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Abstract

The purpose of this paper is to revisit the exponential fitting (ef) technique when building up Runge-Kutta methods
for solving ordinary differential equations. We propose a modification in such a way that the contamination of the
final stage by the errors produced in the internal stages becomes visible. The modified technique is illustrated on
a simple version, namely the two-stage explicit Runge-Kutta method, for which we obtain new expressions for the
coefficients. The version obtained in this way is then compared foraccuracy and stability with that obtained by means
of the standard ef technique.
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1. Introduction

In this paper we focus on the solution by Runge-Kutta methods(RK) of the following initial value problem
{

y′(x) = f (x, y(x)), x ∈ [x0,X],
y(x0) = y0 ∈ R,

(1.1)

where f : [x0,X] × R→ R is smooth enough in order to ensure the well-posedness of this problem.
The general algorithm of a one-step RK method is (see [1], [7])

yn+1 = yn + h
s
∑

i=1

bi f (xn + cih,Yi) (1.2)

where

Yi = yn + h
s
∑

j=1

ai j f (xn + c jh,Yj), i = 1,2, ..., s. (1.3)

It allows computingyn+1 in terms of the inputyn by the formula written in the first row (so called final stage),in which
the values ofYi are as resulting from the set of formulae in the second row (internal stages).
We are actually interested in the cases when the solutiony(x) exhibits a shape which recommends RK versions with
coefficientsai j , bi , ci obtained by means of the exponential fitting (ef) technique as appropriate solvers of the problem.
Such shapes include exponential or oscillatory behaviours, and in each case the set of functions to be used for the ef-
based computation of the coefficients is selected in terms of the current behaviour. Many versions derived in this
frame have been reported in the literature, to mention only [4], [6], [8], [9], [10], [11] and references therein.
The issue which we want to revisit in this paper is the way of deriving the coefficients. Our intention actually consists
in accommodating two features. In fact, the structure of thealgorithm shows that the error inyn+1 cumulatesthe
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error associated directly to the form of the final stageand the errors generated when the intermediary valuesYi were
generated in the internal stages but in the literature (see,e.g., [4], [6], [8], [9], [10], [11]), when constructing the
coefficients, each stage is treatedseparatelyand then the error contamination process is disregarded. The problem
of concern then consists in modifying the way of constructing the coefficients such that the propagation of the error
along the stages becomes visible. To make our proposal of modification easier to follow we choose the very simple
case of the explicit two-stage RK method, and the functions 1, eµx, x eµx as the basis for the ef approach.
The paper is organized as follows: in section 2 we examine thechosen simple version to find out that in this case the
modification affects only the external stage. We then derive the corresponding exponential fitting version according to
the revisited technique, and obtain expressions for the coefficientsb1 andb2 which are different from those derived in
the standard ef-based frame. In section 3 we examine the stability properties of the new algorithm and also derive the
formula of its local error. The new and the standard ef-basedversions are then compared experimentally on two test
equations (section 4) while in section 5 we suggest some possible future developments and applications of the idea
suggested in the paper.

2. Construction of the method

As announced, we focus on the class of two stage explicit Runge-Kutta methods

yn+1 = yn + h[b1 f (xn,Y1) + b2 f (xn + c2h,Y2)]
Y1 = yn

Y2 = yn + ha21 f (xn,Y1)
(2.1)

which can be represented using the Butcher array (see [1], [7])

0
c2 a21

b1 b2

.

It is well known from Dahlquist barrier results that the maximum attainable order of ans-stage explicit Runge-Kutta
method is at mosts which means, in our case, that the computed methods can attain at most order 2, while the stage
order (i.e. the order of the internal stages approximations) is equal to 1 (cfr. [1], [7]). As a consequence, in the
classical case the external stage exactly integrates all problems whose solution is expressed as linear combination of
the set of functions{1, x, x2}, while the internal ones are exact when the solution is linear combination of{1, x}. In an
analogous way, since we aim to derive the exponential fittingversion of (2.1), we impose that the final stage exactly
integrates the set of functions

{1, eµx, x eµx}, (2.2)

while the internal stages exactly integrate the basis functions

{1, eµx}. (2.3)

It is well known that the coefficients of standard ef methods are not constant as in the classical case, but they are
functions ofz = µh. In the remainder we emphasize this dependence denoting thecoefficients of the ef version of
(2.1) asa21(z), b1(z) andb2(z). Whenz tends to 0 the coefficients of standard ef methods tend to classical ones. In
our revisited ef technique, the coefficients of the resulting methods will depend not only onz but also on the partial
derivatives of the functionf and, therefore, they depend on the equation we aim to solve. Following the formalism in
[5], [6], we introduce the local discretization errors associated to the second internal stage in (2.1)

L2[h,a]y(x)
∣

∣

∣

∣

x=xn

= y(xn + c2h) − yn − ha21 f (xn,Y1).

We next assume the localizing conditionyn = y(xn) and, therefore, we obtain

L2[h,a]y(x)
∣

∣

∣

∣

x=xn

= y(xn + c2h) − y(xn) − ha21y
′(xn). (2.4)
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In force of the localizing assumption there is no error inY1. As forY2, we annihilate (2.4) on the set of functions (2.3),
and in this way it is guaranteed that the second internal stageY2 in (2.1) is error free for all problems whose solutions
are linear combinations of the functionsy(x) = 1 andy(x) = eµx. We have:

L2[h,a]1
∣

∣

∣

∣

x=xn

= 0,

L2[h,a]eµx
∣

∣

∣

∣

x=xn

= eµ(xn+c2h) − eµxn − µha21e
xn = 0.

The last equation gives directlya21(z) = (ec2z − 1)/z but, since this has a 0/0 undeterminacy atz = 0, in numerical
evaluations a series expansion has to be used forz around 0. We then write:

a21(z) =























ec2z − 1
z

if |z| > z∗

c2 +
c2

2
2 z+

c3
2
6 z2 +

c4
2

24z3 +
c5

2
120z

4 +O(z5) otherwise

(2.5)

For z∗ = 10−2, as we use, the written terms in the series are sufficient for an accuracy with 12 exact figures for any
c2 ∈ (0, 1].

In short, if thisa21(z) is used, the second internal stage in (2.1) is exact if the solution of the problem is a linear
combination of the functions 1 andeµx such that, since these two functions are solutions of the differential equation

y′′ − µy′ = 0,

the leading term of the error in the second internal stage canbe expressed in the following form

err = h2F(y′′(x) − µy′(x)), (2.6)

whereF is the error constant. To determine this constant we follow the procedure introduced in [5]: we evaluate (2.4)
and the error (2.6) ony(x) = x and, due to the invariance to translation, we can considerx = 0. Therefore, we have

L2[h,a]x
∣

∣

∣

∣

x=0
= (c2 − a21)h

and
err|y(x)=x = −h2µF.

Comparing the last two formulas we obtain

F =
−1− c2z+ ec2z

z2
. (2.7)

We now consider the local error associated to the external stageyn+1 in (2.1). We define

L̂[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − h(b1y′(xn) + b2 f (xn + c2h,Y2)) . (2.8)

In standard derivations of exponentially-fitted Runge-Kutta methods (see, for instance, [4], [6], [8], [9], [10], [11]),
the coefficientsb1 andb2 are determined under the tacit assumption thatY2 = y(xn + c2h), that is the error (2.6) is
neglected. In a derivation of this type eq. (2.8) has the form

L̂S[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − h(b1y′(xn) + b2y′(xn + c2h)). (2.9)

By annihilating this fory(x) belonging to (2.2) we obtain

bS
1 (z) =



































−1− c2z+ ez(1+ (−1+ c2)z)
c2z2

, if |z| > z∗,

−1+2c2
2c2
+
−2+3c2

6c2
z+ −3+4c2

24c2
z2 +

−4+5c2
120c2

z3

+
−5+6c2
720c2

z4 +O(z5), otherwise
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bS
2 (z) =







































1− ez + zez

c2z2ec2z
, if |z| > z∗,

1
2c2
+

2−3c2
6c2

z+
3−8c2+6c2

2
24c2

z2 +
4−15c2+20c2

2−10c3
2

120c2
z3

+
15c4

2−40c3
2+45c2

2−24c2+5
720c2

z4 +O(z5), otherwise

where the superscriptS stands for the standard method.
However,Y2 approximatesy(xn + c2h) with the error (2.6) which vanishes only wheny(x) = 1,eµx. Correspondingly,
Y2 brings no contribution to the error inyn+1 only wheny(x) is a linear combination of these functions. In all other
possible cases the error (2.6) is nonzero, i.e. the stage value Y2 does not representy(xn + c2h) exactly. The central
problem then consists in determining how the error inY2 contaminates the error inyn+1, and finding a way such that
the coefficientsb1 andb2 minimize this contamination effect. We write

y′(xn + c2h) = f (xn + c2h, y(xn + c2h)) = f (xn + c2h,Y2 + err)

and, on applying the Taylor formula, we obtain

y′(xn + c2h) = f (xn + c2h,Y2) + err fy(xn + c2h,Y2) + O(err2) (2.10)

and, sinceerr ∼ h2 we disregard the last term. This approximation is used for revisiting (2.8), which now gets the
form

L̂R[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − hbR
1y′(xn) − hbR

2 [y′(xn + c2h)

− h2F fy(y
′′(xn) − µy′(xn))], (2.11)

where the superscriptR stands for therevisitedef Runge-Kutta methods we aim to derive; hereinafterfy is the short-
hand notation forfy(xn + c2h, Y2). We evaluate (2.11) ony(x) = 1, eµx, xeµx, obtaining

L̂R[h,b]1
∣

∣

∣

∣

x=0
= 0,

L̂R[h,b]eµx
∣

∣

∣

∣

x=0
= −1+ ez − (bR

1 + bR
2ec2z)z,

L̂R[h,b]xeµx
∣

∣

∣

∣

x=0
= −

z
µ2

[(bR
1 − ez)µ − bR

2( fy(−1+ ec2z − c2z) − ec2z(1+ c2z)µ)].

The values ofbR
1(z) andbR

2(z) that annihilate these expressions are

bR
1(z) =

α(z) fyh+ bS
1 (z)

γ(z) fyh+ 1
, (2.12)

bR
2(z) =

bS
2 (z)

γ(z) fyh+ 1
, (2.13)

where

α(z) =







































(1− ez)(−1+ ec2z − c2z)
c2z3ec2z

, if |z| > z∗,

−c2( 1
2 +

3−4c2
12 z+

3c2
2−4c2+2

24 z2 +
−24c3

2+45c2
2−40c2+15

720 z3

+
5c4

2−12c3
2+15c2

2−10c2+3
720 z4) + O(z5), otherwise

γ(z) =



























1− ec2z + c2z
c2z2ec2z

, if |z| > z∗,

−
c2
2 +

c2
2
3 z−

c3
2
8 z2 +

c4
2

30z3 −
c5

2
144z

4 +O(z5), otherwise

4



and this completes the derivation of the revised version.

Systems of equations

The coefficientsa21, b1 andb2 derived before for the standard and revised versions cover the case of the scalar
problem (1.1). When systems of equations are of concern they remain as stated for the standard version (the same
holds true also fora21 in the revised version) butbR

1 andbR
2 become matrices of functions.

To be specific, the system of differential equations to be solved is
{

y′(x) = f (x, y(x)), x ∈ [x0,X],
y(x0) = y0 ∈ R

d,
(2.14)

where f : [x0,X] ×R
d → R

d andd > 1. The form of eq. (2.4) which serves for the determination ofa21 is unchanged
but the vector form of the scalar eq. (2.10) has now a slightlydifferent expression,

y′(xn + c2h) = f (xn + c2h,Y2) + J(xn + c2h,Y2) err + O(err2) ,

because thed×d Jacobian matrixJ takes the place offy. The vector extension of the local truncation error expression
(2.11) then is

L̂R[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − hbR
1y′(xn) − hbR

2 [y′(xn + c2h)

− h2FJ(y′′(xn) − µy′(xn))], (2.15)

whereJ is the short-hand notation forJ(xn + c2h,Y2) and, to determine the matricesbR
1 andbR

2 , we apply a slightly
adapted version of the procedure described after eq. (2.11).
Specifically, letv(i), i = 1,2,3 be threed-dimensional column vectors with arbitrary constant elements. We introduce
the vectors of functions

y(1)(x) = v(1), y(2)(x) = eµxv(2), y(3)(x) = xeµxv(3),

and evaluate (2.15) on them. We obtainL̂R[h,b]y(1)
∣

∣

∣

∣

x=0
= T(i)v(i) where

T(1) = 0, T(2) = I (−1+ ez) − (bR
1 + bR

2ec2z)z,

T(3) = −
z
µ2

[(bR
1 − Iez)µ − bR

2(J(−1+ ec2z − c2z) − Iec2z(1+ c2z)µ)] .

0 andI are thed× d zero and unity matrices, respectively. The systemT(2) = T(3) = 0 is solved forbR
1(z) andbR

2(z) to
obtain the result (compare with eqs.(2.12-2.13)):

bR
1(z) = (I + γ(z)Jh)−1(α(z)Jh+ bS

1 (z)I ),
bR

2(z) = (I + γ(z)Jh)−1bS
2 (z) . (2.16)

3. Properties

Accuracy

The local truncation error of standard ef method is

L̂S[h,b]y(xn) = −
h3

12
[(−2+ 3c2)y′′′(xn) + (4µ − 6c2µ − 3c2 fy)y

′′(xn)

+µ(−2µ + 3c2µ + 3c2 fy)y
′(xn)] + O(h4). (3.1)

but for the revisited version we have

L̂R[h,b]y(xn) = −
h3

12
(−2+ 3c2)[y′′′(xn) − 2µy′′(xn) + µ2y′(xn)] +O(h4). (3.2)
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We see that in general the two versions have the same order 2. However, the order of the revised version can be easily
increased. Indeed, ifc2 = 2/3 then the order becomes 3.

Stability

We consider thelinear stability analysis, i.e. we study the stability propertiesof the two versions (standard and
revised) of the Runge-Kutta method (2.1) by means of the linear scalar problemy′ = λy, where Re(λ) < 0. We
recall that for both versions the coefficients depend onz. For the revised version coefficientsb1 andb2 depend also on
ω = hλ (they are rational functions ofω); we tacitly assume thatc2 is kept fixed.
Applying the internal stage equation in (2.1) we obtainY2 = (1+ ωa21)yn and, by substituting this expression in the
external stage equation we derive the recurrence relationyn+1 = R(ω, z)yn, where

R(ω, z) = 1+ ω[bV
1 + bV

2 ] + ω2a21(z)b
V
2

is the so-calledstability functionof the standard (V = S) or of the revised (V = R) version.
This function is then used for building up the three-dimensional stability region, thus extending a concept introduced
in [2] for second order differential equations. We recall that

Definition 3.1. The region of the three-dimensional(Re(ω), Im(ω), z) space on which the inequality

|R(ω, z)| < 1 (3.3)

is satisfied is called a region of stabilityΩ for the method (2.1).

Since for fixedz the stability function is a polynomial inω for versionS but a rational function for versionR it is
clear that the two 3D stability regions will show differently. To illustrate the difference we present sections through
the stability regions by planesz= −1, z= −2, z= −3 andz= −4. On Fig.1 we takec2 = 3/4 and show these sections
for standard/revised version on the left/right column. Fig.2 presents the same graphs forc2 = 2/3. For the standard
version a weak variation withz of stability area is seen for both values ofc2: there is some enlargement in width but
the maximal height remains practically unchanged. For contrast, a massive increase is seen for the revised version.
The revised version is thus clearly better than the standardone for stability.

4. Numerical experiments

We now compare for accuracy the standard and revised versions withc2 = 3/4 on three problems (two scalar, one
linear and another nonlinear, and a nonlinear system) whosesolutions show an exponential behavior. For the revised
version we report also on the casec2 = 2/3 which is expected to be of order 3. A fixed stepsizeh = 1/2i , with different
integer values ofi, was used for all compared methods. In tables 1-4 we present the relative errors atxmax, rerrS and
rerrR for eachh, and also the improvement factor for the revisited with respect to the standard version,

i f =
rerrS

rerrR
.

We first consider the linear problem
{

y′(x) = λy+ kxk−1eλx

y(1) = eλ,
(4.1)

with x ∈ [xmin = 1, xmax = 5], whose exact solution isy(x) = xkeλx. If µ = λ andk = 0,1 the solutiony(x) falls in the
set of functions (2.2) such that both versions provide the exact value of the solution, but for other values ofk the solu-
tion y(x) does not belong to the set (2.2) and, therefore, none of themis exact. Table 1 shows the results obtained for
k = 2 and several values ofλ, µ = λ, andh. The superiority of the revised version is obvious. As expected, the order
is 2 for c2 = 3/4 but 3 forc2 = 2/3. The improvement factor is substantial, especially forc2 = 2/3. All these fea-
tures continue to hold true also whenµ = 0, that is when the classical forms of these methods are involved, see Table 2.
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Table 1: Performance of the two versions for the problem (4.1)for different values ofλ; caseµ = λ.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/64 3.11(-05) 2.49(-06) 12.5 2.62(-05) 9.64(-08) 272.0
1/128 7.76(-06) 6.29(-07) 12.3 6.53(-06) 1.20(-08) 543.0
1/256 1.93(-06) 1.58(-07) 12.2 1.63(-06) 1.50(-09) 1085.1

λ = −2 1/128 3.77(-05) 1.18(-06) 32.0 3.28(-05) 1.16(-07) 281.9
1/256 9.39(-06) 3.06(-07) 30.7 8.17(-06) 1.45(-08) 562.9
1/512 2.34(-06) 7.80(-08) 30.0 2.03(-06) 1.81(-09) 1124.8

λ = −4 1/128 1.65(-04) 1.68(-06) 98.3 1.45(-04) 1.01(-06) 143.4
1/256 4.10(-05) 5.25(-07) 78.1 3.61(-05) 1.26(-07) 285.8
1/512 1.02(-05) 1.45(-07) 70.5 8.99(-06) 1.57(-08) 570.5

Table 2: Performance of the two versions for the problem (4.1)for different values ofλ; caseµ = 0.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/64 1.86(-05) 1.97(-06) 9.4 1.76(-05) 2.76(-08) 637.0
1/128 4.62(-06) 4.95(-07) 9.3 4.37(-06) 3.44(-09) 1268.8
1/256 1.15(-06) 1.24(-07) 9.3 1.09(-06) 4.30(-10) 2532.1

λ = −2 1/128 6.69(-05) 4.57(-06) 14.6 6.36(-05) 5.67(-08) 1121.4
1/256 1.66(-05) 1.15(-06) 14.5 1.58(-05) 7.08(-09) 2234.7
1/512 4.15(-06) 2.88(-07) 14.4 3.94(-06) 8.84(-10) 4461.0

λ = −4 1/128 8.12(-04) 7.98(-05) 10.2 7.95(-04) 1.80(-06) 441.7
1/256 2.01(-04) 2.01(-05) 10.0 1.96(-04) 2.24(-07) 876.5
1/512 4.99(-05) 5.04(-06) 9.9 4.88(-05) 2.80(-08) 1746.3

Table 3: Performance of the two versions for the problem (4.2)for different values ofλ; caseµ = λ.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/64 2.64(-05) 1.53(-06) 17.2 2.28(-05) 9.00(-08) 253.5
1/128 6.55(-06) 3.91(-07) 16.7 5.67(-06) 1.12(-08) 504.6
1/256 1.63(-06) 9.90(-08) 16.5 1.41(-06) 1.41(-09) 1006.6

λ = −2 1/128 2.61(-05) 7.12(-07) 36.6 2.27(-05) 8.42(-08) 269.8
1/256 6.48(-06) 1.89(-07) 34.3 5.65(-06) 1.05(-08) 537.5
1/512 1.62(-06) 4.87(-08) 33.2 1.41(-06) 1.31(-09) 1073.0

λ = −4 1/128 1.01(-04) 9.29(-07) 108.9 8.88(-05) 6.27(-07) 141.8
1/256 2.50(-05) 3.15(-07) 79.4 2.20(-05) 7.80(-08) 282.0
1/512 6.22(-06) 8.94(-08) 69.6 5.47(-06) 9.72(-09) 562.6
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Figure 1: Sections through the stability region by planez= constfor fixedc2 =
3
4 : standard version (left column), revised version (right column).
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Figure 2: Sections through the stability region by planez= constfor fixedc2 =
2
3 : standard version (left column), revised version (right column).
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Table 4: Performance of the two versions for the problem (4.2)for different values ofλ; caseµ = 0.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/64 2.81(-05) 1.21(-06) 23.1 2.52(-05) 3.11(-08) 812.0
1/128 6.95(-06) 3.06(-07) 22.7 6.25(-06) 3.86(-09) 1619.1
1/256 1.73(-06) 7.68(-08) 22.5 1.56(-06) 4.81(-10) 3233.1

λ = −2 1/128 5.76(-05) 3.53(-06) 16.3 5.44(-05) 5.36(-08) 1015.0
1/256 1.43(-05) 8.86(-07) 16.2 1.35(-05) 6.71(-09) 2015.4
1/512 3.57(-06) 2.22(-07) 16.1 3.37(-06) 8.39(-10) 4016.2

λ = −4 1/128 5.85(-04) 5.21(-05) 11.2 5.68(-04) 1.34(-06) 424.8
1/256 1.44(-04) 1.31(-05) 11.0 1.40(-04) 1.67(-07) 839.1
1/512 3.59(-05) 3.29(-06) 10.9 3.49(-05) 2.09(-08) 1668.0

The second test case is the nonlinear problem


















y′(x) =
λy2(x) + 2x3e2λx

y(x)
y(1) = eλ,

(4.2)

with x ∈ [xmin = 1, xmax = 5], whose exact solution isy(x) = x2eλx. The results are collected in Table 3 and Table 4.
Once again, the new version is clearly much more accurate than the standard one.

We conclude this section presenting the numerical results obtained for the nonlinear system










































y′1(x) = 3(y2(x) − x) +
λy2

1(x)

x3eλx
,

y′2(x) =
y2(x)

(

x2 + 2y1(x) + λx2y2(x) − λx3
)

x3(1+ xeλx)
,

y1(1) = eλ, y2(1) = 1+ eλ,

(4.3)

for x ∈ [xmin = 1, xmax = 2], whose exact solution isy(x) = [y1(x); y2(x)]T = [x3eλx; x(1+ xeλx)]T . For this casererr
is the biggest from the relative errors atxmax in the two components.
The results forλ = −1,−2,−4 are collected in Tables 5 and 6. The accuracy gain with the revised version is visible.

5. Concluding remarks

We have revised the standard technique for the constructionof ef Runge-Kutta methods for the numerical solution
of first order initial value problems (1.1). For the particular case of two-stage methods we have focused our attention
on the contribution in the final stage of the error coming fromthe second internal stage, and also experimentally
compared the revised ef version with the standard ef one. Theresults clearly confirm the superiority of the revised
version. Based on this it makes sense to investigate how the idea developed in this paper on the two-stage Runge-
Kutta method may be applied on Runge-Kutta methods with an increased number of stages and/or on other nonlinear
methods.

Moreover, the simple expression of the local truncation error of the revised version can be useful in order to
furnish new reliable estimations of the parameterµ on which depend the coefficients of the method. In fact, up to
now, a mathematical theory for the exact determination of this parameter has not yet been developed. The usual
technique used in literature consists in estimatingµ in such a way that the local error of the resulting methods is
minimized. Therefore, it may be interesting to examine the behaviour of the estimations for the revisited ef methods,
in order to understand if the improvement on the local error in the external stage (which now takes also into account
the contribution of the internal stages) is also inherited by the parameter estimators.
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Table 5: Performance of the two versions for the problem (4.3)for different values ofλ; caseµ = λ.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/ 128 0.285(-05) 0.216(-06) 13.2 0.679(-05) 0.342(-07) 198.8
1/ 256 0.716(-06) 0.532(-07) 13.5 0.171(-05) 0.427(-08) 399.8
1/ 512 0.180(-06) 0.132(-07) 13.6 0.428(-06) 0.534(-09) 801.7
1/1024 0.449(-07) 0.329(-08) 13.7 0.107(-06) 0.667(-10) 1605.6

λ = −2 1/ 128 0.715(-04) 0.114(-04) 6.3 0.546(-05) 0.422(-06) 12.9
1/ 256 0.180(-04) 0.279(-05) 6.4 0.142(-05) 0.525(-07) 27.0
1/ 512 0.450(-05) 0.690(-06) 6.5 0.362(-06) 0.654(-08) 55.3
1/1024 0.113(-05) 0.172(-06) 6.6 0.913(-07) 0.817(-09) 111.7

λ = −4 1/ 128 0.954(-03) 0.847(-03) 1.1 0.182(-03) 0.182(-04) 10.0
1/ 256 0.249(-03) 0.210(-03) 1.2 0.479(-04) 0.223(-05) 21.4
1/ 512 0.638(-04) 0.523(-04) 1.2 0.123(-04) 0.276(-06) 44.4
1/1024 0.161(-04) 0.131(-04) 1.2 0.310(-05) 0.343(-07) 90.3

Table 6: Performance of the two versions for the problem (4.3)for different values ofλ; caseµ = 0.

c2 = 3/4 c2 = 2/3
h rerrS rerrR i f rerr S rerrR i f

λ = −1 1/ 128 0.703(-05) 0.813(-06) 8.6 0.492(-06) 0.361(-08) 136.4
1/ 256 0.176(-05) 0.203(-06) 8.7 0.125(-06) 0.452(-09) 277.1
1/ 512 0.441(-06) 0.508(-07) 8.7 0.316(-07) 0.565(-10) 558.6
1/1024 0.110(-06) 0.127(-07) 8.7 0.792(-08) 0.706(-11) 1121.5

λ = −2 1/ 128 0.212(-04) 0.173(-05) 12.3 0.434(-05) 0.108(-07) 401.1
1/ 256 0.532(-05) 0.433(-06) 12.3 0.109(-05) 0.135(-08) 803.2
1/ 512 0.133(-05) 0.108(-06) 12.3 0.272(-06) 0.169(-09) 1607.3
1/1024 0.334(-06) 0.271(-07) 12.3 0.682(-07) 0.212(-10) 3215.6

λ = −4 1/ 128 0.964(-04) 0.303(-05) 31.8 0.310(-05) 0.799(-07) 38.8
1/ 256 0.242(-04) 0.765(-06) 31.7 0.790(-06) 0.983(-08) 80.3
1/ 512 0.607(-05) 0.192(-06) 31.6 0.199(-06) 0.122(-08) 163.4
1/1024 0.152(-05) 0.482(-07) 31.5 0.500(-07) 0.152(-09) 329.3
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