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Abstract

The purpose of this paper is to revisit the exponential §jt{ief) technique when building up Runge-Kutta methods
for solving ordinary diferential equations. We propose a modification in such a walyttie contamination of the
final stage by the errors produced in the internal stagesnheswisible. The modified technique is illustrated on
a simple version, namely the two-stage explicit Runge-&utethod, for which we obtain new expressions for the
codficients. The version obtained in this way is then compareddouracy and stability with that obtained by means
of the standard ef technique.
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1. Introduction

In this paper we focus on the solution by Runge-Kutta mettiB#9 of the following initial value problem

Y () = f(xy(x), xe[x,X], (1.1)
(%) = Yo € R, '
wheref : [Xp, X] x R — R is smooth enough in order to ensure the well-posednesssptbblem.
The general algorithm of a one-step RK method is (see [}, [7]
S
Yni1 = Yo+ h ) bif % +Gh, Y) (1.2)
i=1
where s
Y, =yn+hzajf(xn+c,-h,vj), i=12..,s (1.3)

=1
It allows computingyn,1 in terms of the inpuy, by the formula written in the first row (so called final stage)which

the values ofY; are as resulting from the set of formulae in the second roterfial stages).

We are actually interested in the cases when the solytigrexhibits a shape which recommends RK versions with
codficientsa;j, b;, ¢; obtained by means of the exponential fitting (ef) technicuagpropriate solvers of the problem.
Such shapes include exponential or oscillatory behavj@md in each case the set of functions to be used for the ef-
based computation of the déeients is selected in terms of the current behaviour. Mamgions derived in this
frame have been reported in the literature, to mention ofly[6], [8], [9], [10], [11] and references therein.

The issue which we want to revisit in this paper is the way oiviteg the codficients. Our intention actually consists

in accommodating two features. In fact, the structure ofalgerithm shows that the error .1 cumulateshe
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error associated directly to the form of the final stagethe errors generated when the intermediary valjegere
generated in the internal stages but in the literature @eg, [4], [6], [8], [9], [10], [11]), when constructing the
codticients, each stage is treatseparatelyand then the error contamination process is disregarded.pfdgblem

of concern then consists in modifying the way of constrigctime codficients such that the propagation of the error
along the stages becomes visible. To make our proposal officaithn easier to follow we choose the very simple
case of the explicit two-stage RK method, and the functiqreé®l x € as the basis for the ef approach.

The paper is organized as follows: in section 2 we examineltbsen simple version to find out that in this case the
modification d@ects only the external stage. We then derive the correspgriponential fitting version according to
the revisited technique, and obtain expressions for théicmntsb; andb, which are diferent from those derived in
the standard ef-based frame. In section 3 we examine thilitgtpboperties of the new algorithm and also derive the
formula of its local error. The new and the standard ef-bagsesions are then compared experimentally on two test
equations (section 4) while in section 5 we suggest somélpedsature developments and applications of the idea
suggested in the paper.

2. Construction of the method

As announced, we focus on the class of two stage explicit Bdhgdta methods

Yni1 Yn + h[by f (X, Y1) + b2 f (X1 + C2h, Y2)]
Yl = Yn (21)
Yo Yn + hag1 f(Xn, Y1)

which can be represented using the Butcher array (see [1], [7

0
C2 | ax1
bi by

It is well known from Dahlquist barrier results that the ntaxim attainable order of agstage explicit Runge-Kutta
method is at moss which means, in our case, that the computed methods can attaiost order 2, while the stage
order (i.e. the order of the internal stages approximajimequal to 1 (cfr. [1], [7]). As a consequence, in the
classical case the external stage exactly integratesailgms whose solution is expressed as linear combination of
the set of function$l, x, X2}, while the internal ones are exact when the solution is ticeanbination of(1, x}. In an
analogous way, since we aim to derive the exponential fittergion of (2.1), we impose that the final stage exactly
integrates the set of functions

{1, &%, x &}, (2.2)

while the internal stages exactly integrate the basis fanst
{1, &%) (2.3)

It is well known that the co@cients of standard ef methods are not constant as in theaadhsase, but they are
functions ofz = uh. In the remainder we emphasize this dependence denotingptiecients of the ef version of
(2.1) asay1(2), b1(2) andby(2). Whenztends to 0 the cdicients of standard ef methods tend to classical ones. In
our revisited ef technique, the daeients of the resulting methods will depend not onlyzdut also on the partial
derivatives of the functiorf and, therefore, they depend on the equation we aim to soblewing the formalism in

[5], [6], we introduce the local discretization errors agated to the second internal stage in (2.1)

LolhalyX) = y0a+ch) - Yo~ haof(x, ).
We next assume the localizing conditigh= y(x,) and, therefore, we obtain

Loy = Y0+ Cah) ~ Vo) ~ haay () (2.4)
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In force of the localizing assumption there is no erro¥inAs for Y,, we annihilate (2.4) on the set of functions (2.3)
and in this way it is guaranteed that the second internaéstam (2.1) is error free for all problems whose solutions

are linear combinations of the functiops) = 1 andy(x) = ¢*. We have

Lfhal = o
Lofh.ale™| gibare) _ g _ hagy e = 0

1)/z but, since this has a/0 undeterminacy a = 0, in nhumerical

The last equation gives directp;(z) = (€%*
evaluations a series expansion has to be useddmyund 0. We then write
ek —

z

a1(2) =
CZ
G+ Zz+ C222+ sz3+ 1220

Forz' = 1072, as we use, the written terms in the series afcent for an accuracy with 12 exact figures for any

if 12> 27
(2.5)

7 +0O(2) otherwise

C € (O, 1]

In short, if thisay1(2) is used, the second internal stage in (2.1) is exact if theisa of the problem is a linear
combination of the functions 1 ar@* such that, since these two functions are solutions of tfierdntial equation

Y~y =0,
the leading term of the error in the second internal stagéeaaxpressed in the following form
err = PF(y"(X) - uy (X)), (2.6)

whereF is the error constant. To determine this constant we follmyrocedure introduced in [5]: we evaluate (2.4)
and the error (2.6) on(X) = x and, due to the invariance to translation, we can conside0. Therefore, we have

Lo[h, a]x o (Co —azp)h

errly(x):X = _hzﬂ F.

and
Comparing the last two formulas we obtain
Eo —1—c;z+ eCZZ. 2.7)
We now consider the local error associated to the exteragégt,; in (2.1). We define
h(byy (%) + b2 f (%1 + €20, Y2)) . (2.8)

LIhbly()| = y0a+h) - y(x) -

In standard derivations of exponentially-fitted RungetKuhethods (see, for instance, [4], [6], [8], [9], [10], [}1]
the codficientsb; andb, are determined under the tacit assumption ¥at y(x, + c;h), that is the error (2.6) is

neglected. In a derivation of this type eq. (2.8) has the form
(2.9)

= Y(%n + h) = Y(%a) = h(bay (%n) + b2y’ (X + c2h)).

Lohbly(x)| =
X=Xn
By annihilating this fory(x) belonging to (2.2) we obtain
-1- c22+e2(12+( 1+c2)z) it 12> 7.
s CrzZ
by(2) = —12+Czc2 + —2+3CZZ + —gzélczzz + —f;oscczzs
=oAL, O(z5) otherwise

72(1:



1-€*+z¢&

if |2>7Z,
czzzeCZZ 12
b@={ , 230, , 3B06E o 41501203103 3
2o 1t 76, 2T T + 0
i504—40(<::%+45c§—24c 15 ’ .
+=—2 2 22 4+ O(2), otherwise
2

where the superscrif@ stands for the standard method.

However,Y, approximatey(x, + c;h) with the error (2.6) which vanishes only whgfx) = 1, &*. Correspondingly,
Y, brings no contribution to the error .1 only wheny(x) is a linear combination of these functions. In all other
possible cases the error (2.6) is honzero, i.e. the stage Valdoes not represem(x, + c;h) exactly. The central
problem then consists in determining how the errovircontaminates the error .1, and finding a way such that
the codlicientsb; andb, minimize this contaminationfiect. We write

Y (%n + C2h) = (X, + c2h, y(X, + cz2h)) = f(X, + c2h, Y2 + err)
and, on applying the Taylor formula, we obtain
Y (X0 + C2h) = f(% + &0, Y2) + err fy(X, + c2h, Yo) + O(err?) (2.10)

and, sinceerr ~ h? we disregard the last term. This approximation is used faisiting (2.8), which now gets the
form

JiR[h,b]y(x)LZXn = y(% + h) = (%) — hEY (%) = hBS[Y (%, + c2h)
— PPF Y (%) — 1y ()], (2.11)

where the superscrift stands for theevisitedef Runge-Kutta methods we aim to derive; hereinafjés the short-
hand notation forfy(x, + c2h, Y»). We evaluate (2.11) oy(x) = 1, &, xe, obtaining

IR[h, b]1] - 0
x=0
ZR[h, b]e™ o = lie- (bF + bRe®?)z,
LRI, b]xe™ o = —iz[(blR — ) — bR(f,(~1 + €2 — ¢2) — €21 + c2)u)].
= U

The values ob?(z) and b;(z) that annihilate these expressions are

(2 f,h+b3(2)

R
b:() Y@t l 232
b3(2)
R 2
_ 2.1
22 = SZiheT (243
where
(1-e)(-1+ €22 - cy2) if 12>z
Cc, 236522 ’ ’
2) = - - -
(2 -3+ PRz £ s 24c§+457C2%04062+1523
%258540@%24) +0(2), otherwise
1-€e%%+cyz i
c,22e%z it 12>z,
Y2 = 2

< c S ;
-2+ 2z2- 22+ 22 - 57+ 0(D), otherwise
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and this completes the derivation of the revised version.
Systems of equations

The codficientsay1, by andb, derived before for the standard and revised versions ctwecdse of the scalar
problem (1.1). When systems of equations are of concern #rewin as stated for the standard version (the same
holds true also foay; in the revised version) blhi'f andb§ become matrices of functions.

To be specific, the system offtérential equations to be solved is

y(®) = f(xy(x), xe€[x.X],
{ y(X0) = Yo € RY, (2.14)

wheref : [xo, X] xRY = RY andd > 1. The form of eq. (2.4) which serves for the determinatioasis unchanged
but the vector form of the scalar eq. (2.10) has now a sligfifierent expression,

Y (X0 + C2h) = F (X + Coh, Yo) + J(%, + Coh, Ya) err + O(err?)

because thd x d Jacobian matri¥ takes the place of,. The vector extension of the local truncation error expoess
(2.11) thenis

Lo by, = Y0+ P = Y0x0) = hBY (xq) = hEETY (%o + c2h)
PRI (%) = 1Y ()], (2.15)

whereJ is the short-hand notation fai(x, + c;h, Y,) and, to determine the matrice§ andbf, we apply a slightly
adapted version of the procedure described after eq. (2.11)

Specifically, len@, i = 1, 2, 3 be threed-dimensional column vectors with arbitrary constant eletseWe introduce
the vectors of functions

YD) = v, yP0) = V@, y¥(x) = xe* W),
and evaluate (2.15) on them. We obtdf[h, b]y(l)’ 0= TOVO where
X=
TW=0, T@=I(-1+€) - (bY + bFe?)z,
T® = - l%[(b? — 19 — bRI(-1 + €27 — y2) — 1€%4(1 + Co2)p)] .

0 andl are thed x d zero and unity matrices, respectively. The sys®&m = T® = 0 is solved fob}(2) andbf(2) to
obtain the result (compare with eqs.(2.12-2.13)):

b%(2)
b3(2)

(I +y@IN ™ (a(2In+ b3 (D)),
(I +y@IN'b32). (2.16)

3. Properties

Accuracy

The local truncation error of standard ef method is

. 3
L[h,bly(x) = —2—2[(—2 +3C2)y” (Xn) + (4u — 6C2u — 32 fy)y” (Xn)

+u(=2u + 3cou + 32 fy)Y (%0)] + O(hY). (3.1)

but for the revisited version we have

" 3
LR[h,bly(xn) = —2—2(—2 + 3y (%) = 21y (%) + 1Y (%a)] + O(h?). (3.2)
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We see that in general the two versions have the same ordewvZudr, the order of the revised version can be easily
increased. Indeed, & = 2/3 then the order becomes 3.

Stability

We consider thdinear stability analysis, i.e. we study the stability propertigshe two versions (standard and
revised) of the Runge-Kutta method (2.1) by means of thefisealar probleny = Ay, where Ref) < 0. We
recall that for both versions the déieients depend on For the revised version cfigientsb; andb, depend also on
w = ha (they are rational functions @f); we tacitly assume tha is kept fixed.

Applying the internal stage equation in (2.1) we obt#n= (1 + waz1)y, and, by substituting this expression in the
external stage equation we derive the recurrence relgtian= R(w, 2)y,, where

R(w, 2) = 1+ w[bY + bY] + w?ax(z)by

is the so-calledtability functionof the standard\y = S) or of the revised\{ = R) version.
This function is then used for building up the three-dimenal stability region, thus extending a concept introduced
in [2] for second order dierential equations. We recall that

Definition 3.1. The region of the three-dimensior®e(w), Im(w), 2) space on which the inequality
IR(w,2)| < 1 (3.3)
is satisfied is called a region of stabilify for the method (2.1).

Since for fixedz the stability function is a polynomial i for versionS but a rational function for versioR it is
clear that the two 3D stability regions will showfiirently. To illustrate the ¢ierence we present sections through
the stability regions by planes= -1,z= -2,z= -3 andz = —-4. On Fig.1 we take, = 3/4 and show these sections
for standar@tevised version on the lgfight column. Fig.2 presents the same graphsfos 2/3. For the standard
version a weak variation with of stability area is seen for both values®@f there is some enlargement in width but
the maximal height remains practically unchanged. Forrashta massive increase is seen for the revised version.
The revised version is thus clearly better than the stanolaedor stability.

4. Numerical experiments

We now compare for accuracy the standard and revised vergiitinc, = 3/4 on three problems (two scalar, one
linear and another nonlinear, and a nonlinear system) waséons show an exponential behavior. For the revised
version we report also on the case= 2/3 which is expected to be of order 3. A fixed stepsize 1/2', with different
integer values of, was used for all compared methods. In tables 1-4 we prelsemelative errors atyay rerrsS and
rerrR for eachh, and also the improvement factor for the revisited with ezspo the standard version,

rerrS

~rerrR’
We first consider the linear problem
Y(X) = Ay + kxle™
{ Y1) = e, *1

With X € [Xmin = 1, Xmax = 5], whose exact solution igx) = xe*. If u = 1 andk = 0, 1 the solutiorny(x) falls in the
set of functions (2.2) such that both versions provide tleetxalue of the solution, but for other valueskdhe solu-
tion y(x) does not belong to the set (2.2) and, therefore, none of thexact. Table 1 shows the results obtained for
k = 2 and several values af u = A, andh. The superiority of the revised version is obvious. As expeécthe order

is 2 forc, = 3/4 but 3 forc, = 2/3. The improvement factor is substantial, especiallycfoe 2/3. All these fea-
tures continue to hold true also wher= 0, that is when the classical forms of these methods areviedpkee Table 2.



Table 1: Performance of the two versions for the problem (rdlifferent values of; caseu = A.

c, =3/4 c;=2/3
h rerrs rerrR if rerr> rerrR if
A=-1 164 3.11(-05) 2.49(-06) 125 2.62(-05) 9.64(-08) 272.0
1/128 7.76(-06) 6.29(-07) 12.3 6.53(-06) 1.20(-08)  543.0
1/256 1.93(-06) 1.58(-07) 12.2 1.63(-06) 1.50(-09) 1085.1
A1=-2 1128 3.77(-05) 1.18(-06) 32.0 3.28(-05) 1.16(-07) 281.9
1/256 9.39(-06) 3.06(-07) 30.7 8.17(-06) 1.45(-08) 562.9
1/512 2.34(-06) 7.80(-08) 30.0 2.03(-06) 1.81(-09) 1124.8
A1=-4 1128 1.65(-04) 1.68(-06) 98.3 1.45(-04) 1.01(-06) 143.4
1/256 4.10(-05) 5.25(-07) 78.1 3.61(-05) 1.26(-07) 285.8
1/512 1.02(-05) 1.45(-07) 70.5 8.99(-06) 1.57(-08) 570.5
Table 2: Performance of the two versions for the problem (ridlifferent values of; caseu = 0.
c, =3/4 Cc,=2/3
h rerrs rerrR® if rerr> rerrR® if
A1=-1 164 1.86(-05) 1.97(-06) 9.4 1.76(-05) 2.76(-08) 637.0
1/128 4.62(-06) 4.95(-07) 9.3 4.37(-06) 3.44(-09) 1268.8
1/256 1.15(-06) 1.24(-07) 9.3 1.09(-06) 4.30(-10) 2532.1
A1=-2 1128 6.69(-05) 4.57(-06) 14.6 6.36(-05) 5.67(-08) 1121.4
1/256 1.66(-05) 1.15(-06) 14.5 1.58(-05) 7.08(-09) 2234.7
1/512 4.15(-06) 2.88(-07) 14.4 3.94(-06) 8.84(-10) 4461.0
A1=-4 1128 8.12(-04) 7.98(-05) 10.2 7.95(-04) 1.80(-06)  441.7
1/256 2.01(-04) 2.01(-05) 10.0 1.96(-04) 2.24(-07) 8765
1/512 4.99(-05) 5.04(-06) 9.9 4.88(-05) 2.80(-08) 1746.3
Table 3: Performance of the two versions for the problem {@2lifferent values of; caseu = A.
c;=3/4 c,=2/3
h rerrs rerri if rerr> rerrR if
A1=-11/64 2.64(-05) 1.53(-06) 17.2 2.28(-05) 9.00(-08) 2535
1/128 6.55(-06) 3.91(-07) 16.7 5.67(-06) 1.12(-08) 504.6
1/256 1.63(-06) 9.90(-08) 16.5 1.41(-06) 1.41(-09) 1006.6
A=-2 1128 2.61(-05) 7.12(-07) 36.6 2.27(-05) 8.42(-08)  269.8
1/256 6.48(-06) 1.89(-07) 34.3 5.65(-06) 1.05(-08) 537.5
1/512 1.62(-06) 4.87(-08) 33.2 1.41(-06) 1.31(-09) 1073.0
A1=-4 1128 1.01(-04) 9.29(-07) 108.9 8.88(-05) 6.27(-07) 141.8
1/256 2.50(-05) 3.15(-07) 79.4 2.20(-05) 7.80(-08)  282.0
1/512 6.22(-06) 8.94(-08) 69.6 5.47(-06) 9.72(-09) 562.6
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Figure 1: Sections through the stability region by plareconstfor fixed c; = %: standard version (left column), revised version (rightiooh).
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Table 4: Performance of the two versions for the problem @:2jlifferent values of; caseu = 0.

c, = 3/4 c, =2/3
h rerrs rerrR if rerr> rerrR if
A=-1 164 2.81(-05) 1.21(-06) 23.1  2.52(-05) 3.11(-08) 812.0
1/128 6.95(-06) 3.06(-07) 22.7  6.25(-06) 3.86(-09) 1619.1
1/256 1.73(-06) 7.68(-08) 22.5 1.56(-06) 4.81(-10) 3233.1

A=-2 1128 5.76(-05) 3.53(-06) 16.3  5.44(-05) 5.36(-08) 1015.0
1/256 1.43(-05) 8.86(-07) 16.2  1.35(-05) 6.71(-09) 2015.4
1512 3.57(-06) 2.22(-07) 16.1  3.37(-06) 8.39(-10) 4016.2

A=-4 1128 5.85(-04) 5.21(-05) 11.2  5.68(-04) 1.34(-06) 424.8
1/256 1.44(-04) 1.31(-05) 11.0  1.40(-04) 1.67(-07) 839.1
1/512 3.59(-05) 3.29(-06) 10.9  3.49(-05) 2.09(-08) 1668.0

The second test case is the nonlinear problem

AY2(X) + 2x3e2

y(¥) = v (4.2)

y(1) = €',
With X € [Xmin = 1, Xmax = 5], whose exact solution {x) = x?e'*. The results are collected in Table 3 and Table 4.

Once again, the new version is clearly much more accuratettigastandard one.
We conclude this section presenting the numerical resbttmed for the nonlinear system

A
Vi(0) = 30200 X) + —nye(fx),
Y9 (x2 + 2y1(X) + AX2y(X) — /lx3) (4.3)
v2(3) = x3(1 + xe'x) ’

yi(l)=¢€', yo(1)=1+¢€',

for X € [Xmin = 1, Xmax = 2], whose exact solution X) = [y1(X); y2(¥)]" = [x3e™; x(1 + xe™)]". For this caseerr
is the biggest from the relative errorsxt,x in the two components.
The results fonl = -1, -2, —4 are collected in Tables 5 and 6. The accuracy gain with triseé version is visible.

5. Concluding remarks

We have revised the standard technique for the construstiehRunge-Kutta methods for the numerical solution
of first order initial value problems (1.1). For the partmutase of two-stage methods we have focused our attention
on the contribution in the final stage of the error coming frilra second internal stage, and also experimentally
compared the revised ef version with the standard ef one.r@hdts clearly confirm the superiority of the revised
version. Based on this it makes sense to investigate howdt#eedeveloped in this paper on the two-stage Runge-
Kutta method may be applied on Runge-Kutta methods with eaeased number of stages An other nonlinear
methods.

Moreover, the simple expression of the local truncatiomreof the revised version can be useful in order to
furnish new reliable estimations of the paramegteyn which depend the céiecients of the method. In fact, up to
now, a mathematical theory for the exact determination ©f plarameter has not yet been developed. The usual
technique used in literature consists in estimaginig such a way that the local error of the resulting methods is
minimized. Therefore, it may be interesting to examine tledviour of the estimations for the revisited ef methods,
in order to understand if the improvement on the local emdhe external stage (which now takes also into account
the contribution of the internal stages) is also inheritgdhe parameter estimators.
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Table 5: Performance of the two versions for the problem ({@SJlifferent values of; caseu = A.

c, =3/4 c,=2/3
h rerr® rerrR if rerr> rerri if
A=-1 1128 0.285(-05) 0.216(-06) 13.2 0.679(-05) 0.342(-07) 298.
1/256 0.716(-06) 0.532(-07) 13.5 0.171(-05) 0.427(-08) 899.
1/512 0.180(-06) 0.132(-07) 13.6 0.428(-06) 0.534(-09) B01.
1/1024 0.449(-07) 0.329(-08) 13.7 0.107(-06) 0.667(-10) 5160
A=-2 1128 0.715(-04) 0.114(-04) 6.3 0.546(-05) 0.422(-06) 12.9
1/256 0.180(-04) 0.279(-05) 6.4 0.142(-05) 0.525(-07) 27.0
1/512 0.450(-05) 0.690(-06) 6.5 0.362(-06) 0.654(-08) 55.3
1/1024 0.113(-05) 0.172(-06) 6.6 0.913(-07) 0.817(-09) 111.
A=-4 1128 0.954(-03) 0.847(-03) 1.1 0.182(-03) 0.182(-04) 10.0
1/256 0.249(-03) 0.210(-03) 1.2 0.479(-04) 0.223(-05) 21.4
1/512 0.638(-04) 0.523(-04) 1.2 0.123(-04) 0.276(-06) 44.4
1/1024 0.161(-04) 0.131(-04) 1.2 0.310(-05) 0.343(-07)  90.3
Table 6: Performance of the two versions for the problem ([@:3jlifferent values of; caseu = 0.
c, =3/4 Cc;=2/3
h rerr® rerrR if rerr> rerrR if
A=-1 1/128 0.703(-05) 0.813(-06) 8.6 0.492(-06) 0.361(-08)  136.4
1/256 0.176(-05) 0.203(-06) 8.7 0.125(-06) 0.452(-09) 277.1
1/512 0.441(-06) 0.508(-07) 8.7 0.316(-07) 0.565(-10)  558.6
1/1024 0.110(-06) 0.127(-07) 8.7 0.792(-08) 0.706(-11) 1821
A=-2 1128 0.212(-04) 0.173(-05) 12.3 0.434(-05) 0.108(-07) 401.
1/256 0.532(-05) 0.433(-06) 12.3 0.109(-05) 0.135(-08)  803.
1/512 0.133(-05) 0.108(-06) 12.3 0.272(-06) 0.169(-09) 1807
1/1024 0.334(-06) 0.271(-07) 12.3 0.682(-07) 0.212(-10) 53@1
A=-4 1/128 0.964(-04) 0.303(-05) 31.8 0.310(-05) 0.799(-07) 38.8
1/256 0.242(-04) 0.765(-06) 31.7 0.790(-06) 0.983(-08)  80.3
1/512 0.607(-05) 0.192(-06) 31.6 0.199(-06) 0.122(-08)  463.
1/1024 0.152(-05) 0.482(-07) 31.5 0.500(-07) 0.152(-09) .329
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