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Abstract

We introduce a family of diagonally—implicit continuous theds for the numerical integration of Volterra Integral
Equations. The derived methods are characterized by a loiegular or diagonal cdgcient matrix of the nonlinear
system for the computation of the stages which, as it is kn@an be exploited to get arfieient implementation.
The constructed methods have an high uniform order of cgeviee together with strong stability properties (e.g.
A-stability).
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1. Introduction

This paper concerns the construction of baffiiceent and highly stable numerical methods for Volterra g
Equations (VIES) of the form

t
y(t) = g(t) + fo k(t, 7, y(r))dr, te[0,T], (1.1)

where theforcing function g R — RY and thekernel k: R x R — RY are assumed to be ficiently smooth. Such
equations arise in many models of evolutionary phenomettamémory and their classical numerical treatment has
been widely described in [3, 4] and the related bibliograplys well known that the best stability properties are
reached by implicit numerical methods, with the disadvgeténat they lead to nonlinear systems of equations to be
solved at each time step. To this cost we have to add the dsstgairom the computation of the lag term (containing
the history of the phenomenon), which can be computed by smeafast methods developed in the literature for
convolution kernels [6, 7, 20]. As regards the task of redg¢he computational cost associated to the solution of the
above nonlinear systems, a widespread strategy in thextait®rdinary Diferential Equations (ODES), consists in
making the cofficient matrix have a structured shape. This strategy, in éhe 6if Runge—Kutta methods for ODEs,
leads to the raise of the famous classes of Diagonally Int@alied Singly Diagonally Implicit Runge-Kutta methods
(DIRK and SDIRK), see [5, 17] and bibliography therein caméal. Moreover, in the field of collocation-based
methods for ODESs, an analogous strategy has been applitdnioly a subclass of two-step Runge—Kutta methods
(see [19]) having structured ciieient matrix [16].

In this paper we will adopt this strategy in the context of tluenerical solution of VIEs (1.1) and, in particular,
we will derive numerical methods involving nonlinear systewith lower triangular or diagonal cfiient matri-
ces. The derived formulae belong to the class of Two-Stepoatr€ollocation (TSAC) methods, which have been

Email addressdajconte@unisa.it, rdambrosio@unisa.it, beapat@unisa.it (D. Conte, R. D’Ambrosio, B. Paternoster)

Preprint submitted to Elsevier April 14, 2010



introduced in [8] in order to obtain high order and highlyldéacontinuous methods for the problem (1.1). In fact,
to integrate a system af integral equations of the form (1.1), a collocation methedegally requires the solution
of md simultaneous nonlinear equations at each time step. A loveergular matrix allows to solve the equations in
m successive stages, with onlydedimensional system to be solved at each stage. Moreowalt,tlie elements on
the diagonal are equal, in solving the nonlinear systems &gn®s of Newton-type iterations, one may hope to use
repeatedly the storddJ factorization of the Jacobian. If the structure is diagotia problem reduces to the solution
of mindependent systems of dimensityrand can therefore be solved in a parallel environment.

The paper is structured as follows. In Section 2 we recaltstep almost collocation methods, together with the
main results on continuous order conditions and convergeBection 3 is devoted to the construction of diagonally
implicit methods within this class, while Section 4 contathe analysis of the linear stability properties with respe
to the basic test equation usually employed in the liteeatExamples oA—stable methods are provided in Section 5
and some numerical experiments are given in Section 6. Son@usions and future developements are remarked in
Section 7.

2. Two-step collocation and almost collocation methods

Letly, = {ty:=nh,n=0,..,N, h>0,Nh=T} be a uniform mesh, which constitutes the discrete countegba
the interval [QT], andc, ..., cm bem collocation parameters, which identify internal pointstn; = t, + ¢;h inside
the generic intervaltf, tn1].

Equation (1.1) can then be expressed in the following way

y(t) = FUEyE) + @M y(),  te [t tasal,

where

th t
FI(E, y() = g(t) + fo Kt ry@)dr, oL y()) = f K(t, 7. y(x))dr

are thelag termand theincrement termrespectively.

TSAC methods for VIEs [8] provide a continuous approxima®y(t, + sh), s € [0, 1], to the solutiory(t, + sh)
in the interval {n, th+1], which employs the information about the equation on twosszutive steps and suitable
sufficiently high order quadrature formul&é™ and(D[j”*” for the discretization oF " (t,j, P(-)) and @™ (t,;, P(-))
respectively. The approximatid?(t) of the solutiony(t) of (1.1) on [Q T] is then obtained by considering

P(t)l(tnstml] = Pn(t)

The method assumes the form

Palts + SH) = @o(9¥nt + @2(In + > 15OV + 3 yj(9F + ol
j=1 ! j=1 J ! (2.1)

Yn+1 = Pn(tne),

whereYJ.[”] = P(tn-1j). Thus the algebraic polynomi#il(t, + sh) is expressed as linear combination of the basis
functionsgo(s), ¢1(9), xj(s) andy(s), | = 1,2,...,m, which are determined from the continuous order conditions
provided in [8]. These conditions arise from the analysitheflocal truncation error

At + B = Yt + SH) = go(Sy(tn — ) - e1(Iy(tn)
= (X9l + (¢ = ) + (Il + cih)).

=1

(2.2)

and are reported in the following result.

Theorem 2.1. Assume that the kerneftkn, y) and the function ) in (1.1) are syiciently smooth. Then the method
(2.1) has uniform order p, i.e.,
n(tn + sh) = O(hP*1), h— 0,
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for s € [0, 1], if the polynomialseo(s), ¢1(S), xj(s) andy;(s), j = 1,2, ..., m satisfy the system of equations

1-¢o(9 - ¢u9 — D xi(9— D ui(9=0,

mo = (2.3)
= (-1fpo(9 = Y (¢ - Dfxi(9- > k(9 =0,

j=1 j=1

se[0,1, k=1,2,...,p.

Two-step collocation methods are obtained by solving tiséesy of order conditions up to the maximum uniform
attainable ordep = 2m+ 1, and, in this way, all the basis functions are determineth@sinique solution of such
system and have degree at mpsHowever, as observed in [8], it is not convenient to impdktna order conditions
because it is not possible to achieve high stability prageite.g. A—stability) without getting rid of some of them.
Thereforealmostcollocation methods are introduced by relaxing a specifigdbverr of order conditions, i.e. by a
priori appropriately fixing basis functions, and determining the remaining ones asrtiggi@ solution of the system
of order conditions up tp = 2m+ 1 —r. If r fixed basis functions are polynomials of degree at npo#ten the other
ones, obtained in the described way, have the same degrekaxanany possible filerent choices for the fixed
basis functions. In principle, they can be written as poiyiads depending on thep + 1 codficients, which can be
considered as free parameters to be used in order to achistability. In fact, we are generally able to pursue this
purpose by only using few degrees of freedom and, therefmmge coficients are fixed by imposing some of the
interpolatioricollocation conditions (3.7)-(3.10), which we will furthenalyze later. Dferent choices can be done on
the conditions to impose, each giving rise to fietent family of TSAC methods, e.g. maAy-stable methods have
been constructed in [8] by imposing the collocation cowdii (3.10), i.e. by fixing one or both of the polynomials
¢o(s) andys (s) as

m
¢o(9) = [ [(s-cd(ao+ a1s+... + apms™™),
o (2.4)
e1(9) = [ [(s-Bo+B15+ ... + Bpms”™),
k=1
wheree; andg;, j = 0,1,..., p—m, are free parameters. The choices we make in practice inetfieation of the

new methods will be clear in Section 5, which regards fifiecéive construction of the numerical methods.
The quadrature formulae in (2.1) are of the form

n m
FIY = () + 0 ) (Bok(tnj -2.Y0-2) + - BKCta b1, V) + Brnsaktog ) (2.5)
y=1 1=1
and "
q)[jm-l] = h(WJOk(tnj, th, Yn) + Z Wi k(tnj’ thl, Y|[n+l]) + Wj,rmlk(tnj, thits yn+l)), (2-6)
1=1

whereY!™ = P,_y(tn_1;) are the stage values abg by, b1, Wjo, Wji, Wjm:1 are given weights.
The polynomiaP(t,+sh) is explicitly defined after solving, at each step, the faiflog system ofifn+1)d nonlinear

equations in the stage valu\é,g”l] andyn.1, obtained by computing (2.1) fa=¢,i =1,2,...,m,ands = 1:
m m
VM = go(@)yna + @) + Y @Y+ D w(e)(FIT + ol ),
b o 2.7)
Yer = go(L¥n-1+@r@Wyn+ Y x@YIT+ > Tua)(FIY + @l ),
j=1 j=1

n=12...,N-1.
The starting valuey; and Yi[”, i =12,...,m are assumed to be prescribed and can be computed by using a
one-step Runge—Kutta method of order at lgastccording to the following theorem.
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Theorem 2.2. Let g,(t) := y(t) — P(t) be the global error of the TSAC method (2.1), and supposethethesis of
Theorem 2.1 are satisfied up to order p. Then, under suitagpethesis of sficient regularity on the kernel k (see

(8)), ,
llenlleo oy = OP), h—0.

i.e. the method has uniform order of convergente-pnin{s+ 1, g, p + 1}, where s and g are such that:
i. the starting error ig|en||e [t,.1,) = O(M®);

ii. the lag-term and increment-term quadrature formulas (Z5¥%) are of order @hY).

Remark 2.3. In principle, in formula (2.1) we might take the piecewisé/pomial of degree greater than p, however
we did not follow this approach because first of all, by sajvime system of order conditions (2.3) up te2m+ 1,
there exists an unique solution given by basis polynomiadiegree at most equal to p. Moreover, wher gm+ 1,

the powerdl,s,..., sP} are present in (2.3) and, therefore, it is natural for us totfie relaxed basis functions of
degree at most p in order to solve (2.3) with respect to thersthMoreover, the relaxation technique in practice
leads to a decrease of p and, therefore, to a decrease of tjreelef the basis functions and we observed that this
improves the stability of the resulting methods. Higherrdegolynomials, in our analysis, could deteriorate the
stability properties of the corresponding methods.

3. Two-step diagonally implicit almost collocation methods

This section is devoted to the construction of high ordetmés belonging to the class (2.1) such that thdftcoe
cient matrix of the nonlinear system (2.7) has a structuhegs, leading to the solution of nonlinear systems of lower
dimensiord. First of all we considew; .1 =0, j = 1,...,m, in such a way that (2.7) becomes a nonlinear system of

dimensionrmdonly depending on the stage valuég*l], i =1,...,m, and assumes the following form

m m
YO h TS ekt . V) = B,

=1 1=1 (3.1)
Yn+1 = Pa(tni),
where
m m m
B = ¢o(Gi)yna + @1(G)n + Y xi@YIT + > wi(@)FIT 4 h > wri()wiok(tnj, tr, Vo). (32)
j=1 j=1 j=1
By defining
vt [yl il ) g [l gl B
m
Y= (Wj(ci))mzl, W = (le)?’}zl, K(tnCs l:nc, Y[n+1]) = (K(tni,tnj, Yj[n+1])). ) 1,
L=
the nonlinear system in (3.1) takes the form
YU (W - K (the, the, YIM)) = B, (3.3)

where- denotes the usual Hadamard product. The tensor form (28jlglshows as the matrices which determine
the structure of the nonlinear system (3.1) ®randW. Therefore, in the following subsection we will describevho
to choose the basis functiong(s) and how to modify the quadrature formula (2.6) in order ttaoblower triangular

or diagonal structures.



3.1. Determination of the basis functiong(s)
In order to achieve a lower triangular or diagonal strucfarghe matrix¥, the basis functiong;(s) must satisfy

¥i(c) = 0,for j > ior j # i respectively, 3.4
i.e. yj(s) assumes the form .
CE ﬁ(s— G)@i(9). j=2.....m (3.5)
or k:
vi(s) = H(s— C)@i(s), j=1.....m (3.6)

k#j
respectively, where{(s) is a polynomial of degrep — j + 1 anddj(s) is a polynomial of degrep — m+ 1.

Imposing (3.5), the remaining + 3 basis functions can be computed by solving the system @ @ahditions
(2.3) and, as a consequence, the maximum attainable undadar which can be achieved by the corresponding
TSAC methods isn+ 2. On the other hand, by imposing (3.6), the correspondinI®ethods would have uniform
order at most equal tm + 1. However, we can follow a fierent strategy in order to obtain higher order methods.
The idea is to impose the conditions (3.4) on less thdrasis functions, e.g. one or two of them (generallfs) and
¢1(9)), in such a way that the maximum attainable ordgr is2m+r — 1, withr = 1, 2.

Let us define the following sets of interpolation and coltemaconditions (see [8]):

e interpolation conditions in 0

900(0) =0, @1(0) =1 XJ(O) =0, ‘l’](o) =0, VJ’ (37)

¢ interpolation conditions in -1

eo(-1) =1, ¢1(-1) = 0, xj(-1) = 0, ¢j(-1) = 0, V|, (3.8)

e interpolation conditions injc- 1,i € {1,...,m}

@o(G—1)=0, ¢1(G—1) =0, (G - 1) = 6ij, ¢j(c -1)=0, Vj. (3.9)

e collocation conditions inigi € {1,...,m}

@o(ci) =0, pa(c)) = 0, xj(c) =0, ¥j(c) = 6ij, V], (3.10)

Remark 3.1. The name of conditions (3.7)-(3.8)-(3.9)-(3.10) ariseafthe fact that they respectively ensupéth =

Y, Pa(tn-1) = Yn-1, Pa(tn-1) = Y™, Pa(t) = FI" + ®™*. In particular, the last one means that the collocation poly
nomial exactly satisfies the VIE (1.1) in the collocationnpaj;, except from the error associated to the quadrature
formulas (2.5) and (2.6).

Whatever condition from the sets (3.7)-(3.8)-(3.9)-(3.is0hherited via order conditions, i.e. if we impose that som
basis functions satisfy certain interpolatioollocation conditions from the sets (3.7)-(3.8)-(3.9)10) and derive all
the other basis functions by solving the system of order itiomd, the same interpolatiggollocation conditions are
also satisfied by the computed basis functions (and thenatiesponding relation in Remark 3.1 is satisfied by the
collocation polynomial), as proved in the following theore

Theorem 3.2. Letusdefing; = 1,6, =0,é2,j =Cj— L émorj =Cj, j=1,...,mandl'1(s) = po(9), I'1() = ¢1(9),
I2:(8) = xj(9), Tme2+j(S) = ¥j(9), j = L...,mand letie {1,2,...,2m+ 2} be a fixed integer. Then, supposing
& # &1 #

i. IfTi(&) = 1, thenI'j(&) = Oforall j #1;



i. If Ti(&) = Owith £ # i, thenT';(&,) = 6j¢ for j # .
Proof. The system of order conditions (2.3) can be rewritten in teofi¢; andI';(s) as

2m+2

- Y &T(9=0, k=0,1....p, (3.11)
k=1

where we assumg = 1. The thesis follows by evaluating (3.11) sn= & ands = &, and by proving that and
ii. respectively represent the unique solution of the resuMandermonde type linear system. Further details are
reported in [11].m

Remark 3.3. In some examples presented in Section 5, we will impose Hoeation conditions (3.10) and relax the
conditions (3.7)-(3.9), by fixing one or both of the polyrasipy(s) and¢1(s) as in (2.4). Then, as a consequence of
Theorem 3.2, all the conditions (3.10) are satisfied &h@duces to the identity matrix of dimension m.

3.2. Approximation of the increment term: modified quadeformula
We observe that the quadrature formulae (2.5) and (2.6) eabtained by applying the quadrature formulae

f f()ds =~ byf(0)+ Zm: b f(c) + bmea f(1), (3.12)
0 =1
f f(9)ds ~ wjof(0)+ Zm: wiji f(Cr) + Wjme1 T(1), (3.13)
0 I=1

for the approximation of the integrals appearing in thetrlggmnd side of

1
n
FI(taj, P()) = gta)) +h > f K(tnj, t-1 + Sh P,_1(t, 1 + sH)ds
o 0 (3.14)
d)[“+1](tnj, P()) = hfk(tnj,tn + sh Pu(t, + sh)ds
0

We aim to derive a suitable modification of the quadraturefda (3.13) in such a way that the matis lower
triangular or diagonal and, with the purpose to preservetter, we make use of some additional quadrature nodes,
i.e. we consider quadrature formulae of the form

o] m i
f f(9ds~wiof(0)+ > Wy e - 1)+ > wy f(a), (3.15)
0 1=1 =1

where, in case of triangular structuwy = 0,1 = 1,..., j while, in case of diagonal structure;;"= 0 andw; = 0,

l=1,...,j-1.

With the purpose of achieving the desired order (see Remajk Quadrature formulae of the form (3.12) and
(3.15) can be constructed by taking into account that theroofl the corresponding lag term and increment term
guadrature formulae is at lea3th"), if they are interpolatory quadrature formulaeaandq — 1 nodes respectively

[4].

Remark 3.4. The quadrature formulae (3.12) and (3.15) can be furtheregalived if we need higher order by con-
sidering

1 H1
ff(s)ds ~ Zuf(d.),
0 1=0
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Cj o j
ff(s)ds ~ W -1+ Y w (o).
0 1=0 =1

whereug andu; depend on the desired order and (3.12) and (3.15) are speat#s, obtained by settipg = m+ 1,
do=0,d=c,1=12,...,m, b1 = 1, uo=m, djo= O,Wjo =0, dj| =C|,j,| =12,...,m.

3.3. Form of the diagonally implicit TSAC methods

As a consequence of the choices reported in the previougstidrss, we obtain what follows. ¥ andW are
lower triangular,

Y11 W1
U Y22 W1 Wpp
= . . W= , (3.16)
lpml lﬁmZ lﬂmm Wmi Wm2 ... Wmm
the resulting method assumes the form
. i-1 i
¥ — hu(ewi k(e i, Y™ ) = B + BV +h 3, U (C)Wi Klt. o yim),
m m . (3.17)
Yoot = go(L¥n-1 + @1(Wyn + D @Y + >y (1)(FIY + @),
=1 =1
whereB[" is given by (3.2),
i m
B =h 05 (C)W Kt tr YI), (3.18)

=1 1=1

and FE”], cD[j””] are approximations of (3.14) by means of the quadratureutaen(3.12) and (3.15). The solution
of the system (3.17) of dimensiand can be obtained by solvingy successive nonlinear systems of dimension
Coherently with the case of ODEs, we denote the correspgnaiiethods as diagonally implicit TSAC methods
(DITSAC). If ¥ andW are lower triangular and, in addition, their prodd8#V is one-point spectrum, i.e.

A
po1 A
YW=| | , (3.19)
Hmi Mme ... A
whered = yi(c)wi, | = 1,2,...,mthen, in order to solve the system (3.17) by Newton-typeaftens, we can
repeatedly use the stored LU-factorization of thefioient matrix
ok
| —hai—.
ay
The related TSAC methods are then called singly diagonalpficit TSAC methods (SDITSAC).
If, in particular,% andW are diagonal
Y Wi
Y22 Wo2
Y= , W= , (3.20)
Ymm Wmm
then the method (3.17) takes the form
Y g () wi k(o s, YETH) = B 4 BT (3.21)
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whereB" and B are given by (3.2) and (3.18), respectively. The nonlingatesn (3.21) is then equivalent to
m nonlinear systems of dimensiah which can be ficiently solved in a parallel environment. The correspogdin
methods are denominated diagonal TSAC methods (DTSA@Wfis also one point spectrum, i.e.

YW = Al, (3.22)
with 1 = i(c)w;, it can be éiciently treated by means of Newton-type iterations, as exdase of SDITSAC
methods: we denote these methods as singly diagonal TSA@GOe{SDTSAC).

4. Linear stability analysis

We now focus our attention on the linear stability properté TSAC methods (3.17) with respect to the basic test
equation

yt) =1+ f y(@)dr, t>0, ReQ)<O0, (4.1)

usually employed in the literature for the stability anédysf numerical methods for VIEs (see [2, 4, 8, 9]). The
following result holds.

Theorem 4.1. The stability matrix associated to the two-step collogatieethod (3.17) takes the form

R = Q' (29M(2. (4.2)
where
1 -z"(wW  —yT(1) O
0 | - 2¢W -¥ 0
Q) =| , 5 Lo (4.3)
0 0 0 1
is an invertible matrix for m (for some matrix norm) and
i)+ (Iwo  xT(Q)+Z (OW 0 o(1)
_ (p]_(C) + 2¥wg A+ Z2¥W 0 (po(C)
M(2) = Zhnu zuld | zbpu (4.4)
1 0 0 0
Proof. The method (3.17) applied to the test problem (4.1) assungefotm
Yor1 = soo(l)yn 1+ (<p1(1) + 207 (LWo)Yn + (x" (1) + T (W) YT
+yT(LHFM + 25T (1)WYl (4.5)
Y = po(C)Yn-1 + (01(C) + z‘PWo)yn + (A+ 29W)YI 4 wEI 4 2pyy vined]

where we define the column vectagél) = (z//,-(l));il, x() = (Xj(l));n:l, Wo = (w,o) , ¢o(C) = (goo(cj))r;l and
¢1(C) = (¢p1(c,)) and the matrixVl = (Wi,-)in}:l. The lag term satisfies the following recurrence relation
FIU = FI1 4zl quyn + zub YO + zbyuy, g, (4.6)
with b = [by, by, ..., by]T andu=[1,...,1]" € R™. By defining
Vn = [Yn, Y[n]’ F[n_ll’ Yn—l]T s
from (4.5) and (4.6), we obtain the following recurrencetieln

Q(DVh+1 = M(DVh, (4.7)
8



whereQ(z2) and M(2) take the form (4.3) and (4.4), respectively. The proof wélcompleted by showing the invert-
ibility of the matrix Q(2), by means of some algebraic tools, based on théiSabmplement. It is well known (see
[1]) that, given a block matrix of the type
[ Qu | Qw2 ]
0 | Qx

with invertible blocksQ;; andQ,», the inverse assumes the following form:

[ Qu | Qu | :[ Qi | ~Q7Q12Q;; ]
0 Q22 0 | Q2 '

According to this result, the invertibility of the matr@(z) follows from the invertibility of the matriX — Z¥W thus,
if Z|¥W]|| < 1 for some matrix norm (see [1], p. 492), the invers&)) can be computed as

L 2T@WO-2W) T2 - 2w Y 0
o=l 7Y Sz ol @8)
0 0 0 1

]

The proof of Theorem 4.1 also provides the tools for fiitient inversion of the matrix)(). In fact, using the
Schir complement, we have reduced the problem of the inversioQ(g), i.e. a matrix of dimensionr@ + 2, to
the inversion of the lower triangular matrix- Z¥W, of dimensionm, as results from (4.8). This allows affieient
computation of the inverse @)(2).

5. Derivation of A-stable (S)DITSAC and (S)DTSAC methods

The strategy we carry out in the constructionfe$table methods can be summarized as follows.

First of all we set the quadrature formulae (3.12) and (3i15)ich a way to enforce the desired structure on the
matrix W and the ordep of convergence. Moreover, we fix the polynomigls) and, possibly, alsg;(s), satisfying
some of the interpolatigoollocation conditions (3.7)-(3.8)-(3.9)-(3.10), e.dnetones in (2.4). As a consequence
some free parameters are available to be spent in orderdocerthe desired structure on the matfand to achieve
A-stability. We next derive the remaining basis functionssbiving the system of order conditions (2.3) upptoas
stated by Theorem 3.2, the same fixed interpol@tioliocation conditions are inherited by the other basicfions.
We next compute the stability polynomip{w, 2) of the obtained methods, i.e. the characteristic polyabwi the
stability matrix (4.2), which depends on the matri€gg) in (4.3) andM(2) in (4.4). In particular, in the construction
process it is useful to consider the expession (4.8) of therge of the matrixQ(z), which provides considerable
simplifications in the computations. We next analyze thbibtya properties of the polynomiab(w, Z): in particular,
we aim to derive methods which afestable, i.e. the root9;, wy, . . . , wom:2 Of the polynomialp(w, 2) lie in the unit
circle, for allz € C such that Ref) < 0. We investigatéd-stability using the Schur criterion [21], similarly as s
already been donein [8, 11, 12, 13, 14, 15, 18].

Consider the polynomial

(W) = doWs + diea W< + - -+ dgw + d,

whered; are complex cao@cients,dx # 0 anddy # 0. n(w) is said to be a Schur polynomial if all its roots,
i=12,...,k, are inside of the unit circle. Define

(W) = dow* + dyw< L + -+ + de W + dy,

whered; is the complex conjugate of. Define also the polynomial

mw) = - (A0 ~ n(0)i(w)

of degree at modt — 1. We have the following theorem.
9



Theorem 5.1. (Schur [21]).n(w) is a Schur polynomial if and only if

7(0)| > In(0)
andny(w) is a Schur polynomial.

Roughly speaking, the Schur criterion allows us to invedéghe stability properties ofkd’ degree polynomial,
looking at the roots of a polynomial of lower degree (ike- 1). Iterating this process, the last step consists in the
investigation of the root of a linear polynomial, plus sondeliional conditions.

5.1. Examples of methods with=2 with ¥ and W lower triangular

We first show the construction of highly stable two-stage AT methods (3.17), i.e. we require that the matrices
¥ andW are lower triangular. As a first attempt, we have derived aralyaed the stability properties of (3.17) with
m = 2 and ordep = 2m+ 1 = 5, and discovered that md-stable methods within this class exist (for further dstail
see [11]). Therefore, we next relax one order conditios (1), and consider DITSAC methods (3.17) with= 2
and orderp = 2m = 4. We compute the weights of the quadrature formulae (3.4@)3.15) according to the desired
orderp = 4, obtaining

bo _ —6CyC1 +2C1 +2¢, — 1 b= 1-2c, 2c,-1 T
- 12c;co > [ 12 -1)ca(cr—c2)  12(c—-1)ca(C—C1) ] >

b _ —6C2C1 + 4C1 + 4C2 -3 Wo = Cj_(C]_ - 302 + 3) Cg - 3C1C2
57 12 -1 -1) ° ° 6(c2 — 1) 6c; |’

C1(2C1*3Cz+3) O O Ci
W = 6(01—%+1) 22-3cic, ]’ W = [ 0 6(c1—c261)(02—1) }
T6c(ci—C)  6(C1—Co)

As in Remark , we assume
wo(9) = s(s— ¢1)(s— C2)(ag + @19)

and, as a consequence, the matfix |. Imposing such a factorization on the polynonig(s) implies that it satisfies
the interpolation conditiop(0) = 0 and the collocation conditions(c1) = ¢o(c2) = 0. We impose the condition
ag = —aq, in order to derive methods which do not dependygn: this choice, as also in the case of two-step
Runge—Kutta methods for ODEs, is particularly suitablerieo to improve the stability properties of the resulting
methods (compare with [18, 19]). We next determine the remagibasis function:(s), x1(9), x2(9), ¥1(S), w2(s) by
imposing the system of order conditions (2.3), which resukie

(c— s)(s—cz)(cz(cz+1)01(s—1)s§+(s+cz((cz+1)<y1(s—1)s—1)+1)c1+(cz s—l)(s+1))

(c1-9(co s)(cz«c1+1)(cz+1)a1<s~]1>+)1°>1(§3 2

e1(8) =

x1(s) = (=N ;2
s) = (c1=9)(C— S)(Cl((01+1)(02+ )111(5—1)*'1) 5—1)5

)

xa( (€1-C)(C-C+1)(C-1)
(c2-9s(~ Cz(C2+l)a/1(S—1)Cz+(S+C2((Cz+l)al(S—l)S—1)+l)Cl+(C2 s—l)(s+1))
(//1(3) ci1(ci—co)(ci—Cp+1)
(S) (- s)s( Coa1(Co— s)(s—l)c2+(cz( —a1(C2—-9)(s-1)-1)+s+1)cy+(Co— s—l)(s+1))
& (c1—C2-1)(c1-C2)C2

The determined quadrature weights and basis functions mp&rdl on the parameters, c; andc,, which can be

regarded as degrees of freedom in order to enforce strohilitstaroperties for the corresponding methods, such as

A-stability. We also observe that, in force of Theorem 3.2, itlterpolatioyicollocation conditions imposed a(s)

are automatically inherited by all the other basis funiand,a fortiori, on the whole collocation polynomial (2.1).
We next derive the stability polynomiglw, Z) of order 2n+ 2 = 6 with respect to the variable. In force of the

choices we have made, it takes the form

P, 2) = w(Po(2) + P1(Dw + Po(Dw® + P3(2w® + Pa(@w’ + Ps(Dw®), (5.1)
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wherep;(2), j =0,1,...,5, are rational functions with respectdowvhich do not depend on the value of the parameter
a1, but only the abscissag andc,. In order to investigate on the stability properties of tledypomial (5.1), it is
suficient to consider the polynomial

plw,2) = po(2) + p1(Qw + pz(Z)a)2 + Ps(Z)w3 + Pa@w’* + ps(Dw®,

of degree 5 with respect to. We apply the Salr criterion on the polynomigb(w, 2), in order to determine the values
of the free parameters andc, corresponding té\-stable methods. The result of this analysis is reportedgarg 1.

6

Figure 1: Region ofA-stability in the parameter spacg (c;) for DITSAC methods (3.17), witim = 2 andp = 4, for any value of the parameter
a1

We next deriveA-stable two-stage SDITSAC methods within the class (3.17)}his case, by using the Si¢gh
criterion, we did not findA-stable methods witm = 2 andp = 4 and, therefore, we focus our attention on methods
with m = 2 andp = 3, by relaxing two order conditions. We determine the wedgifitthe quadrature formulae (3.12)
and (3.15) corresponding to the lower triangular case bz

T
b o 13 o 1 |, 2-3c
6co 6(02 - 1)C2 6(02 - 1)

T il 0

_[a & | 2 o

w = |3 2]’W‘[0 %" W‘[o o]'

2

We next impose
@o(s) = Slao+a18)(s— a2),

¢1(9) S(Bo + B1S)(S— B2)

and, as a consequence, the interpolation conditigf) = ¢1(0) = 0 holds. In addition, we also seb = 1 in order
to enforce the independency gp ;. We next determine the remaining basis functigngs), x2(S), w1(S), ¥2(s) by
imposing the system of order conditions (2.3) and whichiiititiee interpolation condition in 0. The computed basis
functions and quadrature weights now depend on the freenedeaseo, a1, 8o, 81, B2, C1 andc,. First of all, we spend
ap andpByp in order to enforcePW being lower triangular and one point spectrum. We next eef@ome further
simplifying assumptions on the basis functions, using #ileaes ofe;, @, andg;, obtaining a three-parameter family
of methods to be investigated. We next derive the stabibtyqomial p(w, 2) of order 2n+ 2 = 6 with respect to the
variablew, which assumes the same form (5.1), where mg@), j = 0,1,...,5, depend on the free parameters
C; andp,. As in the previous case, we focus our attention on a polyabffiv, Z) of degree 5 with respect to. We
apply the Schir criterion onp{w, 2), in order to determine the values of the free parametgrs, andg, achieving
A-stability. The results are shown in Figure 2.
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Figure 2: Region ofA-stability in the parameter spaog (c;) for SDITSAC methods (3.17), witm= 2, p=3 andB; = %

5.2. Examples of methods with=a2 with ¥ and W diagonal

We now present the construction of highly stable two-stag&BC methods (3.21), i.e. we require that the
matrices¥ andW are diagonal. We first observe that, among the examplésstéble methods provided in [8], the
one reported in Figure 5 belongs to the class of DTSAC methdtltsm = 2 andp = 3. In this paper, we present
examples of two-stagg-stable SDTSAC methods, requiring that the maifW is diagonal and one-point spectrum.
First of all, we did not findA-stable SDTSAC methods wittm = 2 andp = 4,5 exist and, therefore, we relax two
order conditionsr(= 2), and consider SDTSAC methods (3.21) witl= 2 and ordeip = 3. We compute the weights
of the quadrature formulae (3.12) and (3.15) corresponttirtge diagonal case, obtaining

. 1-3c, 1 T . 2-3g
bo = - 6c, b‘[o 6(c2 - 1)c2 ] T 6(c-1)
T a 0 ~ 0 0
ooy gy gl
We next impose
wo(s) = Sag+ a18)(s— @),
01(s) = S(Bo+pB19)(s-B2)

and, as a consequence, the interpolation conditig@) = ¢;(0) = 0 holds. In addition, we also seb = 1 in order
to enforce the independency gp.;. We next determine the remaining basis functigngs), y2(9), ¥1(9), ¥2(S) by
imposing the system of order conditions (2.3) ugpte 3, transferring to them the interpolation condition in 0.ehh
At this point, everything depends on the valuesygfas, Bo, 81,82, C1 andc,. We spendyg, @; andgg in order to
obtain YW being diagonal and one point spectrum. We next enforce santigef simplifying assumptions on the
basis functions, using the values@fandg, obtaining a three-parameter family of methods, depenaling, c; and
B2. We next derive the stability polynomialw, Z) of order 6 with respect to the variablg which assumes the form
(5.1), where nowpj(2), j = 0,1,...,5, are rational functions with respectzalepending ort;, ¢, anda,. We apply
the Schir criterion, in order to determine the values of the freeapaatersc;, ¢, andj, achievingA-stability. The
results are shown in Figure 3.

6. Numerical experiments

In the numerical experiments we tested the performancdseafie¢w diagonally implicit TSAC methods (2.7) in
terms of order of convergence and computational cost, coedpaith the fully implicit TSAC methods (3.17). We
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Figure 3: Region ofA-stability in the parameter spaag (c;) for SDTSAC methods (3.21), withh= 2, p= 3 andg; = %

considered DITSAC methods leading to a lower triangulaffocent matrix, as these methods are are appropriate to
be used in a serial computing environment. As regards thaadstwith diagonal structure, their advantage can be
appreciated in a parallel environment.

We expect a decrease in the computational cost needed feolilgon of the nonlinear systems (3.17) and (2.7),
while the computational cost of the lag term remains the sameéts reduction is outside the scope of this paper.
However a further improvement can be reached by applyirtgafgerithms also for the lag term computation (see for
example [6, 7] in the case of Runge-Kutta and one step cditotenethods).

We report here the results obtained on three test probleaker(tfrom [4]) by applying the following\-stable
methods having the same order of converggmee4 and the same abscissa veater [2,4]", i.e.

- DITSACA4: the lower triangular DITSAC method with = 2 andp = 4, provided in Section 5.1, witly; = —1;

- TSACA4: the fully implicit TSAC method witim = 2 andp = 4 reported in Section 6 of paper [8].

In the implementation of both methods we have solved theimeat systems (3.17) and (2.7) in the staglggll,
i =1,2,...,m, by using Newton iterations.

The test problems are of the form (1.1), where the kekeld the forcing functiog are reported in Table 6.1 and
T=2

Problem | g(t) k(t,sy)

1 e 2coqt - 9)y
2 et esty+e?)
3 2-cost) | -3sinty—9)

Table 6.1: Test problems.

We compute a numerical estimation of the order of convergefithe methods with the formula

_ cd(h) - cd(2n)

p(h) 100102

(6.1)
for a fixedh, wherecd is the number of correct significant digits at the end poing (naximal absolute end point
error is written as 169). In order to show the improvement in théieiency of DITSAC4 with respect to TSAC4,
we compare the number of kernel and jacobian evaluatiordegefer the solution of the nonlinar systems (3.17) and
(2.7).

The meaning of the headers in the following tables is:
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DITSAC4 TSAC4

N cd P rkev Mev | cd P kev Njev rk r

16 3.7 120 60 | 3.1 150 120| 1.25| 2.00
32 48 3.6 248 124| 44 40 310 248| 1.25]| 2.00
64 59 37 504 252|56 40 630 504|1.25| 2.00
128 | 7.1 3.8 1016 508/ 6.8 4.0 1270 1014 1.25]| 2.00
256 | 8.2 3.9 2040 1020 8.0 4.0 2550 204Q 1.25| 2.00
512 | 9.4 4.0 4088 2044 9.2 4.0 5110 4088 1.25| 2.00

Table 6.2: Numerical results for DITSAC4 method and TSAC4 mefloo Problem 1 in Table 6.1

DITSAC4 TSAC4

N cd P rkev Myev | cd P Tkev Nyev I r

16 3.6 180 120| 3.4 270 2401| 1.50| 2.00
32 48 40 372 248/ 46 4.0 558 496| 1.50| 2.00
64 6.0 40 693 441|58 4.0 1134 1008 1.64| 2.29
128 | 7.1 4.0 1270 762| 7.0 4.0 1778 1524 1.40| 2.00
256 | 83 4.0 2550 1530 8.1 4.0 3570 306Q 1.40| 2.00
512 | 95 4.0 5110 30668 94 40 7154 6132 1.40/| 2.00

Table 6.3: Numerical results for DITSAC4 method and TSAC4 mefieo Problem 2 in Table 6.1

- cd(T/N): number of correct significant digits at the end pointtice T/N;

- p(T/N): estimated order obtained with the formula (6.1) fice T/N;

- Nkev: humber of kernel evaluations;

- nyev: number of jacobian evaluations;

- rg: ratio between the number of kernel evaluations neededéyntéithods TSAC4 and DITSACA4.
- rj: ratio between the number of jacobian evaluations needelebgnethods TSAC4 and DITSACA.

The tables clearly show as the methods exhibit the sameawgwonfirming the theoretical order of convergence
p = 4. Moreover the method DITSAC4 needs less kernel and janabialuations than TSAC4. The improvement is
much more visible when the problem is nonlinear, as for lipgablems Newton method requires just one iteration.

7. Conclusions

We have developed a family of highly-stable two-step alncoibcation methods depending on structured coef-
ficient matrices, for the numerical integration of VIEs (1. These methods possess uniform order of convergence on
the whole integration interval. We have provided exampfe&-stable two-stage methods (3.17), wh&randW are
lower triangular ang@r diagonal and, possibly, such that their product is orietEpectrum. Numerical experiments
showing the achieved improvement in the computational leagt been reported. Future works will address the con-
struction of highly stable methods (3.17) depending on rstages and their implementation, in order to exploit their
properties to get anfgcient variable stepsize-variable order implementatiath gaossibly, in a parallel environment.
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DITSAC4 TSAC4

N cd P rkev Mev | cd P Tkev MNjev I r

16 4.6 120 60 | 4.3 258 228| 2.15| 3.80
32 57 3.6 248 124 55 3.7 434 372| 1.75]| 3.00
64 68 38 504 252| 66 38 882 756| 1.75| 3.00
128 | 80 39 1010 502 7.8 3.9 1758 1504 1.74| 3.00
256 | 9.2 4.0 1976 956| 9.0 4.0 3082 2573 1.56| 2.69
512 | 104 4.0 3066 1022 10.2 4.0 5110 408§ 1.67 | 4.00

Table 6.4: Numerical results for DITSAC4 method and TSAC4 mefloo Problem 3 in Table 6.1
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