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Abstract

We introduce a family of diagonally–implicit continuous methods for the numerical integration of Volterra Integral
Equations. The derived methods are characterized by a lowertriangular or diagonal coefficient matrix of the nonlinear
system for the computation of the stages which, as it is known, can be exploited to get an efficient implementation.
The constructed methods have an high uniform order of convergence together with strong stability properties (e.g.
A-stability).
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1. Introduction

This paper concerns the construction of both efficient and highly stable numerical methods for Volterra Integral
Equations (VIEs) of the form

y(t) = g(t) +
∫ t

0
k(t, τ, y(τ))dτ, t ∈ [0,T], (1.1)

where theforcing function g: R→ R
d and thekernel k: R

2 × R
d → R

d are assumed to be sufficiently smooth. Such
equations arise in many models of evolutionary phenomena with memory and their classical numerical treatment has
been widely described in [3, 4] and the related bibliography. It is well known that the best stability properties are
reached by implicit numerical methods, with the disadvantage that they lead to nonlinear systems of equations to be
solved at each time step. To this cost we have to add the cost arising from the computation of the lag term (containing
the history of the phenomenon), which can be computed by means of fast methods developed in the literature for
convolution kernels [6, 7, 20]. As regards the task of reducing the computational cost associated to the solution of the
above nonlinear systems, a widespread strategy in the context of Ordinary Differential Equations (ODEs), consists in
making the coefficient matrix have a structured shape. This strategy, in the field of Runge–Kutta methods for ODEs,
leads to the raise of the famous classes of Diagonally Implicit and Singly Diagonally Implicit Runge-Kutta methods
(DIRK and SDIRK), see [5, 17] and bibliography therein contained. Moreover, in the field of collocation-based
methods for ODEs, an analogous strategy has been applied, obtaining a subclass of two-step Runge–Kutta methods
(see [19]) having structured coefficient matrix [16].

In this paper we will adopt this strategy in the context of thenumerical solution of VIEs (1.1) and, in particular,
we will derive numerical methods involving nonlinear systems with lower triangular or diagonal coefficient matri-
ces. The derived formulae belong to the class of Two-Step Almost Collocation (TSAC) methods, which have been
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introduced in [8] in order to obtain high order and highly stable continuous methods for the problem (1.1). In fact,
to integrate a system ofd integral equations of the form (1.1), a collocation method generally requires the solution
of mdsimultaneous nonlinear equations at each time step. A lowertriangular matrix allows to solve the equations in
m successive stages, with only ad-dimensional system to be solved at each stage. Moreover, ifall the elements on
the diagonal are equal, in solving the nonlinear systems by means of Newton-type iterations, one may hope to use
repeatedly the storedLU factorization of the Jacobian. If the structure is diagonal, the problem reduces to the solution
of m independent systems of dimensiond, and can therefore be solved in a parallel environment.

The paper is structured as follows. In Section 2 we recall two-step almost collocation methods, together with the
main results on continuous order conditions and convergence. Section 3 is devoted to the construction of diagonally
implicit methods within this class, while Section 4 contains the analysis of the linear stability properties with respect
to the basic test equation usually employed in the literature. Examples ofA−stable methods are provided in Section 5
and some numerical experiments are given in Section 6. Some conclusions and future developements are remarked in
Section 7.

2. Two-step collocation and almost collocation methods

Let Ih = {tn := nh,n = 0, ...,N, h ≥ 0,Nh= T} be a uniform mesh, which constitutes the discrete counterpart of
the interval [0,T], andc1, . . . , cm bem collocation parameters, which identifym internal pointstn j = tn + c jh inside
the generic interval [tn, tn+1].

Equation (1.1) can then be expressed in the following way

y(t) = F [n](t, y(·)) + Φ[n+1](t, y(·)), t ∈ [tn, tn+1],

where

F [n](t, y(·)) := g(t) +
∫ tn

0
k(t, τ, y(τ))dτ, Φ[n+1](t, y(·)) :=

∫ t

tn

k(t, τ, y(τ))dτ

are thelag termand theincrement termrespectively.
TSAC methods for VIEs [8] provide a continuous approximation Pn(tn + sh), s ∈ [0,1], to the solutiony(tn + sh)

in the interval [tn, tn+1], which employs the information about the equation on two consecutive steps and suitable
sufficiently high order quadrature formulaeF [n]

j andΦ[n+1]
j for the discretization ofF [n](tn j,P(·)) andΦ[n+1](tn j,P(·))

respectively. The approximationP(t) of the solutiony(t) of (1.1) on [0,T] is then obtained by considering

P(t)|(tn,tn+1] = Pn(t).

The method assumes the form


















Pn(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m
∑

j=1
χ j(s)Y

[n]
j +

m
∑

j=1
ψ j(s)(F

[n]
j + Φ

[n+1]
j )

yn+1 = Pn(tn+1),
(2.1)

whereY[n]
j = P(tn−1, j). Thus the algebraic polynomialPn(tn + sh) is expressed as linear combination of the basis

functionsϕ0(s), ϕ1(s), χ j(s) andψ j(s), j = 1,2, . . . ,m, which are determined from the continuous order conditions
provided in [8]. These conditions arise from the analysis ofthe local truncation error

η(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

−

m
∑

j=1

(

χ j(s)y(tn + (c j − 1)h) + ψ j(s)y(tn + c jh)
)

.
(2.2)

and are reported in the following result.

Theorem 2.1. Assume that the kernel k(t, η, y) and the function g(t) in (1.1) are sufficiently smooth. Then the method
(2.1) has uniform order p, i.e.,

η(tn + sh) = O(hp+1), h→ 0,
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for s ∈ [0,1], if the polynomialsϕ0(s), ϕ1(s), χ j(s) andψ j(s), j = 1,2, ...,m satisfy the system of equations







































1− ϕ0(s) − ϕ1(s) −
m
∑

j=1

χ j(s) −
m
∑

j=1

ψ j(s) = 0,

sk − (−1)kϕ0(s) −
m
∑

j=1

(c j − 1)kχ j(s) −
m
∑

j=1

ck
jψ j(s) = 0,

(2.3)

s ∈ [0,1], k = 1,2, ..., p.

Two-step collocation methods are obtained by solving the system of order conditions up to the maximum uniform
attainable orderp = 2m+ 1, and, in this way, all the basis functions are determined asthe unique solution of such
system and have degree at mostp. However, as observed in [8], it is not convenient to impose all the order conditions
because it is not possible to achieve high stability properties (e.g.A−stability) without getting rid of some of them.
Therefore,almostcollocation methods are introduced by relaxing a specified numberr of order conditions, i.e. by a
priori appropriately fixingr basis functions, and determining the remaining ones as the unique solution of the system
of order conditions up top = 2m+ 1− r. If r fixed basis functions are polynomials of degree at mostp, then the other
ones, obtained in the described way, have the same degree. Wehave many possible different choices for ther fixed
basis functions. In principle, they can be written as polynomials depending on theirp+ 1 coefficients, which can be
considered as free parameters to be used in order to achieveA-stability. In fact, we are generally able to pursue this
purpose by only using few degrees of freedom and, therefore,some coefficients are fixed by imposing some of the
interpolation/collocation conditions (3.7)-(3.10), which we will further analyze later. Different choices can be done on
the conditions to impose, each giving rise to a different family of TSAC methods, e.g. manyA−stable methods have
been constructed in [8] by imposing the collocation conditions (3.10), i.e. by fixing one or both of the polynomials
ϕ0(s) andϕ1(s) as

ϕ0(s) =
m
∏

k=1

(s− ck)(α0 + α1s+ . . . + αp−msp−m),

ϕ1(s) =
m
∏

k=1

(s− ck)(β0 + β1s+ . . . + βp−msp−m),
(2.4)

whereα j andβ j , j = 0,1, . . . , p − m, are free parameters. The choices we make in practice in the derivation of the
new methods will be clear in Section 5, which regards the effective construction of the numerical methods.

The quadrature formulae in (2.1) are of the form

F [n]
j = g(tn j) + h

n
∑

ν=1

(

b0k(tn j, tν−1, yν−1) +
m
∑

l=1

blk(tn j, tν−1,l ,Y
[ν]
l ) + bm+1k(tn j, tν, yν)

)

, (2.5)

and

Φ
[n+1]
j = h

(

w j0k(tn j, tn, yn) +
m
∑

l=1

w jl k(tn j, tnl,Y
[n+1]
l ) + w j,m+1k(tn j, tn+1, yn+1)

)

, (2.6)

whereY[n]
i = Pn−1(tn−1,i) are the stage values andb0, bl , bm+1, w j0, w jl , w j,m+1 are given weights.

The polynomialP(tn+sh) is explicitly defined after solving, at each step, the following system of (m+1)d nonlinear
equations in the stage valuesY[n+1]

i andyn+1, obtained by computing (2.1) fors= ci , i = 1,2, . . . ,m, ands= 1:







































Y[n+1]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn +

m
∑

j=1

χ j(ci)Y
[n]
j +

m
∑

j=1

ψ j(ci)
(

F [n]
j + Φ

[n+1]
j

)

,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +

m
∑

j=1

χ j(1)Y[n]
j +

m
∑

j=1

ψ j(1)
(

F [n]
j + Φ

[n+1]
j

)

,

(2.7)

n = 1,2, . . . ,N − 1.
The starting valuesy1 andY[1]

i , i = 1,2, . . . ,m, are assumed to be prescribed and can be computed by using a
one-step Runge–Kutta method of order at leastp, according to the following theorem.
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Theorem 2.2. Let eh(t) := y(t) − P(t) be the global error of the TSAC method (2.1), and suppose the hypothesis of
Theorem 2.1 are satisfied up to order p. Then, under suitable hypothesis of sufficient regularity on the kernel k (see
[8]),

‖eh‖∞,[t0,T] = O(hp∗ ), h→ 0.

i.e. the method has uniform order of convergence p∗ = min{s+ 1,q, p+ 1}, where s and q are such that:

i. the starting error is‖eh‖∞,[t0,t1] = O(hs);

ii. the lag-term and increment-term quadrature formulas (2.5)-(2.6) are of order O(hq).

Remark 2.3. In principle, in formula (2.1) we might take the piecewise polynomial of degree greater than p, however
we did not follow this approach because first of all, by solving the system of order conditions (2.3) up to p= 2m+ 1,
there exists an unique solution given by basis polynomials of degree at most equal to p. Moreover, when p< 2m+ 1,
the powers{1, s, . . . , sp} are present in (2.3) and, therefore, it is natural for us to fixthe relaxed basis functions of
degree at most p in order to solve (2.3) with respect to the others. Moreover, the relaxation technique in practice
leads to a decrease of p and, therefore, to a decrease of the degree of the basis functions and we observed that this
improves the stability of the resulting methods. Higher degree polynomials, in our analysis, could deteriorate the
stability properties of the corresponding methods.

3. Two-step diagonally implicit almost collocation methods

This section is devoted to the construction of high order methods belonging to the class (2.1) such that the coeffi-
cient matrix of the nonlinear system (2.7) has a structured shape, leading to the solution of nonlinear systems of lower
dimensiond. First of all we considerw j,m+1 = 0, j = 1, . . . ,m, in such a way that (2.7) becomes a nonlinear system of
dimensionmdonly depending on the stage valuesY[n+1]

i , i = 1, . . . ,m, and assumes the following form























Y[n+1]
i − h

m
∑

j=1

m
∑

l=1

ψ j(ci)w jl k(tn j, tnl,Y
[n+1]
l ) = B[n]

i ,

yn+1 = Pn(tn+1),

(3.1)

where

B[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn +

m
∑

j=1

χ j(ci)Y
[n]
j +

m
∑

j=1

ψ j(ci)F
[n]
j + h

m
∑

j=1

ψ j(ci)w j0k(tn j, tn, yn). (3.2)

By defining

Y[n+1] =
[

Y[n+1]
1 ,Y[n+1]

2 , . . . ,Y[n+1]
m

]T
, B[n] =

[

B[n]
1 , B[n]

2 , . . . , B[n]
m

]T
,

Ψ =
(

ψ j(ci)
)m
i, j=1, W =

(

w jl
)m

j,l=1, K(tnc, tnc,Y[n+1]) =
(

K(tni, tn j,Y
[n+1]
j )
)m

i, j=1
,

the nonlinear system in (3.1) takes the form

Y[n+1] − hΨ
(

W · K(tnc, tnc,Y
[n+1])
)

= B[n] , (3.3)

where· denotes the usual Hadamard product. The tensor form (3.3) clearly shows as the matrices which determine
the structure of the nonlinear system (3.1) areΨ andW. Therefore, in the following subsection we will describe how
to choose the basis functionsψ j(s) and how to modify the quadrature formula (2.6) in order to obtain lower triangular
or diagonal structures.
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3.1. Determination of the basis functionsψ j(s)

In order to achieve a lower triangular or diagonal structurefor the matrixΨ, the basis functionsψ j(s) must satisfy

ψ j(ci) = 0, for j > i or j , i respectively, (3.4)

i.e. ψ j(s) assumes the form

ψ j(s) =
j−1
∏

k=1

(s− ck)ω̄ j(s), j = 2, . . . ,m (3.5)

or

ψ j(s) =
m
∏

k=1
k, j

(s− ck)ω̃ j(s), j = 1, . . . ,m (3.6)

respectively, where ¯ω j(s) is a polynomial of degreep− j + 1 andω̃ j(s) is a polynomial of degreep−m+ 1.
Imposing (3.5), the remainingm+ 3 basis functions can be computed by solving the system of order conditions

(2.3) and, as a consequence, the maximum attainable uniformorder which can be achieved by the corresponding
TSAC methods ism+2. On the other hand, by imposing (3.6), the corresponding TSAC methods would have uniform
order at most equal tom+ 1. However, we can follow a different strategy in order to obtain higher order methods.
The idea is to impose the conditions (3.4) on less thanmbasis functions, e.g. one or two of them (generallyϕ0(s) and
ϕ1(s)), in such a way that the maximum attainable order isp = 2m+ r − 1, with r = 1,2.

Let us define the following sets of interpolation and collocation conditions (see [8]):

• interpolation conditions in 0

ϕ0(0) = 0, ϕ1(0) = 1, χ j(0) = 0, ψ j(0) = 0, ∀ j, (3.7)

• interpolation conditions in -1

ϕ0(−1) = 1, ϕ1(−1) = 0, χ j(−1) = 0, ψ j(−1) = 0, ∀ j, (3.8)

• interpolation conditions in ci − 1, i ∈ {1, . . . ,m}

ϕ0(ci − 1) = 0, ϕ1(ci − 1) = 0, χ j(ci − 1) = δi j , ψ j(ci − 1) = 0, ∀ j. (3.9)

• collocation conditions in ci , i ∈ {1, . . . ,m}

ϕ0(ci) = 0, ϕ1(ci) = 0, χ j(ci) = 0, ψ j(ci) = δi j , ∀ j, (3.10)

Remark 3.1. The name of conditions (3.7)-(3.8)-(3.9)-(3.10) arises from the fact that they respectively ensure Pn(tn) =
yn, Pn(tn−1) = yn−1, Pn(tn−1,i) = Y[n]

i , Pn(tni) = F [n]
i +Φ

[n+1]
i . In particular, the last one means that the collocation poly-

nomial exactly satisfies the VIE (1.1) in the collocation point tni, except from the error associated to the quadrature
formulas (2.5) and (2.6).

Whatever condition from the sets (3.7)-(3.8)-(3.9)-(3.10)is inherited via order conditions, i.e. if we impose that some
basis functions satisfy certain interpolation/collocation conditions from the sets (3.7)-(3.8)-(3.9)-(3.10) and derive all
the other basis functions by solving the system of order conditions, the same interpolation/collocation conditions are
also satisfied by the computed basis functions (and then the corresponding relation in Remark 3.1 is satisfied by the
collocation polynomial), as proved in the following theorem.

Theorem 3.2. Let us defineξ1 = −1, ξ2 = 0, ξ2+ j = c j −1, ξm+2+ j = c j , j = 1, . . . ,m andΓ1(s) = ϕ0(s), Γ1(s) = ϕ1(s),
Γ2+ j(s) = χ j(s), Γm+2+ j(s) = ψ j(s), j = 1, . . . ,m and let i∈ {1,2, . . . ,2m+ 2} be a fixed integer. Then, supposing
ξi , ξ j , i , j,

i. If Γi(ξi) = 1, thenΓ j(ξi) = 0 for all j , i;
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ii. If Γi(ξℓ) = 0 with ℓ , i, thenΓ j(ξℓ) = δ jℓ for j , i.

Proof. The system of order conditions (2.3) can be rewritten in terms of ξ j andΓ j(s) as

sk −

2m+2
∑

k=1

ξk
jΓ j(s) = 0, k = 0,1, . . . , p, (3.11)

where we assumeξ0
2 = 1. The thesis follows by evaluating (3.11) ins = ξi ands = ξℓ, and by proving thati. and

ii. respectively represent the unique solution of the resulting Vandermonde type linear system. Further details are
reported in [11].

Remark 3.3. In some examples presented in Section 5, we will impose the collocation conditions (3.10) and relax the
conditions (3.7)-(3.9), by fixing one or both of the polynomialsϕ0(s) andϕ1(s) as in (2.4). Then, as a consequence of
Theorem 3.2, all the conditions (3.10) are satisfied andΨ reduces to the identity matrix of dimension m.

3.2. Approximation of the increment term: modified quadrature formula
We observe that the quadrature formulae (2.5) and (2.6) can be obtained by applying the quadrature formulae

1
∫

0

f (s)ds ≈ b0 f (0)+
m
∑

l=1

bl f (cl) + bm+1 f (1), (3.12)

c j
∫

0

f (s)ds ≈ w j0 f (0)+
m
∑

l=1

w jl f (cl) + w j,m+1 f (1), (3.13)

for the approximation of the integrals appearing in the right hand side of

F [n](tn j,P(·)) = g(tn j) + h
n
∑

ν=1

1
∫

0

k(tn j, tν−1 + sh,Pν−1(tν−1 + sh))ds,

Φ[n+1](tn j,P(·)) = h

c j
∫

0

k(tn j, tn + sh,Pn(tn + sh))ds.

(3.14)

We aim to derive a suitable modification of the quadrature formula (3.13) in such a way that the matrixW is lower
triangular or diagonal and, with the purpose to preserve theorder, we make use of some additional quadrature nodes,
i.e. we consider quadrature formulae of the form

c j
∫

0

f (s)ds≈ w j0 f (0)+
m
∑

l=1

w̃ jl f (cl − 1)+
j
∑

l=1

w jl f (cl), (3.15)

where, in case of triangular structure, ˜w jl = 0, l = 1, . . . , j while, in case of diagonal structure, ˜w j1 = 0 andw jl = 0,
l = 1, . . . , j − 1.

With the purpose of achieving the desired order (see Remark 2.2), quadrature formulae of the form (3.12) and
(3.15) can be constructed by taking into account that the order of the corresponding lag term and increment term
quadrature formulae is at leastO(hq), if they are interpolatory quadrature formulae onq andq− 1 nodes respectively
[4].

Remark 3.4. The quadrature formulae (3.12) and (3.15) can be further generalized if we need higher order by con-
sidering

1
∫

0

f (s)ds ≈

µ1
∑

l=0

bl f (dl),
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c j
∫

0

f (s)ds ≈

µ0
∑

l=0

w̃ jl f (d jl − 1)+
j
∑

l=1

w jl f (cl),

whereµ0 andµ1 depend on the desired order and (3.12) and (3.15) are specialcases, obtained by settingµ1 = m+ 1,
d0 = 0, dl = cl , l = 1,2, . . . ,m, dm+1 = 1, µ0 = m, dj0 = 0, w̃ j0 = 0, djl = cl , j, l = 1,2, . . . ,m.

3.3. Form of the diagonally implicit TSAC methods

As a consequence of the choices reported in the previous subsections, we obtain what follows. IfΨ andW are
lower triangular,

Ψ =



































ψ11

ψ21 ψ22
...

. . .

ψm1 ψm2 . . . ψmm



































, W =



































w11

w21 w22
...

. . .

wm1 wm2 . . . wmm



































, (3.16)

the resulting method assumes the form



































Y[n+1]
i − hψi(ci)wii k(tni, tni,Y

[n+1]
i ) = B[n]

i + B̃[n]
i + h

i−1
∑

l=1

i
∑

j=l
ψ j(ci)w jl k(tn j, tnl,Y

[n+1]
l ),

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn +

m
∑

j=1

χ j(1)Y[n]
j +

m
∑

j=1

ψ j(1)
(

F [n]
j + Φ

[n+1]
j

)

,
(3.17)

whereB[n]
i is given by (3.2),

B̃[n]
i = h

i
∑

j=1

m
∑

l=1

ψ j(ci)w̃ jl k(tn j, tn−1,lY
[n]
l ), (3.18)

andF [n]
j , Φ

[n+1]
j are approximations of (3.14) by means of the quadrature formulae (3.12) and (3.15). The solution

of the system (3.17) of dimensionmd can be obtained by solvingm successive nonlinear systems of dimensiond.
Coherently with the case of ODEs, we denote the corresponding methods as diagonally implicit TSAC methods
(DITSAC). If Ψ andW are lower triangular and, in addition, their productΨW is one-point spectrum, i.e.

ΨW =



































λ

µ21 λ
...

. . .

µm1 µm2 . . . λ



































, (3.19)

whereλ = ψi(ci)wii , i = 1,2, . . . ,m then, in order to solve the system (3.17) by Newton-type iterations, we can
repeatedly use the stored LU-factorization of the coefficient matrix

I − hλ
∂k
∂y
.

The related TSAC methods are then called singly diagonally implicit TSAC methods (SDITSAC).
If, in particular,Ψ andW are diagonal

Ψ =



































ψ11

ψ22

. . .

ψmm



































, W =



































w11

w22

. . .

wmm



































, (3.20)

then the method (3.17) takes the form

Y[n+1]
i − hψi(ci)wii k(tni, tni,Y

[n+1]
i ) = B[n]

i + B̃[n]
i , (3.21)
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whereB[n]
i and B̃[n]

i are given by (3.2) and (3.18), respectively. The nonlinear system (3.21) is then equivalent to
m nonlinear systems of dimensiond, which can be efficiently solved in a parallel environment. The corresponding
methods are denominated diagonal TSAC methods (DTSAC). IfΨW is also one point spectrum, i.e.

ΨW = λI , (3.22)

with λ = ψi(ci)wii , it can be efficiently treated by means of Newton-type iterations, as in the case of SDITSAC
methods: we denote these methods as singly diagonal TSAC methods (SDTSAC).

4. Linear stability analysis

We now focus our attention on the linear stability properties of TSAC methods (3.17) with respect to the basic test
equation

y(t) = 1+ λ

t
∫

0

y(τ)dτ, t ≥ 0, Re(λ) ≤ 0, (4.1)

usually employed in the literature for the stability analysis of numerical methods for VIEs (see [2, 4, 8, 9]). The
following result holds.

Theorem 4.1. The stability matrix associated to the two-step collocation method (3.17) takes the form

R(z) = Q−1(z)M(z), (4.2)

where

Q(z) =





























1 −zψT(1)W −ψT(1) 0
0 I − zΨW −Ψ 0
0 0 I 0
0 0 0 1





























(4.3)

is an invertible matrix for z<
1
‖ΨW‖

(for some matrix norm) and

M(z) =





























ϕ1(1)+ zψT(1)w0 χT(1)+ zψT(1)W̃ 0 ϕ0(1)
ϕ1(c) + zΨw0 A+ zΨW̃ 0 ϕ0(c)

zbm+1u zubT I zb0u
1 0 0 0





























. (4.4)

Proof. The method (3.17) applied to the test problem (4.1) assumes the form

yn+1 = ϕ0(1)yn−1 + (ϕ1(1)+ zψT(1)w0)yn + (χT(1)+ zψT(1)W̃)Y[n]

+ψT(1)F [n] + zψT(1)WY[n+1],

Y[n+1] = ϕ0(c)yn−1 + (ϕ1(c) + zΨw0)yn + (A+ zΨW̃)Y[n] + ΨF [n] + zΨWY[n+1],

(4.5)

where we define the column vectorsψ(1) =
(

ψ j(1)
)m

j=1
, χ(1) =

(

χ j(1)
)m

j=1
, w0 =

(

w̃ j0

)m

j=1
, ϕ0(c) =

(

ϕ0(c j)
)m

j=1
and

ϕ1(c) =
(

ϕ1(c j)
)m

j=1
and the matrixW̃ =

(

w̃i j

)m

i, j=1
. The lag term satisfies the following recurrence relation

F [n] = F [n−1] + zbm+1uyn + zubTY[n] + zb0uyn−1, (4.6)

with b = [b1,b2, . . . ,bm]T andu = [1, . . . ,1]T ∈ R
m. By defining

vn =
[

yn,Y
[n] , F [n−1], yn−1

]T
,

from (4.5) and (4.6), we obtain the following recurrence relation

Q(z)vn+1 = M(z)vn, (4.7)
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whereQ(z) andM(z) take the form (4.3) and (4.4), respectively. The proof willbe completed by showing the invert-
ibility of the matrix Q(z), by means of some algebraic tools, based on the Schür complement. It is well known (see
[1]) that, given a block matrix of the type

[

Q11 Q12

0 Q22

]

with invertible blocksQ11 andQ22, the inverse assumes the following form:

[

Q11 Q12

0 Q22

]−1

=

[

Q−1
11 −Q−1

11Q12Q−1
22

0 Q−1
22

]

.

According to this result, the invertibility of the matrixQ(z) follows from the invertibility of the matrixI − zΨW thus,
if z‖ΨW‖ < 1 for some matrix norm (see [1], p. 492), the inverse ofQ(z) can be computed as

Q−1(z) =





























1 zψT(1)W(I − zΨW)−1 −ψT(1)(I + zW(I − zΨW)−1) 0
0 (I − zΨW)−1 −(I − zΨW)−1Ψ 0
0 0 I 0
0 0 0 1





























. (4.8)

The proof of Theorem 4.1 also provides the tools for an efficient inversion of the matrixQ(z). In fact, using the
Scḧur complement, we have reduced the problem of the inversion of Q(z), i.e. a matrix of dimension 2m+ 2, to
the inversion of the lower triangular matrixI − zΨW, of dimensionm, as results from (4.8). This allows an efficient
computation of the inverse ofQ(z).

5. Derivation of A-stable (S)DITSAC and (S)DTSAC methods

The strategy we carry out in the construction ofA-stable methods can be summarized as follows.
First of all we set the quadrature formulae (3.12) and (3.15)in such a way to enforce the desired structure on the

matrix W and the orderp of convergence. Moreover, we fix the polynomialϕ0(s) and, possibly, alsoϕ1(s), satisfying
some of the interpolation/collocation conditions (3.7)-(3.8)-(3.9)-(3.10), e.g. the ones in (2.4). As a consequence
some free parameters are available to be spent in order to enforce the desired structure on the matrixΨ and to achieve
A-stability. We next derive the remaining basis functions bysolving the system of order conditions (2.3) up top: as
stated by Theorem 3.2, the same fixed interpolation/collocation conditions are inherited by the other basis functions.
We next compute the stability polynomialp(ω, z) of the obtained methods, i.e. the characteristic polynomial of the
stability matrix (4.2), which depends on the matricesQ(z) in (4.3) andM(z) in (4.4). In particular, in the construction
process it is useful to consider the expession (4.8) of the inverse of the matrixQ(z), which provides considerable
simplifications in the computations. We next analyze the stability properties of the polynomialp(ω, z): in particular,
we aim to derive methods which areA-stable, i.e. the rootsω1, ω2, . . . , ω2m+2 of the polynomialp(ω, z) lie in the unit
circle, for all z ∈ C such that Re(z) ≤ 0. We investigateA-stability using the Schur criterion [21], similarly as it has
already been done in [8, 11, 12, 13, 14, 15, 18].

Consider the polynomial
η(w) = dkw

k + dk−1wk−1 + · · · + d1w+ d0,

wheredi are complex coefficients,dk , 0 andd0 , 0. η(w) is said to be a Schur polynomial if all its rootswi ,
i = 1,2, . . . , k, are inside of the unit circle. Define

η̂(w) = d̄0wk + d̄1wk−1 + · · · + d̄k−1w+ d̄k,

whered̄i is the complex conjugate ofdi . Define also the polynomial

η1(w) =
1
w

(

η̂(0)η(w) − η(0)η̂(w)
)

of degree at mostk− 1. We have the following theorem.
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Theorem 5.1. (Schur [21]).η(w) is a Schur polynomial if and only if

|η̂(0)| > |η(0)|

andη1(w) is a Schur polynomial.

Roughly speaking, the Schur criterion allows us to investigate the stability properties of akth degree polynomial,
looking at the roots of a polynomial of lower degree (i.e.k − 1). Iterating this process, the last step consists in the
investigation of the root of a linear polynomial, plus some additional conditions.

5.1. Examples of methods with m= 2 withΨ and W lower triangular

We first show the construction of highly stable two-stage DITSAC methods (3.17), i.e. we require that the matrices
Ψ andW are lower triangular. As a first attempt, we have derived and analyzed the stability properties of (3.17) with
m = 2 and orderp = 2m+ 1 = 5, and discovered that noA-stable methods within this class exist (for further details,
see [11]). Therefore, we next relax one order condition (r = 1), and consider DITSAC methods (3.17) withm = 2
and orderp = 2m= 4. We compute the weights of the quadrature formulae (3.12) and (3.15) according to the desired
orderp = 4, obtaining

b0 = −
−6c2c1 + 2c1 + 2c2 − 1

12c1c2
, b =

[

−
1−2c2

12(c1−1)c1(c1−c2)
2c1−1

12(c2−1)c2(c2−c1)

]T
,

b3 = −
−6c2c1 + 4c1 + 4c2 − 3

12(c1 − 1)(c2 − 1)
, w0 =













−
c1(c1 − 3c2 + 3)

6(c2 − 1)
−

c2
2 − 3c1c2

6c1













,

W =















c1(2c1−3c2+3)
6(c1−c2+1) 0

−
c3

2
6c1(c1−c2) −

2c2
2−3c1c2

6(c1−c2)















, W̃ =















0
c3

1
6(c1−c2+1)(c2−1)

0 0















.

As in Remark , we assume
ϕ0(s) = s(s− c1)(s− c2)(α0 + α1s)

and, as a consequence, the matrixΨ = I . Imposing such a factorization on the polynomialϕ0(s) implies that it satisfies
the interpolation conditionϕ0(0) = 0 and the collocation conditionsϕ0(c1) = ϕ0(c2) = 0. We impose the condition
α0 = −α1, in order to derive methods which do not depend onyn−1: this choice, as also in the case of two-step
Runge–Kutta methods for ODEs, is particularly suitable in order to improve the stability properties of the resulting
methods (compare with [18, 19]). We next determine the remaining basis functionsϕ1(s), χ1(s), χ2(s), ψ1(s), ψ2(s) by
imposing the system of order conditions (2.3), which resultto be

ϕ1(s) =
(c1−s)(s−c2)(c2(c2+1)α1(s−1)sc2

1+(s+c2((c2+1)α1(s−1)s−1)+1)c1+(c2−s−1)(s+1))
(c1−1)c1(c2−1)c2

,

χ1(s) = (c1−s)(c2−s)(c2((c1+1)(c2+1)α1(s−1)+1)−s−1)s
(c1−1)(c1−c2−1)(c1−c2) ,

χ2(s) = (c1−s)(c2−s)(c1((c1+1)(c2+1)α1(s−1)+1)−s−1)s
(c1−c2)(c1−c2+1)(c2−1) ,

ψ1(s) =
(c2−s)s(−c2(c2+1)α1(s−1)c2

1+(s+c2((c2+1)α1(s−1)s−1)+1)c1+(c2−s−1)(s+1))
c1(c1−c2)(c1−c2+1) ,

ψ2(s) =
(c1−s)s(−c2α1(c2−s)(s−1)c2

1+(c2(−α1(c2−s)(s−1)−1)+s+1)c1+(c2−s−1)(s+1))
(c1−c2−1)(c1−c2)c2

.

The determined quadrature weights and basis functions now depend on the parametersα1, c1 andc2, which can be
regarded as degrees of freedom in order to enforce strong stability properties for the corresponding methods, such as
A-stability. We also observe that, in force of Theorem 3.2, the interpolation/collocation conditions imposed onϕ0(s)
are automatically inherited by all the other basis functions and,a fortiori, on the whole collocation polynomial (2.1).

We next derive the stability polynomialp(ω, z) of order 2m+ 2 = 6 with respect to the variableω. In force of the
choices we have made, it takes the form

p(ω, z) = ω(p0(z) + p1(z)ω + p2(z)ω2 + p3(z)ω3 + p4(z)ω4 + p5(z)ω5), (5.1)
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wherep j(z), j = 0,1, . . . ,5, are rational functions with respect toz, which do not depend on the value of the parameter
α1, but only the abscissaec1 andc2. In order to investigate on the stability properties of the polynomial (5.1), it is
sufficient to consider the polynomial

p̃(ω, z) = p0(z) + p1(z)ω + p2(z)ω2 + p3(z)ω3 + p4(z)ω4 + p5(z)ω5,

of degree 5 with respect toω. We apply the Scḧur criterion on the polynomial ˜p(ω, z), in order to determine the values
of the free parametersc1 andc2 corresponding toA-stable methods. The result of this analysis is reported in Figure 1.

2.2 2.4 2.6 2.8 3
c1

4.25

4.5

4.75

5

5.25

5.5

5.75

6
c
2

Figure 1: Region ofA-stability in the parameter space (c1, c2) for DITSAC methods (3.17), withm = 2 andp = 4, for any value of the parameter
α1

We next deriveA-stable two-stage SDITSAC methods within the class (3.17).In this case, by using the Schür
criterion, we did not findA-stable methods withm = 2 andp = 4 and, therefore, we focus our attention on methods
with m= 2 andp = 3, by relaxing two order conditions. We determine the weights of the quadrature formulae (3.12)
and (3.15) corresponding to the lower triangular case, obtaining

b0 = −
1− 3c2

6c2
, b =

[

0 −
1

6(c2 − 1)c2

]T

, b3 = −
2− 3c2

6(c2 − 1)
,

w0 =

[ c1

2
c2

2

]T
, W =





















c1

2
0

0
c2

2





















, W̃ =

[

0 0
0 0

]

.

We next impose

ϕ0(s) = s(α0 + α1s)(s− α2),

ϕ1(s) = s(β0 + β1s)(s− β2)

and, as a consequence, the interpolation conditionϕ0(0) = ϕ1(0) = 0 holds. In addition, we also setα2 = 1 in order
to enforce the independency onyn−1. We next determine the remaining basis functionsχ1(s), χ2(s), ψ1(s), ψ2(s) by
imposing the system of order conditions (2.3) and which inherit the interpolation condition in 0. The computed basis
functions and quadrature weights now depend on the free parametersα0, α1, β0, β1, β2, c1 andc2. First of all, we spend
α0 andβ0 in order to enforceΨW being lower triangular and one point spectrum. We next enforce some further
simplifying assumptions on the basis functions, using the values ofα1, α2 andβ1, obtaining a three-parameter family
of methods to be investigated. We next derive the stability polynomial p(ω, z) of order 2m+ 2 = 6 with respect to the
variableω, which assumes the same form (5.1), where nowp j(z), j = 0,1, . . . ,5, depend on the free parametersc1,
c2 andβ2. As in the previous case, we focus our attention on a polynomial p̃(ω, z) of degree 5 with respect toω. We
apply the Scḧur criterion onp̃(ω, z), in order to determine the values of the free parametersc1, c2 andβ2 achieving
A-stability. The results are shown in Figure 2.
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2.0 2.5 3.0 3.5 4.0
1.0
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2.5

3.0

c1

c 2

Figure 2: Region ofA-stability in the parameter space (c1, c2) for SDITSAC methods (3.17), withm= 2, p = 3 andβ2 =
1
4

5.2. Examples of methods with m= 2 withΨ and W diagonal

We now present the construction of highly stable two-stage DTSAC methods (3.21), i.e. we require that the
matricesΨ andW are diagonal. We first observe that, among the examples ofA-stable methods provided in [8], the
one reported in Figure 5 belongs to the class of DTSAC methodswith m = 2 andp = 3. In this paper, we present
examples of two-stageA-stable SDTSAC methods, requiring that the matrixΨW is diagonal and one-point spectrum.
First of all, we did not findA-stable SDTSAC methods withm = 2 andp = 4,5 exist and, therefore, we relax two
order conditions (r = 2), and consider SDTSAC methods (3.21) withm= 2 and orderp = 3. We compute the weights
of the quadrature formulae (3.12) and (3.15) correspondingto the diagonal case, obtaining

b0 = −
1− 3c2

6c2
, b =

[

0 −
1

6(c2 − 1)c2

]T

, b3 = −
2− 3c2

6(c2 − 1)
,

w0 =
[

c1
2

c2
2

]T
, W =

[ c1
2 0
0 c2

2

]

, W̃ =

[

0 0
0 0

]

.

We next impose

ϕ0(s) = s(α0 + α1s)(s− α2),

ϕ1(s) = s(β0 + β1s)(s− β2)

and, as a consequence, the interpolation conditionϕ0(0) = ϕ1(0) = 0 holds. In addition, we also setα2 = 1 in order
to enforce the independency onyn−1. We next determine the remaining basis functionsχ1(s), χ2(s), ψ1(s), ψ2(s) by
imposing the system of order conditions (2.3) up top = 3, transferring to them the interpolation condition in 0. Then,
At this point, everything depends on the values ofα0, α1, β0, β1, β2, c1 andc2. We spendα0, α1 andβ0 in order to
obtainΨW being diagonal and one point spectrum. We next enforce some further simplifying assumptions on the
basis functions, using the values ofα2 andβ1, obtaining a three-parameter family of methods, dependingonc1, c2 and
β2. We next derive the stability polynomialp(ω, z) of order 6 with respect to the variableω, which assumes the form
(5.1), where nowp j(z), j = 0,1, . . . ,5, are rational functions with respect toz depending onc1, c2 andα2. We apply
the Scḧur criterion, in order to determine the values of the free parametersc1, c2 andβ2 achievingA-stability. The
results are shown in Figure 3.

6. Numerical experiments

In the numerical experiments we tested the performances of the new diagonally implicit TSAC methods (2.7) in
terms of order of convergence and computational cost, compared with the fully implicit TSAC methods (3.17). We
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Figure 3: Region ofA-stability in the parameter space (c1, c2) for SDTSAC methods (3.21), withm= 2, p = 3 andβ2 =
1
4

considered DITSAC methods leading to a lower triangular coefficient matrix, as these methods are are appropriate to
be used in a serial computing environment. As regards the methods with diagonal structure, their advantage can be
appreciated in a parallel environment.

We expect a decrease in the computational cost needed for thesolution of the nonlinear systems (3.17) and (2.7),
while the computational cost of the lag term remains the same, as its reduction is outside the scope of this paper.
However a further improvement can be reached by applying fast algorithms also for the lag term computation (see for
example [6, 7] in the case of Runge-Kutta and one step collocation methods).

We report here the results obtained on three test problems (taken from [4]) by applying the followingA-stable
methods having the same order of convergencep = 4 and the same abscissa vectorc = [2,4]T , i.e.

- DITSAC4: the lower triangular DITSAC method withm= 2 andp = 4, provided in Section 5.1, withα1 = −1;

- TSAC4: the fully implicit TSAC method withm= 2 andp = 4 reported in Section 6 of paper [8].

In the implementation of both methods we have solved the nonlinear systems (3.17) and (2.7) in the stagesY[n+1]
i ,

i = 1,2, ...,m, by using Newton iterations.
The test problems are of the form (1.1), where the kernelk and the forcing functiong are reported in Table 6.1 and

T = 2.

Problem g(t) k(t, s, y)
1 et 2cos(t − s)y
2 e−t es−t (y+ e−y)

3 2− cos(t) −3 sin(ty− s)

Table 6.1: Test problems.

We compute a numerical estimation of the order of convergence of the methods with the formula

p(h) =
cd(h) − cd(2h)

log102
(6.1)

for a fixedh, wherecd is the number of correct significant digits at the end point (the maximal absolute end point
error is written as 10−cd). In order to show the improvement in the efficiency of DITSAC4 with respect to TSAC4,
we compare the number of kernel and jacobian evaluations needed for the solution of the nonlinar systems (3.17) and
(2.7).

The meaning of the headers in the following tables is:
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DITSAC4 TSAC4

N cd p nKEV nJEV cd p nKEV nJEV rk rJ

16 3.7 120 60 3.1 150 120 1.25 2.00
32 4.8 3.6 248 124 4.4 4.0 310 248 1.25 2.00
64 5.9 3.7 504 252 5.6 4.0 630 504 1.25 2.00
128 7.1 3.8 1016 508 6.8 4.0 1270 1016 1.25 2.00
256 8.2 3.9 2040 1020 8.0 4.0 2550 2040 1.25 2.00
512 9.4 4.0 4088 2044 9.2 4.0 5110 4088 1.25 2.00

Table 6.2: Numerical results for DITSAC4 method and TSAC4 method for Problem 1 in Table 6.1

DITSAC4 TSAC4

N cd p nKEV nJEV cd p nKEV nJEV rk rJ

16 3.6 180 120 3.4 270 240 1.50 2.00
32 4.8 4.0 372 248 4.6 4.0 558 496 1.50 2.00
64 6.0 4.0 693 441 5.8 4.0 1134 1008 1.64 2.29
128 7.1 4.0 1270 762 7.0 4.0 1778 1524 1.40 2.00
256 8.3 4.0 2550 1530 8.1 4.0 3570 3060 1.40 2.00
512 9.5 4.0 5110 3066 9.4 4.0 7154 6132 1.40 2.00

Table 6.3: Numerical results for DITSAC4 method and TSAC4 method for Problem 2 in Table 6.1

- cd(T/N): number of correct significant digits at the end point forh = T/N;

- p(T/N): estimated order obtained with the formula (6.1) forh = T/N;

- nKEV: number of kernel evaluations;

- nJEV: number of jacobian evaluations;

- rK : ratio between the number of kernel evaluations needed by the methods TSAC4 and DITSAC4.

- rJ: ratio between the number of jacobian evaluations needed bythe methods TSAC4 and DITSAC4.

The tables clearly show as the methods exhibit the same accuracy, confirming the theoretical order of convergence
p = 4. Moreover the method DITSAC4 needs less kernel and jacobian evaluations than TSAC4. The improvement is
much more visible when the problem is nonlinear, as for linear problems Newton method requires just one iteration.

7. Conclusions

We have developed a family of highly-stable two-step almostcollocation methods depending on structured coef-
ficient matrices, for the numerical integration of VIEs (1.1). These methods possess uniform order of convergence on
the whole integration interval. We have provided examples of A-stable two-stage methods (3.17), whereΨ andW are
lower triangular and/or diagonal and, possibly, such that their product is one-point spectrum. Numerical experiments
showing the achieved improvement in the computational costhave been reported. Future works will address the con-
struction of highly stable methods (3.17) depending on morestages and their implementation, in order to exploit their
properties to get an efficient variable stepsize-variable order implementation and, possibly, in a parallel environment.
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DITSAC4 TSAC4

N cd p nKEV nJEV cd p nKEV nJEV rk rJ

16 4.6 120 60 4.3 258 228 2.15 3.80
32 5.7 3.6 248 124 5.5 3.7 434 372 1.75 3.00
64 6.8 3.8 504 252 6.6 3.8 882 756 1.75 3.00
128 8.0 3.9 1010 502 7.8 3.9 1758 1504 1.74 3.00
256 9.2 4.0 1976 956 9.0 4.0 3082 2572 1.56 2.69
512 10.4 4.0 3066 1022 10.2 4.0 5110 4088 1.67 4.00

Table 6.4: Numerical results for DITSAC4 method and TSAC4 method for Problem 3 in Table 6.1
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