8] regarding the con-
struction of diagonally-implicit TSAC methods belonging to the class (2) such
that the coefficient matrix of the nonlinear system (5) has a structured shape,
leading to the solution of nonlinear systems of lower dimension d. First of all
we recall the order conditions.

T h e o r e m 2.1. Assume that the kernel k(t, η, y) and the function g(t) in
(1) are sufficiently smooth. Then the method (2) has uniform order p, i.e.,

η(tn + sh) = O(hp+1), h→ 0,
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for s ∈ [0, 1], if the polynomials ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, ...,m
satisfy the system of equations

(6)























1 − ϕ0(s) − ϕ1(s) −

m
∑

j=1

χj(s) −

m
∑

j=1

ψj(s) = 0,

sk − (−1)kϕ0(s) −

m
∑

j=1

(cj − 1)kχj(s) −

m
∑

j=1

ckjψj(s) = 0,

s ∈ [0, 1], k = 1, 2, ..., p, where

(7)

η(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

−

m
∑

j=1

(

χj(s)y(tn + (cj − 1)h) + ψj(s)y(tn + cjh)
)

.

is the local truncation error.

As regards the global error, the method has uniform order of convergence
p∗ = min{l + 1, q, p+ 1}, where l and q are the order of the starting procedure
and the order of the quadrature formulas (3)-(4) respectively. Two-step colloca-
tion methods are obtained by solving the system of order conditions up to the
maximum uniform attainable order p = 2m + 1, and, in this way, all the basis
functions are determined as the unique solution of such system. However, as
observed in [9], it is not convenient to impose all the order conditions because
it is not possible to achieve high stability properties (e.g. A−stability) without
getting rid of some of them. Therefore, almost collocation methods have been
introduced by relaxing a specified number r of order conditions, i.e. by a priori
opportunely fixing r basis functions, and determining the remaining ones as the
unique solution of the system of order conditions up to p = 2m+ 1− r. Within
the class of TSAC methods many A−stable methods have been constructed [9].

In [8], we considered we considered wj,m+1 = 0, j = 1, . . . ,m, in such a way
that (5) becomes a nonlinear system of dimension md only depending on the

stage values Y
[n+1]
i , i = 1, . . . ,m, and assumes the following form

(8)











Y
[n+1]
i − h

m
∑

j=1

m
∑

l=1

ψj(ci)wjlk(tnj , tnl, Y
[n+1]
l ) = B

[n]
i ,

yn+1 = Pn(tn+1),

where
(9)

B
[n]
i = ϕ0(ci)yn−1+ϕ1(ci)yn+

m
∑

j=1

χj(ci)Y
[n]
j +

m
∑

j=1

ψj(ci)F
[n]
j +h

m
∑

j=1

ψj(ci)wj0k(tnj , tn, yn).

By defining

Y [n+1] =
[

Y
[n+1]
1 , Y

[n+1]
2 , . . . , Y

[n+1]
m

]T

, B[n] =
[

B
[n]
1 , B

[n]
2 , . . . , B

[n]
m

]T

,

Ψ =
(

ψj(ci)
)m

i,j=1
, W =

(

wjl

)m

j,l=1
, K(tnc, tnc, Y

[n+1]) =

(

K(tni, tnj , Y
[n+1]
j )

)m

i,j=1

,

4



the nonlinear system in (8) takes the form

(10) Y [n+1] − h(Ψ ⊗ I)
(

(W ⊗ I) ·K(tnc, tnc, Y
[n+1])

)

e = B[n],

where · denotes the usual Hadamard product, I is the identity matrix of dimen-
sion d and e is the unit vector of dimension md. The tensor form (10) clearly
shows as the matrices which determine the structure of the nonlinear system
(8) are Ψ and W . In [8] we described a strategy to obtain lower triangular
or diagonal structures for the matrices Ψ and W : in particular we proposed a
quadrature formula of the form

(11)

cj
∫

0

f(s)ds ≈ wj0f(0) +

m
∑

l=1

w̃jlf(cl − 1) +

j
∑

l=1

wjlf(cl),

for the increment

(12) Φ[n+1](tnj , P (·)) = h

cj
∫

0

k(tnj , tn + sh, Pn(tn + sh))ds,

in addition to the quadrature formula

(13)

1
∫

0

f(s)ds ≈ b0f(0) +

m
∑

l=1

blf(cl) + bm+1f(1),

for the approximation of the lag term

(14) F [n](tnj , P (·)) = g(tnj) + h

n
∑

ν=1

1
∫

0

k(tnj , tν−1 + sh, Pν−1(tν−1 + sh))ds.

We observe that in formula (11), in case of triangular structure, w̃jl = 0,
l = 1, . . . , j while, in case of diagonal structure, w̃j1 = 0 and wjl = 0, l =
1, . . . , j− 1. The determination of the weights in formulae (11) and (13) will be
described in the next section.

Assuming that Ψ and W are lower triangular, we obtain the diagonally
implicit TSAC methods (DITSAC)
(15)


















Y
[n+1]
i − hψi(ci)wiik(tni, tni, Y

[n+1]
i ) = B

[n]
i + B̃

[n]
i + h

i−1
∑

l=1

i
∑

j=l

ψj(ci)wjlk(tnj , tnl, Y
[n+1]
l ),

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +
m

∑

j=1

χj(1)Y
[n]
j +

m
∑

j=1

ψj(1)
(

F
[n]
j + Φ

[n+1]
j

)

,

where B
[n]
i is given by (9),

(16) B̃
[n]
i = h

i
∑

j=1

m
∑

l=1

ψj(ci)w̃jlk(tnj , tn−1,lY
[n]
l ),
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and F
[n]
j , Φ

[n+1]
j are approximations of (14) by means of the quadrature formulae

(13) and (11).
Concerning the linear stability properties of DITSAC methods (15), i.e. the

behaviour of the methods when applied to the basic test equation

(17) y(t) = 1 + λ

t
∫

0

y(τ)dτ, t ≥ 0, Re(λ) ≤ 0,

the following result holds.

T h e o r e m 2.2. The stability matrix associated to the two-step collocation
method (15) takes the form

(18) R(z) = Q−1(z)M(z),

where

(19) Q(z) =









1 −zψT (1)W −ψT (1) 0
0 I − zΨW −Ψ 0
0 0 I 0
0 0 0 1









is an invertible matrix for z <
1

‖ΨW‖
(for some matrix norm), whose inverse

is
(20)

Q−1(z) =









1 zψT (1)W (I − zΨW )−1 −ψT (1)(I + zW (I − zΨW )−1) 0
0 (I − zΨW )−1 −(I − zΨW )−1Ψ 0
0 0 I 0
0 0 0 1









,

and

(21) M(z) =









ϕ1(1) + zψT (1)w0 χT (1) + zψT (1)W̃ 0 ϕ0(1)

ϕ1(c) + zΨw0 A+ zΨW̃ 0 ϕ0(c)
zbm+1u zubT I zb0u

1 0 0 0









.

Next section will focus on the determination of the basis functions ψj(s),
j = 1, 2, . . . ,m, and the weights wjl and w̃jl in (11), in such a way that the
matrices Ψ and W exhibit a lower triangular or diagonal shape.

3 - Constructive issues

In order to achieve a lower triangular or diagonal structure for the matrix
Ψ, the basis functions ψj(s) must satisfy

(22) ψj(ci) = 0, for j > i or j 6= i respectively,
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i.e. ψj(s) assumes the form

(23) ψj(s) =

j−1
∏

k=1

(s− ck)ψ̄j(s), j = 2, . . . ,m

or

(24) ψj(s) =

m
∏

k=1
k 6=j

(s− ck)ψ̃j(s), j = 1, . . . ,m

respectively, where ψ̄j(s) is a polynomial of degree p − j + 1 and ψ̃j(s) is a
polynomial of degree p−m+ 1.

In [8] we introduced the following constructive strategy for the determina-
tion of the basis functions, i.e. we fixed the polynomial ϕ0(s) and, eventually,
ϕ1(s), depending on some free parameters. We next derived the remaining basis
functions by solving the system of order conditions (6) up to the desired order p.
Then we derived some of the free parameters by enforcing the desired structure
on the matrix Ψ, i.e. by imposing the form (23) or (24) of the basis functions
ψj(s), j = 1, 2, . . . ,m, and the other free parameters in order to get A-stability.
This approach was used in [8] because we observed that, imposing (23) or (24)
and computing the remaining basis functions as solution of the system of order
conditions, the maximum attainable order would decay to m + 2 and m + 1
respectively. In fact the following theorem holds.

T h e o r e m 3.1. Let us suppose that r = m− 1 or r = m basis functions
are imposed a priori according to the assumptions (23) and (24) respectively.
Then, the resulting system of order conditions up to p = 2m + 1 − r admits a
unique polynomial solution.

In the following we will show that actually it is possible to impose a priori the
conditions (24) without any order reduction, by considering a certain number
of ψ̃j(s), j = 1, 2, . . . ,m, as unknowns of the system of order conditions. First
of all, we will show that, in the lower triangular case, this is effectively possible
only if the Ψ matrix is actually diagonal.

T h e o r e m 3.2. Let ψj(s), j = 2, . . . ,m, be chosen as in (23) and assume
that r < m − 1 functions ψj(s), j = 2, . . . , r + 1 are fixed a priori. Then the
resulting system of order conditions in the unknowns ϕ0(s), ϕ1(s), χj(s), j =
1, 2, . . . ,m, ψ1(s), ψ̄j(s), j = r + 2 . . . ,m admits an unique polynomial solution
if and only if ψj(s), j = 1, 2, . . . , r, are of the form (24) and ψk(ck) = 1,
k = 2, . . . , r + 1.

P r o o f. If the basis functions ψj(s), j = 2, . . . ,m, have the form (23)
and ψj(s), j = 2, . . . , r+1, are fixed a priori, the system of order conditions (6)
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takes the form
(25)






























ϕ0(s) + ϕ1(s) +
m

∑

j=1

χj(s) + ψ1(s) +
m

∑

j=r+2

m
∏

ℓ=1
ℓ 6=j

(s− cℓ)ψ̄j(s) = 1 −
r+1
∑

j=2

ψj(s),

(−1)kϕ0(s) +

m
∑

j=1

(cj − 1)kχj(s) + ck1ψ1(s) +

m
∑

j=r+2

ckj

m
∏

ℓ=1
ℓ 6=j

(s− cℓ)ψ̄j(s) = sk −

r+1
∑

j=2

ckjψj(s),

or, equivalently,

(26) H(s)x(s) = d(s),

where

H(s) =

[

−1(p), 0(p), (c− e)(p), c
(p)
1 ,

(

c
(p)
i

i−1
∏

k=1

(s− ck)

)m

i=r+2

]

,

x(s) =
[

ϕ0(s), ϕ1(s), (χj(s))
m

j=1 , ψ1(s),
(

ψ̄i(s)
)m

i=r+2

]T

,

d(s) = s(p) −

r+1
∑

j=2

ψj(s)c
(p)
j ,

with the notation

α(p) =











1 1 . . . 1
α1 α2 . . . αn

...
...

...
α

p
1 α

p
2 . . . αp

n











∈ R
(p+1)×n,

for α ∈ R
n. We aim to prove that each component of the solution vector x(s)

results to be a polynomial. In order to solve the system (26), we apply the
Cramer rule, obtaining that

xi(s) =
detHi(s)

detH(s)
, i = 1, . . . , 2m+ 2 − r,

where Hi(s) is the matrix obtained by replacing the i-th column of the matrix
H(s) with the vector d(s). By isolating the factors depending on s, we have

detH(s) =

r+1
∏

k=1

(s− ck)m−r−1
m−1
∏

k=r+2

(s− ck)m−k det H̄,

where H̄ is the Vandermonde matrix associated to the abscissa vector [−1, 0, (c−
e)T , c1, (ci)

m
i=r+1]. For i = 1, . . . ,m+ 3, it can be easily recognized that

xi(s) =
det H̄i(s)

det H̄
,
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where H̄i(s) is the matrix obtained by replacing the i-th column of the matrix
H̄ with the vector d(s), and therefore xi(s) is trivially a polynomial. Let us
analyze the components

xm+2+i−r(s) =
detHm+2+i−r(s)

detH(s)
=

det H̄m+2+i−r(s)
i−1
∏

k=1

(s− ck) det H̄

,

with i = r + 2, . . . ,m. By setting

fr,i(s) = s(s− 1)

m
∏

k=1

(s− ck + 1)(s− c1)

m
∏

k=r+2
k 6=i

(s− ck),

we can write

xm+2+i−r(s) =

fr,i(s) −
r+1
∑

j=2

ψj(s)fr,i(cj)

i−1
∏

k=1

(s− ck)fr,i(ci)

,

which is a polynomial if and only if

(27) fr,i(ck) −

r+1
∑

j=2

ψj(ck)fr,i(cj) = 0, k = 1, . . . , i− 1.

The condition (27) for k = 1 trivially results from (23) and fr,i(c1) = 0. By
imposing (27) for k = 2, . . . , r + 1, we obtain

ψk(ck) = 1 −
k−1
∑

j=2

fr,i(cj)

fr,i(ck)
ψj(ck), i = r + 2, . . . ,m,

and, therefore,

ψj(ck) = 0, j = 2, . . . , r, k = j + 1, . . . , r + 1,(28)

ψk(ck) = 1, k = 2, . . . , r + 1.(29)

Finally, the condition (27), for k = r + 2, . . . , i− 1, becomes

r−1
∑

j=2

ψj(ck)fr,i(cj) = 0, i = r + 2, . . . ,m,

and, as a consequence,

(30) ψj(ck) = 0, j = 2, . . . , r + 1, k = r + 2, . . . ,m− 1.

Conditions (29) and (30), together with the hypothesis (23), are equivalent to
(24) which, in addition to (29), conclude the proof. �

As a consequence, the following result holds in the diagonal case.
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T h e o r e m 3.3. Let ψj(s), j = 2, . . . ,m, be chosen as in (24) and assume
that r < m functions ψj(s), j = 1, . . . , r, are fixed a priori. Then the system of

order conditions in the unknowns ϕ0(s), ϕ1(s), χj(s), j = 1, 2, . . . ,m, ψ̃j(s), j =
r + 1, r + 2 . . . ,m, admits an unique polynomial solution if ψk(ck) = 1, k =
1, 2, . . . , r.

It is important to underline that, once the condition ψk(ck) = 1 involved in
the previous theorem is imposed on the basis functions we fix a priori together
with ψk(cℓ) = 0, ℓ 6= k, such conditions are automatically inherited by all the
other basis functions we determine as solution of the system of order conditions,
as it is proved in the following general result.

T h e o r e m 3.4. Let us define ξ1 = −1, ξ2 = 0, ξ2+j = cj−1, ξm+2+j = cj,
j = 1, . . . ,m and Γ1(s) = ϕ0(s), Γ2(s) = ϕ1(s), Γ2+j(s) = χj(s), Γm+2+j(s) =
ψj(s), j = 1, . . . ,m and let i ∈ {1, 2, . . . , 2m + 2} be a fixed integer. Then,
supposing ξi 6= ξj, i 6= j,

i. If Γi(ξi) = 1, then Γj(ξi) = 0 for all j 6= i;

ii. If Γi(ξℓ) = 0 with ℓ 6= i, then Γj(ξℓ) = δjℓ for j 6= i.

P r o o f. The system of order conditions (6) can be rewritten in terms of
ξj and Γj(s) as

(31) sk −
2m+2
∑

j=1

ξk
j Γj(s) = 0, k = 0, 1, . . . , p,

where we assume ξ02 = 1. We first prove the part i. of the thesis. For this
purpose, we evaluate (31) in s = ξi and, as a consequence, using the assumption
i. leads to the following linear system

2m+2
∑

j=1
j 6=i

ξk
j Γj(ξi) = 0, k = 0, 1, . . . , p,

which is a Vandermonde type linear system whose unique solution is Γj(ξi) = 0
for all j 6= i. In analogous way, by evaluating (31) in s = ξℓ and taking into
account the assumption ii., we obtain the Vandermonde type linear system

ξk
ℓ −

2m+2
∑

j=1
j 6=i

ξk
j Γj(ξℓ) = 0, k = 0, 1, . . . , p,

whose unique solution is Γj(ξℓ) = δjℓ for j 6= i. �

In addition to the computation of the basis functions, the quadrature for-
mulae (11)-(13) for the approximation of the increment and the lag terms have
to be computed: let us focus our attention on the computation of the weights
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of such formulae. With the purpose of achieving the desired order, quadrature
formulae of the form (11) and (13) can be constructed by taking into account
that the order of the corresponding increment term and lag term quadrature
formulae is at least O(hq), if they are interpolatory quadrature formulae on q−1
and q nodes respectively [4]. Therefore, we impose that lag term quadrature
formula (13) exactly integrates the functions

f(x) = xk, k = 0, 1, . . . , q − 1,

while the increment quadrature formula (11) exactly integrates the functions

f(x) = xk, k = 0, 1, . . . , q − 2.

This leads to the following linear systems when q ≤ m+ 2:

(32)















b0 +
m
∑

ℓ=1

bℓ + bm+1 = 1,

m
∑

ℓ=1

bℓc
k
ℓ + bm+1 = 1

k+1 , k = 1, 2, . . . , q − 1,

(33)















wj0 +
m
∑

ℓ=1

w̃jℓ +
j

∑

ℓ=1

wjℓ = cj ,

m
∑

ℓ=1

(cℓ − 1)kw̃jℓ +
j

∑

ℓ=1

ckℓwjℓ =
c

k+1

j

k+1 , k = 1, 2, . . . , q − 2,

j = 1, 2, . . . ,m, whose unique solutions gives the weights of (11) and (13) re-
spectively. If q > m + 2, we need some additional points in order to preserve
the order, then we can fix some additional parameters dℓ, ℓ = 1, . . . , q − 2 and
djℓ, j = 1, . . . ,m and ℓ = 1, . . . , q− j − 2, and determine the weights by solving
the system

(34)















b0 +
q−2
∑

ℓ=1

bℓ + bm+1 = 1,

q−2
∑

ℓ=1

bℓd
k
ℓ + bm+1 = 1

k+1 , k = 1, 2, . . . , q − 1,

(35)















wj0 +
q−j−2

∑

ℓ=1

w̃jℓ +
j

∑

ℓ=1

wjℓ = dj ,

q−j−ℓ
∑

ℓ=1

(dℓ − 1)kw̃jℓ +
j

∑

ℓ=1

dk
ℓwjℓ =

d
k+1

j

k+1 , k = 1, 2, . . . , q − 2,

j = 1, 2, . . . ,m.

4 - Examples of A-stable methods

We present in this section some examples of A-stable DITSAC methods of
the form (15), with Ψ and W lower triangular and/or diagonal. We recall that

11



for an A-stable method the roots of the stability polynomial, i.e. characteristic
polynomial p(ω, z) of the stability matrix (18), lie in the unit circle, for all z ∈ C

such that Re(z) ≤ 0. We investigate A-stability using the Schur criterion [22],
similarly as it has already been done in [9, 12, 13, 14, 15, 16, 19].

Consider the polynomial

η(w) = dkw
k + dk−1w

k−1 + · · · + d1w + d0,

where di are complex coefficients, dk 6= 0 and d0 6= 0. η(w) is said to be a Schur
polynomial if all its roots wi, i = 1, 2, . . . , k, are inside of the unit circle. Define

η̂(w) = d̄0w
k + d̄1w

k−1 + · · · + d̄k−1w + d̄k,

where d̄i is the complex conjugate of di. Define also the polynomial

η1(w) =
1

w

(

η̂(0)η(w) − η(0)η̂(w)
)

of degree at most k − 1. We have the following theorem.

T h e o r e m 4.1. (Schur [22]). η(w) is a Schur polynomial if and only if

|η̂(0)| > |η(0)|

and η1(w) is a Schur polynomial.

Roughly speaking, the Schur criterion allows us to investigate the stability
properties of a kth degree polynomial, looking at the roots of a polynomial of
lower degree (i.e. k − 1). Iterating this process, the last step consists in the
investigation of the root of a linear polynomial, plus some additional conditions.

The strategy we carry out in the construction of A-stable methods can be
summarized as follows. First of all we set the quadrature formulae (11) and
(13), deriving their weights by solving the linear systems (32) and (33) or (34)
and (35). Moreover, we assume that the polynomials ψj(s) satisfy (23) or (24)
and we fix a priori r of them, depending on some free parameters. According to
Theorems 3.1–3.3, we have to fix r = m− 1 basis functions ψk(s), k = 2, . . . ,m,
in the triangular case and we can fix 1 ≤ r ≤ m with ψk(ck) = 1, k = 1, 2, . . . , r,
in the diagonal case. As a consequence some free parameters must be spent in
order to enforce this condition, while the remaining ones will next be used in
order to achieve A-stability. We next derive the remaining basis functions by
solving the system of order conditions (6) up to p, compute the stability matrix
(18) of the resulting method and the corresponding stability polynomial, whose
stability properties are investigated by using the Schur criterion.

4.1 - Examples of methods with m = 2 with Ψ and W lower triangular

We first present the construction of highly stable two-stage DITSAC methods
(15), requiring that the matrices Ψ andW are lower triangular. We have already

12



observed in [8, 12] that A-stable methods of maximum uniform order 5 do not
exist within this class. Therefore, we next relax one order condition (r = 1),
and consider DITSAC methods (15) with m = 2 and order p = 2m = 4. We
compute the weights of the quadrature formulae (11) and (13) according to the
desired order p = 4, obtaining

b0 = −
−6c2c1 + 2c1 + 2c2 − 1

12c1c2
, b =

[

− 1−2c2

12(c1−1)c1(c1−c2)
2c1−1

12(c2−1)c2(c2−c1)

]T

,

b3 = −
−6c2c1 + 4c1 + 4c2 − 3

12(c1 − 1)(c2 − 1)
, w0 =

[

−
c1(c1 − 3c2 + 3)

6(c2 − 1)
−
c22 − 3c1c2

6c1

]

,

W =

[

c1(2c1−3c2+3)
6(c1−c2+1) 0

−
c3
2

6c1(c1−c2)
−

2c2
2−3c1c2

6(c1−c2)

]

, W̃ =

[

0
c3
1

6(c1−c2+1)(c2−1)

0 0

]

.

We next assume that the basis function ψ2(s) satisfies (23), presenting the form

ψ2(s) = (s− c1)ψ̃2(s),

and determine the remaining basis functions ϕ0(s), ϕ1(s), χ1(s), χ2(s) and ψ1(s)
by imposing the system of order conditions (6) up to order p = 4. The deter-
mined quadrature weights and basis functions now depend on the abscissa vec-
tor c = [c1, c2]

T which can be regarded as degrees of freedom in order to enforce
strong stability properties for the corresponding methods, such as A-stability
and, moreover, they also depend on the function ψ̃2(s). In particular, we ob-
serve that the corresponding stability polynomial depend on the values that the
function ψ̃2(s) assumes in c2 and in 1: let us denote these values as q0 = ψ̃2(c2)
and q1 = ψ̃2(1). The degree of the stability polynomial is equal to 6: however,
in correspondence of the value

q0 = −
1

c1 + c2
,

the degree of the stability polynomial becomes equal to 5. We assume for
simplicity that q1 = 0 and analyze the stability properties of the resulting
polynomial by using the Schur criterion in order to determine the values of the
free parameters c1 and c2 corresponding to A-stable methods. The result of this
analysis is reported in Figure 1.

4.2 - Examples of methods with m = 2 with Ψ and W diagonal

We now present the construction of highly stable two-stage DITSAC meth-
ods (15), requiring that the matrices Ψ and W are diagonal. We have already
observed in [8, 12] that no A-stable DITSAC methods with two stages, of order
p = 4, 5 and such that the matrices Ψ and W are diagonal exist and, therefore,
we relax two order conditions, attempting the construction of methods of or-
der p = 3. We compute the weights of the quadrature formulae (11) and (13)

13
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Figure 1: Region of A-stability in the parameter space (c1, c2) for DITSAC
methods (15), with m = 2 and p = 4.

corresponding to the diagonal case, obtaining

b0 = −
1 − 3c2

6c2
, b =

[

0 −
1

6(c2 − 1)c2

]T

, b3 = −
2 − 3c2

6(c2 − 1)
,

w0 =
[

c1

2
c2

2

]T
, W =

[

c1

2 0
0 c2

2

]

, W̃ =

[

0 0
0 0

]

.

We next assume, according to (24), the following form for ψ1(s) and ψ2(s):

(36)
ψ1(s) = s(s− c2)(q0 + q1s),
ψ2(s) = s(s− c1)(p0 + p1s).

The remaining basis functions ϕ0(s), ϕ1(s), χ1(s) and χ2(s) are next determined
by imposing the system of order conditions (6) up to p = 3. At this point,
everything depends on the values of q0, q1, p0, p1, c1 and c2. We next spend some
of the parameters in order to enforce some assumptions on the basis functions:
in particular, we assume that 1, c1 and c2 are roots of the polynomial ϕ0(s),
ensuring that the resulting methods do not depend on yn−1: this choice, as also
in the case of two-step Runge–Kutta methods for ODEs, is particularly suitable
in order to improve the stability properties of the resulting methods (compare
with [19, 20]). We also impose that ϕ1(s) annihilates in a certain point α that
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we choose in order to reduce the magnitude of the collocation points, trying
to have them as close as possible to the interval [0,1]: in our analysis, we have
chosen α = 1

4 . Under these assumptions, a fourth degree stability function
arises, which depends on c1 and c2. We apply the Schur criterion, in order to
determine the values of the free parameters c1, c2 achieving A-stability. The
results are shown in Figure 2.

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

c1

c 2

Figure 2: Region of A-stability in the parameter space (c1, c2) for DITSAC
methods (15), with m = 2, p = 3 and such that the matrices Ψ and W are
diagonal.

We finally present the construction of DITSAC methods (15), with m = 2,
p = 3 and such that the matrices Ψ and W are diagonal and their product is
one point spectrum. Also in this case we assume ψ1(s) and ψ2(s) of the type
(36) and determine all the remaining basis functions as solution of the system of
the order conditions. We next derive the values of q0, q1 and p1 such that 1 and
c1 are roots of the polynomial ϕ0(s), and also impose that ψ2(s) annihilates in
a certain point β we choose in order to reduce the magnitude of the collocation
points, trying to have them as close as possible to the interval [0,1]: in our
analysis, we have chosen β = − 18

5 . We next find p0 in such a way that the
matrix ΨW is also one-point spectrum. As a consequence of our assumptions,
a fifth degree stability function arises, which depends on c1 and c2: the values
of these parameters achieving A-stability are plotted in Figure 3.
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Figure 3: Region of A-stability in the parameter space (c1, c2) for DITSAC
methods (15), with m = 2, p = 3 and such that the matrices Ψ and W are
diagonal and ΨW is one point spectrum.

4.3 - Examples of methods with m = 3 with Ψ and W lower triangular

We conclude this section showing the construction of A-stable DITSAC
methods (15) with three stages and such that the matrices Ψ and W are lower
triangular. We observe that no A-stable methods of order p = 7, 6 can be found
within this class and, therefore, we relax two order conditions, deriving meth-
ods with m = 3 and uniform order p = 5. We first compute the weights of the
quadrature formulae (11) and (13) corresponding to the lower triangular case,
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obtaining

b0 =
−3 + c2(5 − 10c3) + 5c3 + 5c1

(

1 − 2c3 + c2(−2 + 6c3)
)

60c1c2c3
,

b =
[

−3+c2(5−10c3)+5c3

60(−1+c1)c1(c1−c2)(c1−c3)
−3+c1(5−10c3)+5c3

60(−1+c2)c2(−c1+c2)(c2−c3)
3−5c2+5c1(−1+2c2)

60(c1−c3)(−1+c3)c3(−c2+c3)

]T

,

b4 =
−20c3c2 + 15c2 + 15c3 + 5c1(−4c3 + c2(6c3 − 4) + 3) − 12

60(c1 − 1)(c2 − 1)(c3 − 1)
,

w0 =
[

c1(c2
1−2(c2+c3−2)c1+6(c2−1)(c3−1))

12(c2−1)(c3−1)
c2(c2(c2−2c3+2)−2c1(c2−3c3+3))

12c1(c3−1)

c3(c2
3−2c1c3−2c2c3+6c1c2)

12c1c2

]T

,

W =











c1(3c2
1−4(c2+c3−2)c1+6(c2−1)(c3−1))

12(c1−c2+1)(c1−c3+1) −
c3
2(c2−2c3+2)

12c1(c1−c2)(c1−c3+1)
(2c2−c3)c

3
3

12c1(c1−c2)(c1−c3)

0 c2(c1(4c2−6c3+6)+c2(−3c2+4c3−4))
12(c1−c2)(c2−c3+1)

c3
3(c3−2c1)

12(c1−c2)c2(c2−c3)

0 0
c3(3c2

3−4c1c3−4c2c3+6c1c2)
12(c1−c3)(c2−c3)











W̃ =







0 0 0
c3
1(c1−2c3+2)

12(c1−c2+1)(c2−1)(c2−c3)
0 0

c3
1(c1−2c2+2)

12(c1−c3+1)(c3−1)(c3−c2)
c3
2(c2−2c1)

12(c1−c3+1)(c3−1)(−c2+c3−1) 0






.

We next assume, according to (23), the following form for ψ2(s) and ψ3(s):

ψ2(s) = (s− c1)(s− c3)ψ̃2(s),

ψ3(s) = (s− c1)(s− c2)ψ̃3(s).

The remaining basis functions ϕ0(s), ϕ1(s), χ1(s), χ2(s), χ3(s) and ψ1(s) are
next determined by imposing the system of order conditions (6) up to p = 5. We
next compute the resulting stability polynomial, having degree equal to eight,
which depends on the collocation points, but also on some evaluations of the
functions ψ̃2(s) and ψ̃3(s), i.e.

q0 = ψ̃2(c2), q1 = ψ̃2(1), p0 = ψ̃3(c3), p1 = ψ̃3(1).

We impose q1 = p1 = 0 and compute the values of q0 and p0 in order to reduce
the degree of the stability polynomial. In this way, a sixth degree stability
function arises, which depends on the collocation points. The values of these
parameters achieving A-stability are plotted in Figure 4.

5 - Conclusions

We have presented a family of highly-stable diagonally-implicit two-step al-
most collocation methods for the numerical integration of VIEs (1), and intro-
duced a constructive technique which permits to a priori impose the structure of
the coefficient matrices. These methods possess uniform order of convergence on
the whole integration interval. We have provided examples of A-stable methods
(15) with m = 2 and 3, where Ψ and W are lower triangular and/or diagonal
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Figure 4: Region of A-stability in the parameter space (c1, c2) for DITSAC
methods (15), with m = 3, p = 5, c3 = 2 and such that the matrices Ψ and W

are lower triangular.

and, eventually, such that their product is one-point spectrum. Future works
will address the construction of highly stable methods (15) depending on more
stages and their implementation, in order to exploit their properties to get an
efficient variable stepsize-variable order implementation and, eventually, in a
parallel environment.
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