Exponentially fitted two-step hybrid methods f¢r = f(X,y)

R. D’Ambrosio, E. Esposito, B. Paternoster

Dipartimento di Matematica e Informatica, University of Salerno, Italy
e-mail: {rdambrosio, elesposito, beap@unisa.it

Abstract

Itis the purpose of this paper to derive two-step hybrid methodg’fer f (X, y), with oscillatory or periodic solutions,
specially tuned to the behaviour of the solution, through the usage of the exponential fitting technique. The construc-
tion of two-step exponentially fitted hybrid methods is shown and their properties are discussed. Some numerical
experiments confirming the theoretical expectations are provided.
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1. Introduction

It is the purpose of this paper to derive numerical methods approximating the solution of initial value problems
based on second order ordinaryfeiential equations (ODES)

y’ = f(xy),
Y (Xo) = Yo (1.1)
Y(Xo) = Yo,

with f : [x0, X] x RY = RY smooth enough in order to ensure the existence and uniqueness of the solution, which is
assumed to exhibit a periodascillatory behaviour. Although the problem (1.1) could be transformed into a doubled
dimensional system of first order ODEs and solved by standard formulae for first offieewfial systems, the
development of numerical methods for its direct integration seems more naturdhamhe

Second order ODEs (1.1) having periodic or oscillatory solutions often appear in many applications, e.g. celestial
mechanics, seismology, molecular dynamics, and so on (see for instance [24, 31] and references therein contained)
Classical numerical methods for ODEs may not be well-suited to follow a prominent periodic or oscillatory behaviour
because, in order to accurately catch the oscillations, a very small stepsize would be required with corresponding
deterioration of the numerical performances, especially in termsficfesncy. For this reason, many classical nu-
merical methods have been adapted in ordeffigiently approach the oscillatory behaviour. One of the possible
ways to proceed in this direction can be realized by imposing that a numerical method exactly integrates (within the
round-dt error) problems of type (1.1) whose solution can be expressed as linear combination of functions other than
polynomials: this is the spirit of the exponential fitting technique (EF, see [18]), where the adapted numerical method
is developed in order to be exact on problems whose solution is linear combination of

(1,%,..., XK, exp @ux), xexp Eux), ..., X" exp Eux)},

whereK andP are integer numbers.

In the context of linear multistep methods for second order ODEs, Gautschi [13] and Stiefel-Bettis [28] considered
trigonometric functions depending on one or more frequencies, while Lyche [20] derived methods exactly integrating
initial value problems based on ODEs of ordewhose solution can be expressed as linear combination of powers
and exponentials; Raptis-Allison [26] and Ixaru-Rizea [16] derived special purpose linear multistep methods for the
numerical treatment of the radial Sékinger equatioy” = (V(X) — E)y, by means of trigonometric and exponential
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basis of functions. More recently, in the context of Runge—Kutta—Kgstmethods, exponentially-fitted methods
have been considered, for instance, by Calvo [3], Franco [12], Simos [1, 27] and Vanden Berghe [29], while their
trigonometrically-fitted version has been developed by Paternoster in [21]; mixed-collocation based Runge—Kutta—
Nystrom methods have been introduced by Coleman and Duxbury in [5]. Recent adaptations of the Numerov method
have been provided in [11, 14, 30]. For a more extensive bibliography see [18] and references within.

The methods we consider in this paper belong to the class of two-step hybrid methods

S
Y = (14 G)yn - Gyna + 02 Y a f(YIM), i=1..s (1.2)
j=1
S
Yne1 = 2% = Yo1 + 02 D b F(YT), (1.3)
i=1
introduced by Coleman in [4], which can also be represented through the Butcher array
c|l A
b (1.4)

with ¢ = [cy, Cp, ..., Cs] T, A= (& szl, b =[by, by, ... bs]", wheresis the number of stages. The interest in this class of
methods, as also pointed out by Coleman in [4], lies in their formulation: “many other methods, though not normally
written like this, can be expressed in the same way by simple rearrangement”. For this reason, they represent one o
the first attempts to obtain wider and more general classes of numerical methods for (1.1), towards a class of General
Linear Methods [2, 7, 10, 19] for this problem.

The aim of this paper is the derivation of EF-based methods within the cl&5{1) depending on one or two
parameters, which we suppose can be estimated in advance. Frequency-dependent methods within 1P @da3s (1
have already been considered in [33], where phase-fitted and amplification-fitted two-step hybrid methods have been
derived, and also in [9], where trigonometrically fitted methods (1.2)-(1.3) depending on one and two frequencies
have been proposed.

In Section 2 we present the constructive technique of EF methods of type(113). Section 3 is devoted to
the local error analysis and the parameter estimation, while in Section 4 we analyze the linear stability properties of
the derived methods. Finally section 5 provides numerical tests confirming the theoretical expectations. The paper
concludes with an appendix, where some examples of methods have been reported.

2. Construction of the methods

We present the constructive technique we used to derive EF methods within the @3£4.8), based on the
so-called six-step procedure, introduced by Ixaru and Vanden Berghe in [18] as a constructive tool to derive EF based
formulae approaching many problems of Numerical Analysis (e.g. interpolation, numerical quadratuféezadtdi
ation, numerical solution of ODES) especially when their solutions show a prominent pgrémiliatory behaviour.
This procedure provides a general way to derive EF formulae whoskoieets are expressed in a regularized way
and, as a consequence, they do nditesifrom numerical cancellation. Indeed, ibgents expressed as linear com-
binations of sine, cosine and exponentialfexufrom heavy numerical cancellation and, in the implementation, they
are generally replaced by their power series expansion, suitably truncated. On the contraryffitierdseof EF
methods obtained by using the six-step flow chart are expressed by meangg}tienctions introduced by Ixaru
(see [15, 18] and references therein contained) and, as a consequenffects@E&numerical cancellation are notably
reduced.

In agreement with the procedure, we first consider the following setaf functional operators

LIh, b]y(X) = y(x+ h) = 2y(x) + y(x = h) - h? Z by’ (x+ Gh), (2.1)

=
Li[h, aly(x) = y(x + cih) — (1 + ¢)y(X) + Gy(x — h) — h? Z ajy (x+ch),i=1...,s (2.2)
i
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which are associated to the method}1(1.3). We next report the first five steps of the procedure, while the remaining
one, i.e. the local error analysis, is reported in Section 3.

¢ step (i)Computation of the classical moment$he reduced classical moments (see [18], p. 42) are defined, in
our case, as

L@ =h™Yglhax™ i=1...,s m=012..., (2.3)
L:(b) = h" ™D £[h: b]X™, m=0,1,2, ... (2.4)
¢ step (i) Compatibility analysisWe examine the algebraic systems

L;@=0i=1...sm=01..M-1 (2.5)
Li(b)=0, m=0,1,...,M -1, (2.6)

to find out the maximal values &fl andM’ for which the above systems are compatibles # 2, we have

Ly =0, L, =0, L3, =0,
Li =0, Li, =0, L5, =0,

L5 =2(1- by - by), Ly, = €1 + €% — 2(au1 + a1), L3, = Co + C3 — 2(a01 + a2),

Lg = 6(—b101 - b2C2), L;S = —Cl(l +6a51 — Ci) — 6a3,C,, L*23 = —C2(1 + 6ayy — Cg) — 6ay1Cy,

LZ = 12(% - b]_Ci - bgcg), L14 =C + C‘i - 12(&11C‘;|2_ + alz(%), LZ4 =Cy+ Cg - 12(&21C§ + azgcg),
and, thereforeM = M’ = 4.

e step (iii) Computation of the G functiondn order to derive EF methods, we need to compute the so-called
reduced (or starred) exponential mome(gse [18], p. 42), i.e.
EG(xz @) = exp@ux)Lilh, alexp@ux),i=1,....s (2.7)
Eo(xz b) = explux) L[h, b] exp(E.X), (2.8)

wherez = ph. Once computed the reduced exponential moments, we can deri@ftimetions, defined in the
following way:

G(Za) = %(Ea(z, a) + E5 (-2, a)), i=1...5

G (Za) = ziz(Ea(z, a) - E5(-z, a)), i=1...s
1

G"(Z.b) = 5(Exz b) + Ex(-z b))

G (Z.b) = o (Eszb) - Ex(-z)),

whereZ = 7. In our case, th& functions take the following form

S
GH(Z a) = n-1(c?2) + cn-1(2) - 2(1+ ) - Z Z ajn-1(c?2), i=1....s
=1

S
G/ (Z @) = ano(cPZ) - Gmo(2) - 2(1+G) = Z ) Caymo(¢Z), i=1,....5
=

G'(Zb) = 21.4(2) - 2-Z ) bn-1(c2).
=1

S
G (Zb)=-Z Z bicimo(c2).
=1



We observe that the above expressions depend on the fungtig@d andno(Z) (compare [15, 18]), which are
defined as follows

1/2 i
na(2) = %[exp(zl/Z) +exp(ZY?)] = { sz‘zz'l/z)) :: i i 2
and
sin(z"?)/1z"? it Z <0,
1 if Z=0,
sinh@'?)z*2 it Z>0.

n0(2) = 221/2 ——[exp@*?) - exp-2?)] if Zz+0,
1 if Z=0,

We next compute the-th derivativesG*® andG:”), taking into account the formula for theth derivative of
m(Z) (see [18]), i.e.

nP(Z) = —nk+p(2>
We thus obtain
2p

G P(z.a) = C—Up_l(CZZ) - S - Za” dd;p(zn 1(022)) i=1...s

2p+1
PN dP L
6Pz = Ln(@2) - 2pnp(Z) ZaﬂcJ dzp(zno(c Z)) i=1...s

1 dr
G P(Zb) = 3y 1(2) - Z b; ﬁ(zn_l(c:fZ)),

G P@b)=- ij Z14(c2)).

€ dZP(

step (iv) Definition of the function basisWe next decide the shape of the function basis to take into account:
as a consequence, the corresponding method will exactly integrate (i.e. the opggratay(x) annihilates

in correspondence of the function basis) all those problems whose solution is linear combination of the basis
functions. In general, the set bdf functions is a collection of both powers and exponentials, i.e.

(1,%,..., XK, exp @ux), xexp Eux), . .., X" exp @ux)},
whereK andP are integer numbers satisfying the relation
K+2P=M-3. (2.9)
Let us next consider the set bf’ functions
(1,%..., XK, exp @ux), xexp Eux), ..., X" exp Eux)} (2.10)

annihilating the operatots;[h, a]y(x), i = 1,2,...,sand assume th&’ = K andP’ = P, i.e. the external stage

and the internal ones are exact on the same function basis. We observe that other possible choices can be take
into account: this can be explained by means of the compatibility of the linear systems to be solved in order to
derive the parameters of the methods. In fact,shenknown elements of the matrixare derived by solving a

linear system of(K’ + 2P’ + 3) equations, while the elements of the vectdrare the solution of & + 2P + 3
dimensional linear system. Such systems are compatible if and only if

& = (K’ + 2P + 3),
s=K+2P+3,
4



or, equivalently, ifK’ + 2P” = K + 2P. One natural choice which satisfies this requirement is, of colrse,K
andP’ = P, but other possibilities can be certainly taken into account, even if they are not explored in this
paper.

e step (v)Determination of the cggcients After a suitable choice oK and P, we next solve the following
algebraic systems:
G:P(za)=0i=1...,5 p=0,...P,
c:P(zb)=0, p=0,...P

The paper focuses on the complete analysis of two-stage EF methodK with1 andP = 1 within the class
(1.2)-(1.3), whose cdBcients have been reported in the appendix. In correspondence to this ch&@ndP, the
fitting space assumes the form

{1, X, expEux), xexpEux)}. (2.11)

We observe that, even € = —1, the monomiak is present in the basis (2.11), because it automatically annihilates
the linear operators (2.1)-(2.2).

It is also possible to extend the above procedure in order to derive EF methods belonging to the class (1.2)-(1.3),
in the case of more than one parameter. In particular, the appendix reports thelets of two-parameters EF
methods with 4 stages, with respect to the basis of functions

{1, X, explurX), eXpluzX)}. (2.12)

The final step of this procedure, i.e. the error analysis of the derived formulae, is reported in Section 3.

3. Error analysis and estimation of the parameters

According to the used procedure, the general expression of the local truncation error for an EF method with respect
to the basis of functions (2.10) takes the form (see [18])

Lk.1(b(2))
(K + 1)1ZP+

with K, P and M satisfying the condition (2.9). Taking into account our choice (2.11) for the functional basis, we
obtain

|teEF(X) — (_1)P+th DK+1(D2 _#2)P+1y(x)’ (31)

Li(b(Z
lteEF(x) = 2(_(4))02([)2 - 12)2y(X). (3.2)
2u
We next expandte®F in Taylor series arouns, evaluate it in the current point, and consider the leading term of the
series expansion, obtaining

1+ 6cc

2442
The local error analysis also constitutes a starting point for the estimation of the unknown pajamleien is,

in general, a nontrivial problem. In fact, up to now, a rigorous theory for the exact computation of the parameter

u has not yet been developed, but several attempts have been done in the literature in order to provide an accurat

estimation (see [17, 18] and references therein), generally based on the minimization of the leading term of the local

discretization error. For this reason we annihilate the ety (x,) — 212y (x,) + Y (x,) and estimate the parameter

in the following way:

Ite=F (x,) = — (H*YP(x0) = 262 (%) + YO ) i + O(HP). (33)

YO() + VD00 — ¥ (k)Y ()
U= . (3.4)

Y’ (%n)
The expressions for the occurring derivatives can be obtained analytically from the given ODEs (1.1).
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4. Linear stability analysis

We next analyze the linear stability properties [6, 31, 32] of the resulting methods, taking into account their
dependency on the parameters. The following definitions regard both the case of condian¢czemethods (1.2)-
(1.3), and their exponentially fitted version.

4.1. Methods with constant cieients

Following [31], we apply (12)-(13), to the test problem
y' =-2%, 1€R

obtaining the following recurrence relation (see [8])

[ Y;:1 ]:[ |V|111(V2) |V|120(V2) H y)n/l ] (4.1)

where

Mu1(%) = 2 - v*bTQ()(e+c),
Mi2(%) = =1 +»0" Q(A)c,

andQ(v?) = (I +v?A)1, with v? = h?A2. The matrix

M11(¥%)  Mi12(v?)

MOH=| T o |

(4.2)

is the so-calledstability (or amplification) matri31, 32]. Let us denote its spectral radius M (v?)). From
[31, 32], the following definitions hold.

Definition 4.1. (0,8°) is a stability interval for the metho(lL.2)-(1.3)if, ¥v? € (0,8%), itis
p(M(A) < 1. (4.3)

The condition (4.3) means that both the eigenvalu€¢g®) and1,(v?) of M(v?) are in modulus less than ¥y? €
(0, 8%). By settingS(v?) = Tr(M?(»?)) andP(»?) = det(M?(+?)), (4.3) is equivalent to

PO <1, IS0 <P +1, »e(0,89). (4.4)
Definition 4.2. The method1.2)-(1.3)is P-stable if(0, 3%) = (0, +).

If 21(v?) andA,(v?) both lie on the unit circle, then the interval of stability becomes an interval of periodicity,
according to the following definition.

Definition 4.3. (0, H?) is a periodicity interval if,yv? € (0, H2), 11(+?) and 1>(v?) are complex conjugate and have
modulus 1.

Equivalently,
PO =1, [S0A)I<2, Vv e (0,HY). (4.5)

Definition 4.4. The method1.2)(1.3)is P-stable if its periodicity interval i0, +co).



4.2. Methods depending on one and two frequencies

Coleman and Ixaru discussed in [6] the modifications to introduce in the linear stability analysis for one-parameter
depending EF methods. As a consequence of the presence of the paganteéeinterval of stability becomes a
bidimensional stability region for the one parameter family of methods. In order to emphasize the dependency on the
fitted parameteZ = 72, we use the notatioM(v2,2), R42,2) = 1Tr(M(+2,2)), P(2, 2) = detM(»2, 2)) to denote
the stability matrix, its halved trace and determinant respectively. The following definition arises:

Definition 4.5. A region of stabilityQ is a region of thgy?, Z) plane, such tha¥ (v, Z) € Q
P2, 2Z) <1, |R(0A2Z) < (P(OA2Z)+1). (4.6)
Any closed curve defined bysR, Z) = 1 and|R(»?, Z)| = 1(P(+2, Z) + 1) is a stability boundary.

We next consider the linear stability analysis of methods depending on two frequencies. As stated before, for
methods with constant cfiients, the stability region is an interval on the real axis, while methods depending on one
frequency have a bidimensional stability region. In the case of methods depending on the values of two parameters
11, 1o the stability region becomes tridimensional. We now denote the stability matrix of the methdds’azg,, Z,),
with Z; = p5h? andz, = p3h?. The definition of stability region for two-parameters depending methods can be adapted
as follows [8, 11]:

Definition 4.6. A three dimensional regio® of the (v, Z1,Z,) space is said to be the region of stability of the
corresponding two-frequency depending method(i?, Z;, Z,) € Q,

P02 Z1,2)) <1, |ROAZ1,20) < %(P(vz, Z1,25) + 1). (4.7
Any closed curve defined by

P02 Z1,2) =1, IR0VAZ1,2)| = %(P(vz, Z1,2) + 1). (4.8)
is a stability boundary for the method.

Examples of bidimensional and tridimensional stability regions are provided in the appendix.

5. Numerical results
We now perform some numerical experiments confirming the theoretical expectations regarding the methods we
have derived. The implemented solvers are based on the following methods:

e COLEM2, two-step hybrid method (1.2)-(1.3) having constantiocents (see [8])

(5.1)

with s= 2 and order 2;

e EXPCOLEM2, one-parameter depending exponentially-fitted method (1.2)-(1.3) withand order 2, whose
codficients are reported in the appendix.



We implement such methods in a fixed stepsize environment, withns:teﬁ, with k positive integer number. The
numerical evidence confirms that EF-based methods within the class (1.2)-(1.3) are able to exactly integrate, within
round-dt error, problems whose solution is linear combination of the considered basis functions. This result also
holds for large values of the stepsize: on the contrary, for the same values of the step of integration, classical methods
(1.2)-(1.3) are less accurate arfii@ent, because in order to accurately integrate problems with oscillating solutions,
classical methods require a very small stepsize, deteriorating the numerical performances in téinisrafye

Problem 1 We consider the following simple test equation

Yy’ (%) = 2y(X),

y(0) =1, (5.2)
y’(O) = _/17

with 2 > 0 andx € [0, 1]. The exact solution of this equationy&) = exp(-1x) and, therefore, our exponentially-

fitted methods can exactly reproduce it, i.e. the numerical solution wilffieetad by the roundfberror only. Table
1 shows the results we have obtained by using the above numerical methods.

A | k | COLEM2 | EXPCOLEM2
2| 4 8.32e-1 1.09e-14
5 2.29e-1 3.94e-14
6 5.96e-2 1.20e-13
3|7 2.71e-1 1.06e-12
8 6.85e-2 7.96e-12
9 1.72e-2 5.97e-12
41 8 9.09e-1 1.83e-11
9 2.29e-1 2.26e-11
10| 5.74e-2 1.64e-10

Table 1: Relative errors corresponding to the solution of the problem (5.2) fferetit values oft andk.

Problem 2 We examine the following linear equation

y'(¥) -y =x-1,

y(0) =2, (5.3)
y(©)=-2

with A > 0 andx € [0, 5]. The exact solution ig(x) = 1 — x + exp(x) and, therefore, it is linear combinations of all

the basis functions in (2.11). The obtained results are reported in Table 2.

COLEM2 | EXPCOLEM2
8.53e-1 1.65e-14
2.71e-1 5.16e-14
7.26e-2 2.21e-13

~N o g x

Table 2: Relative errors corresponding to the solution of the problem (5.3).

Problem 3 We next focus on the Prothero-Robinson problem [25]

Y’ (%) + V[y() — expax)]® = 2%y,
y(0) = 1, (5.4)

y(0)=-4,



in x € [0, 5], which is a nonlinear problem whose exact solutiop(i§ = exp(1x). The obtained results are reported
in Table 3.

COLEM2 | EXPCOLEM2
3.65e-1 2.41e-15
1.70e-1 3.16e-16
2.65e-2 1.21e-15

WN RPxX

Table 3: Relative errors corresponding to the solution of the problem (5.4)ywith/10.

6. Conclusions and further developments

We have derived the exponentially-fitted version of the two-step hybrid methods introduced by Coleman in [4].
These methods take advantage from the knowledge of the qualitative behaviour of the solution, which is supposed to
be of exponential type, depending on one or two parameters. The construction of the new formulae has been provided
together with the stability analysis, the computation of the local error and the estimation of the unknown parameters.
Some numerical experiments have also been provided in order to confirm the theoretical expectations.

Future work will address the construction and the analysis of wider and more general classes of numerical methods
for second order problems (1.1), falling in the class of General Linear Methods [2, 7, 10, 19, 22, 23].
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Appendix: some examples of methods

We report the caicients of EF methods (1.2)-(1.3) with= 2 ands = 4 with respect to the basis (2.11) and

(2.12) respectively.
Two-stage EF methods within the class (1.2)-(1.3) and exact on the functional basis (2.11) have the following

codlicients:

202 (71(2) - Do (22)

by = - ,
" Z(cuno(22) -1 (c32) - cana (22) o (22))
o 261 (7-1(2) - 1) mo (c32)
* " Z(cono (22) 01 (22) - can-1 (22) o (22))
- —Con-1 (CiZ) + C11o (CiZ) - C1C27’]_1(Z) + 2C1Cp — C1770(Z) —2C;+2c, -2
" Z(c1 — C2)n-1 (sz) ’
o C2n-1(2) + Can-1(3Z) — cano (G3Z) - 262 + cano(2) + 2
e Z(cy — C2)n-1 (ng) ’
. C3 (-n-1(2)) — Can-1 (ng) + C21o (ng) +2C3 — Cono(2) - 2
21 = 5

Z(c1 - C2)n-1 (CfZ)
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C117-1(GBZ) + C1Co-1(Z) — 261C, — 261 — Cango (C3Z) + Cano(Z) + 2¢; + 2
Z(Cc1 - C2)n-1 (ng) .

It is easy to prove that, foZ tending to O, these cfiicients tend to those of two-step hybrid methods based on
algebraic collocation (see [8]): therefore, applying the order conditions derived in [Z]tiording to 0, we discover
that these methods have order 2. Fig. 1 shows an example of stability region for two-stage one-parameter depending

method withc, = 4, ¢, = 2.

Ay =

Figure 1: Region of stability in the/{, Z)—plane fors = 2, with¢; = % C = ‘3‘.

The codficients of four-stage EF methods (1.2)-(1.3) with respect to the functional basis (2.12) are too long to be
reported in the paper and, for this reason, we present their truncated power series expansion, in correspondence of th

abscissa vectar= [0, 3, 2, 1]":

5 4322 (43 59322%\ _, . 4
+(ﬁ)+ 27216 71+ O(Z7)) + O(Z5),

b= 3+ 360

b, = 15 372, (37 +9643222
2774 144 " \144 544320

72,2 (7 593Z,°
2 ( 2 0) 2,2+ 0(Z4) + 0(Z)),

) Z12 + O(Z7) + O(Z5),

P2=3% 75 *\25 " 13608
3 1322 (13 47722\ _, . .
bs=-7-720 ~ (ﬂf saa320 & +O@) +0Z),
a;n =0, a2 =0, a;3=0, a4 =0,
67 581z (581 24007}
= — 22 Z4 Z4
%1~ 81" 14580" (14580+ 33067240 1 + 0% + OZ).

71 83%% ( 833 186073\ , _ _, 4
®2= 7547 9720 (_9720_ 3149280 2 T O14) + 0%
26 72 (7 535\ o oony . ot
ap3z = 2—7 + 1—354‘[E5+ 367416 Zl + O(Zl) + O(Zz),
41 3572 35 19195
%4~ "162 5832 " | 5832 6613488

_ 539 92977 929 27442
= 324" 11664 " | 11664 " 1889568
10

()Z% +0(23) + O(Z3).

as: (sz +0(Z7) + O(Z5),



Figure 2: Region of stability in the/f, Z1, Z,)-space fors = 4, withc = [0, 3, £, 1]".

3772 8680172
- 722( > ZJZ%+O(21‘>+O(Z§),

%2="F1 " 216 | 216 734832

1= 200 ot sams* sa0mmoac| A+ O + O
84 = _g_i - 23?6* [_ 23?6_ 3;223545 ] 2 +0zi) + OZ)
=2 - 3’1_% - (%Jr %Ozf) 22+ O(Z) + O(Z2),

a3 =3+ 1—255 + [f::§§0+ 415)Zf+0(2f) +0(Z3),

aus = _Z - 173225 - (71—2?6 " %Ozg) 72 4+ 0(Z%) + O(Z%).

Also in this case, foZ; andZ, tending to 0, such cdicients tend to those of two-step hybrid methods based on
algebraic collocation and the corresponding method has algebraic order 4. The tridimensional stability region of this
method is reported in Fig. 2.
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