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Abstract

We describe the search for A-stable and algebraically stable two-step Runge Kutta methods of order p and stage order
q = p or q = p − 1. The search for A-stable methods is based on the Schur criterion applied for specific methods with
stability polynomial of reduced degree. The search for algebraically stable methods is based on the criteria proposed
recently by Hewitt and Hill.
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1. Introduction

It is the purpose of this paper to describe our search for highly stable two-step Runge-Kutta (TSRK) methods
for the numerical solution of the initial-value problem for ordinary differential equations (ODEs). We consider this
initial-value problem in autonomous form  y′(t) = f

(
y(t)

)
, t ∈ [t0,T ],

y(t0) = y0,
(1.1)

where the function f : Rm → Rm is assumed to be sufficiently smooth and y0 ∈ Rm is a given initial value.
For the numerical solution of (1.1) we consider the general class of TSRK methods which on the uniform grid

tn = t0 + nh, n = 0, 1, . . . ,N, Nh = T − t0, are defined by the formulas
Y [n]

i = (1 − ui)yn−1 + uiyn−2 + h
s∑

j=1

(
ai j f (Y [n]

j ) + bi j f (Y [n−1]
j )

)
,

yn = (1 − ϑ)yn−1 + ϑyn−2 + h
s∑

j=1

(
v j f (Y [n]

j ) + w j f (Y [n−1]
j )

)
,

(1.2)

n = 1, 2, . . . ,N. Here, yn is an approximation to y(tn) and Y [n]
i are approximations to y(tn−1+cih), i = 1, 2, . . . , s, where

y(t) is the solution to (1.1). These methods were introduced by Jackiewicz and Tracogna [20] and further investigated
in [21], [7], [15], [22], [8], [10]. We also refer to a recent monograph on general linear methods [19] where these
formulas are discussed in chapters 5 and 6.

The TSRK methods (1.2) can be represented by the abscissa vector c = [c1, . . . , cs]T and the following table of its
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coefficients

u A B

ϑ vT wT
=

u1 a11 · · · a1s b11 · · · b1s
...

...
. . .

...
...
. . .

...

us as1 · · · ass bs1 · · · bss

ϑ v1 · · · vs w1 · · · ws

.

In the last few years these methods were usually investigated under the assumption that the coefficient matrix A
has the form

A =


λ

a21 λ
...
. . .

. . .

as1 · · · as,s−1 λ


,

λ ≥ 0, where the explicit methods corresponding to λ = 0 are called type 1 methods and the implicit formulas
corresponding to λ > 0 are called type 2 methods. Type 3 and type 4 methods for which A has the form

A = diag
(
λ, λ, . . . , λ

)
,

with λ = 0 and λ > 0, respectively, were also investigated in [20], [19]. These restrictions on the matrix A were relaxed
in [9], [19], where it was assumed that this matrix has a one point spectrum σ(A) = {λ}. In this paper we search for
highly stable TSRK methods (1.2) without imposing any restrictions on the structure of the coefficient matrix A.

In this paper we only examine methods of order p and stage order q = p or q = p − 1. Define the vectors

Ck =
ck

k!
− (−1)k

k!
u − Ack−1

(k − 1)!
− B(c − e)k−1

(k − 1)!
,

k = 1, 2, . . ., and the constants

Ĉk =
1
k!
− (−1)k

k!
ϑ − vT ck−1

(k − 1)!
− wT (c − e)k−1

(k − 1)!
,

k = 1, 2, . . ., where e = [1, . . . , 1] ∈ Rs, and ck denotes componentwise exponentiation. Then it was proved in [9],
[19] that the method (1.2) has order p and stage order q = p if and only if

Ck = 0, Ĉk = 0, k = 1, 2, . . . , p. (1.3)

Similarly, the methods (1.2) has order p and stage order q = p − 1 if and only if

Ck = 0, k = 1, 2, . . . , p, Ĉk = 0, k = 1, 2, . . . , p − 1. (1.4)

In Section 2 we review various stability concepts in the context of general linear methods (GLMs) which includes
TSRK methods (1.2) as special cases. In Section 3 we investigate TSRK methods (1.2) for which ϑ = 0 and u = 0 and
in Section 4 the general case with θ , 0 and u , 0. In both cases, these methods are first reformulated as GLMs. The
explicit expressions for the Nyquist stability functions N(ξ) and Hermitian parts of D̃N(ξ) are obtained in terms of the
coeffcients of TSRK methods and the limits of D̃N(ξ) are computed as ξ → 1 on the unit circle. These expression aid
the derivation of highly stable TSRK methods. This is carried out in in Section 5 and 6, where we use the stability
theory of GLMs reviewed in Section 2 to search for methods which are A-stable and algebraically stable. Examples
of such methods with ϑ = 0 and u = 0 and θ , 0 and u , 0 up to order p = 4 and stage order q = 4 are given in
Section 5 and Section 6, respectively. In Section 7 we review the example of algebraically stable method derived by
Hewitt and Hill [16]. Finally, in Section 8 some concluding remarks are given and plans for future research are briefly
outlined.
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2. Stability concepts for general linear methods

It is well known that TSRK methods (1.2) form a subclass of GLMs for the numerical solution of ODEs (1.1).
This very general class of methods is defined by

Y [n]
i = h

s∑
j=1

ai j f (Y [n]
j ) +

r∑
j=1

ui jz
[n−1]
j , i = 1, 2, . . . , s,

z[n]
i = h

s∑
j=1

bi j f (Y [n]
j ) +

r∑
j=1

vi jz
[n−1]
j , i = 1, 2, . . . , r,

(2.1)

n = 1, 2, . . . ,N. Here, the internal stages Y [n]
i are approximations of stage order q to y(tn−1 + cih), i.e.,

Y [n]
i = y(tn−1 + cih) + O(hq+1),

and the external stages z[n]
i are approximations of order p to the linear combinations of scaled derivatives of y(tn), i.e.,

z[n]
i =

p∑
k=0

qikhky(k)(tn) + O(hp+1),

compare [19]. Putting

Y [n] =


Y [n]

1
...

Y [n]
s

 , h f (Y [n]) =


h f (Y [n]

1 )
...

h f (Y [n]
s )

 , z[n] =


z[n]

1
...

z[n]
r

 ,
the GLM (2.1) can be written in vector form as follows Y [n]

z[n]

 =
 A ⊗ I U ⊗ I

B ⊗ I V ⊗ I


 h f (Y [n])

z[n−1]

 , (2.2)

n = 1, 2, . . . ,N. Here, I is the identity matrix of dimension m and ‘⊗’ stands for Knonecker product of matrices. The
connection between the order conditions of the TSRK method (1.2) and its representation as GLM is described in
chapter 5 of [19]. The method (2.2) is zero-stable if the coefficient matrix V is power bounded. In the case of TSRK
methods (1.2) this is equivalent to the condition

−1 < ϑ ≤ 1, (2.3)

compare [19], [20].
Applying the GLM (2.2) to the linear test equation

y′ = ξy, t ≥ 0, (2.4)

ξ ∈ C, we obtain the recurrence relation
z[n] = S(z)z[n−1],

n = 1, 2, . . ., z = hξ. Here, S(z) is the stability matrix defined by

S(z) = V + zB(I − zA)−1U. (2.5)

We also define the stability function
p(η, z) = det

(
ηI − S(z)

)
. (2.6)

Denote by η1(z), η2(z), . . . , ηr(z) the roots of the stability function p(η, z). Then the region of absolute stability of GLM
(2.2) is given by

A =
{
z ∈ C :

∣∣∣ηi(z)
∣∣∣ < 1, i = 1, 2, . . . , r

}
.
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The GLM (2.2) is said to be A-stable if its region of absolute stability includes the negative complex plane C− = {z ∈
C : Re(z) < 0}, i.e,

C− ⊂ A.
We review next the concepts of G-stability and algebraic stability for GLMs. Consider the initial-value problem y′(t) = g

(
t, y(t)

)
, t ≥ 0,

y(0) = y0,
(2.7)

g : R × Rm → Rm, where the function g satisfies the one-sided Lipschitz condition of the form(
g(t, y1) − g(t, y2)

)T (y1 − y2) ≤ 0 (2.8)

for all t ≥ 0 and y1, y2 ∈ Rm. Denote by y(t) and ỹ(t) two solutions to (2.7) with initial conditions y0 and ỹ0,
respectively. Then it is known that the condition (2.8) implies that∥∥∥y(t2) − ỹ(t2)

∥∥∥ ≤ ∥∥∥y(t1) − ỹ(t1)
∥∥∥ (2.9)

for 0 ≤ t1 ≤ t2, compare [11], [6]. Here, ‖ · ‖ is any norm in Rm. The differential systems (2.7) with this property are
called dissipative.

Let G = [gi j]r
i, j=1 be a real, symmetric and positive definite matrix, and for a vector y ∈ Rmr

y =


y1
...

yr

 , yi ∈ Rm, i = 1, 2, . . . , r,

define the inner product norm ‖ · ‖G by

‖y‖2G =
r∑

i=1

r∑
j=1

gi jyT
i y j. (2.10)

Denote by {z[n]}Nn=0 the solution to (2.2) with initial value z[0], and by {̃z[n]}Nn=0 the solution obtained by perturbing
(2.2) or by using a different initial value z̃[0]. A numerical method which inherits the dissipativity property (2.9) of
the solution y(t) to (2.7) in the norm (2.10) is said to be G-stable. To be more precise, the GLM (2.2) is G-stable if
there exists a real, symmetric and positive definite matrix G ∈ Rr×r such that for two numerical solutions {z[n]}Nn=0 and
{̃z[n]}Nn=0 we have ∥∥∥z[n+1] − z̃[n+1]

∥∥∥
G ≤

∥∥∥z[n] − z̃[n]
∥∥∥

G, (2.11)

for all step sizes h > 0 and for all differential systems (2.7) with the function g satisfying (2.8).
We next define algebraic stability. The GLM (2.2) is said to be algebraically stable, if there exist a real, symmetric

and positive definite matrix G ∈ Rr×r and a real, diagonal and positive definite matrix D ∈ Rs×s such that the matrix
M ∈ R(s+r)×(s+r) defined by

M =

 DA + AT D − BT GB DU − BT GV
UT D − VT GB G − VT GV

 (2.12)

is nonnegative definite. The significance of this definition follows from the result proved by Butcher [3], [4] (see also
[14]), that for a preconsistent and non-confluent GLMs (2.2), i.e., methods with distinct abscissas ci, i = 1, 2, . . . , s,
algebraic stability is equivalent to G-stability.

In general, it is quite difficult to verify if a given GLM is algebraically stable, and even more difficult to construct
new classes of GLMs which are algebraically stable. In our search for such methods we will use the fact, proved in
[2], that for a preconsistent and algebraically stable GLM (2.2) the matrices G and D are not independent but related
by the equation

D = diag(BT Gq0), (2.13)
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where q0 is the preconsistency vector, i.e., a vector satisfying the relations

Uq0 = e, Vq0 = q0,

and e = [1, . . . , 1]T ∈ Rs, compare [19]. Moreover, Gq0 is a left eigenvector of the coefficient matrix V corresponding
to the eigenvalue equal to one, i.e.,

(I − VT )Gq0 = 0, (2.14)

compare part ii) of Lemma 9.5 in [14].
We will write M ≥ 0 if the matrix M is nonnegative definite. It was observed by Hewitt and Hill [16], [17] that

the verification if the matrix M is nonnegative definite can be simplified by the use of the result proved by Albert [1].
This result states that the matrix M given by

M =

 M11 M12

MT
12 M22


satisfies M ≥ 0 if and only if

M11 ≥ 0, M22 −MT
12M+

11M12 ≥ 0, M11M+
11M12 =M12, (2.15)

or equivalently
M22 ≥ 0, M11 −M12M+

22MT
12 ≥ 0, M22M+

22MT
12 =MT

12 (2.16)

(see [16]). Here, A+ stands for the Moore-Penrose pseudoinverse of the matrix A. We refer to [12] or [13] for the
definition of this notion.

Although the criteria based on Albert theorem can be used to verify if specific examples of GLMs are algebraically
stable, these criteria are not very practical to search for algebraically stable GLMs which depend on some number of
unknown parameters. In such searches it is necessary to examine many inequalities which depend on the unknown
coefficients of the matrix G and the remaining free parameters of GLMs and this task often exceeds the capabilities of
symbolic manipulation packages such as Mathematica or Maple. However, there is a more practical approach, where
this search can be done numerically, using the criterion for algebraic stability based on the Nyquist stability function
defined by

N(ξ) = A + U(ξI − V)−1B, ξ ∈ C − σ(V). (2.17)

Here, σ(V) stands for the spectrum of the matrix V. This terminology of the Nyquist stability function was suggested
by Hill [18], although this function in the context of GLMs was first introduced by Butcher [4], who did not assign to
it any specific name.

Denote by w̃ a principal left eigenvector of V, i.e., the vector such that

w̃T V = w̃T , w̃T q0 = 1, (2.18)

where q0 is the preconsistency vector of GLM (2.2). Following [18] define the diagonal matrix D̃ by

D̃ = diag(BT w̃), (2.19)

and following [4], define by He(Q) the Hermitian part of a complex square matrix Q, i.e.,

He(Q) =
1
2

(
Q +Q∗

)
,

where Q∗ stands for the conjugate transpose of Q. Then it was demonstrated in [4] and [18] that a consistent GLM
(2.2) is algebraically stable if the following conditions are satisfied:

1. The coefficient matrix V is power-bounded.
2. Ux , 0 for all right eigenvectors of V and BT x , 0 for all left eigenvectors of V.
3. D̃ > 0 and He(D̃A) ≥ 0.
4. He

(
D̃N(ξ)

) ≥ 0 for all ξ such that |ξ| = 1 and ξ ∈ C − σ(V).

The numerical search for algebraically stable TSRK methods with ϑ = 0, u = 0 and ϑ , 0, u , 0, which is based on
the criterion consisting of the conditions 1–4 is described in the next two sections.
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3. TSRK methods with ϑ = 0 and u = 0.

In this section we consider TSRK methods with ϑ = 0 and u = 0. Then putting

z[n] =

 yn

h f (Y [n])

 ,
the TSRK method (1.2) can be represented as GLM (2.2) with coefficient matrices A, U, B and V defined by

 A U
B V

 =


A e B

vT 1 wT

I 0 0

 . (3.1)

It can be verified that the stability function p(η, z) of this method takes the form

p(η, z) = ηs+1 − R1(z)ηs + R2(z)ηs−1 + · · · + (−1)sRs(z)η + (−1)s+1Rs+1(z), (3.2)

where Ri(z) are rational functions

Ri(z) =
pi(z)
p0(z)

, i = 1, 2, . . . , s + 1,

with
p0(z) = 1 + p01z + · · · + p0szs, p1(z) = 1 + p11z + · · · + p1szs,

p2(z) = p21z + · · · + p2szs, . . . , ps(z) = ps,s−1zs−1 + psszs, ps+1(z) = ps+1,szs.

To investigate stability properties of GLMs (3.1) it is more convenient to work with the polynomial

p̃(η, z) = p0(z)p(η, z) (3.3)

instead of the rational function p(η, z) and we will always adopt this approach. The GLM (2.2) is A-stable if p̃(η, z)
is a Schur polynomial, i.e., if the roots ηi(z), i = 1, 2, . . . , s + 1, of p̃(η, z) are in the unit disk for all z such that
Re(z) < 0. It follows from the maximum principle that this is the case if the roots of p0(z) are in the positive half plane
C+ = {z : Re(z) > 0} and p̃(η, iy) is a Schur polynomial for y ∈ R. This last condition can be investigated using the
Schur criterion [23] as explained in [19].

It can be verified that for TSRK method (3.1) the preconsistency vector q0 takes the form

q0 =

 1

0

 ∈ Rs+1

and the vector w̃ satisfying (2.18) is

w̃ =

 1

w

 ∈ Rs+1.

Hence, the matrix D̃ defined by (2.19) takes the form

D̃ = diag
( [

v I
]  1

w

 ) = diag(v + w).

We next compute the Nyquist stability function N(ξ) corresponding to TSRK method (3.1) and the Hermitian part of
D̃N(ξ). Using the formula  A B

0 D


−1

=

 A−1 −A−1BD−1

0 D−1

 ,
6



where A and D are square and nonsingular matrices, we have

N(ξ) = A +
[

e B
]  ξ − 1 −wT

0 ξI


−1  vT

I

 = A +
1

1 − ξ e vT +
1

ξ(ξ − 1)
e wT +

1
ξ

B ,

and taking into account that

D̃e = diag(v + w)e = v + w, eT D̃ = eT diag(v + w) = (v + w)T ,

it follows that

He
(
D̃N(ξ)

)
=

1
2

(
D̃
(
A +

1
ξ

B
)
+

(
AT +

1

ξ
BT

)
D̃ +

( 1
ξ − 1

+
1

ξ − 1

)
vvT +

( 1

ξ − 1
+

1
ξ(ξ − 1)

)
vwT

+
( 1
ξ − 1

+
1

ξ(ξ − 1)

)
wvT +

( 1
ξ(ξ − 1)

+
1

ξ(ξ − 1)

)
wwT

)
,

where ξ stands for conjugate of ξ. We next compute the limit

lim
t→0

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
.

Since
lim
t→0

( 1
ξ − 1

+
1

ξ − 1

)∣∣∣∣
ξ=eit
= −1, lim

t→0

( 1

ξ − 1
+

1
ξ(ξ − 1)

)∣∣∣∣
ξ=eit
= −2,

lim
t→0

( 1
ξ − 1

+
1

ξ(ξ − 1)

)∣∣∣∣
ξ=eit
= −2, lim

t→0

( 1
ξ(ξ − 1)

+
1

ξ(ξ − 1)

)∣∣∣∣
ξ=eit
= −3,

it follows that

lim
t→0

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
=

1
2

(
diag(v + w)(A + B) + (A + B)T diag(v + w) − vvT − 2(vwT + wvT ) − 3wwT

)
. (3.4)

Observe also that He(D̃N(ξ)) does not have a limit as ξ → 1. For example, as ξ = x→ 1 along the real axis we have

lim
x→1

He
(
D̃N(ξ)

)∣∣∣∣
ξ=x
= ∞.

4. TSRK methods with ϑ , 0 and u , 0.

We now consider the general case where ϑ , 0 and u , 0. Similarly as in Section 3, putting

z[n] =


yn

yn−1

h f (Y [n])

 ,
the TSRK method (1.2) can be represented as GLM (2.2) with coefficient matrices A, U, B and V defined by

 A U
B V

 =


A e − u u B

vT 1 − ϑ ϑ wT

0 1 0 0

I 0 0 0


. (4.1)

Similarly as in Section 3 it can be verified that the stability function p(η, z) of this method takes the form

p(η, z) = ηs+2 − R1(z)ηs+1 + R2(z)ηs + · · · + (−1)s+1Rs+1(z)η + (−1)s+2Rs+2(z), (4.2)
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where Ri(z) are rational functions

Ri(z) =
pi(z)
p0(z)

, i = 1, 2, . . . , s + 2,

with
p0(z) = 1 + p01z + · · · + p0szs, p1(z) = 1 − ϑ + p11z + · · · + p1szs,

p2(z) = −ϑ + p21z + · · · + p2szs, . . . , ps+1(z) = ps+1,s−1zs−1 + ps+1,szs, ps+2(z) = ps+2,szs.

As before, to investigate stability properties of GLMs (4.1) it is more convenient to work with the polynomial
p̃(η, z) = p0(z)p(η, z) instead of the rational function p(η, z) and we will again always adopt this approach.

Similarly as in Section 3 it can be verified that for TSRK method (4.1) the preconsistency vector q0 takes the form

q0 =


1

1

0

 ∈ Rs+2,

the vector w̃ satisfying (2.18) is

w̃ =
1

1 + ϑ


1

ϑ

w

 ∈ Rs+2,

and the matrix D̃ defined by (2.19) is

D̃ =
1

1 + ϑ
diag(v + w).

The following result holds and its proof is reported in [10],

lim
t→0

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
=

1
2(1 + ϑ)

(
diag(v + w)

(
A + B

)
+ (A + B)T diag(v + w) − 1 − ϑ

(1 + ϑ)2 vvT − 3 + ϑ
(1 + ϑ)2 wwT

− 2
(1 + ϑ)2 (vwT + wvT ) − 1

1 + ϑ

((
v + w) · u)(v + w)T + (v + w)

(
(v + w) · u)T

))
.

Observe that for ϑ = 0 and u = 0 this formula for limt→0 He(D̃N(ξ)) reduces to the formula obtained in Section 3.

5. Examples of TSRK methods with ϑ = 0 and u = 0.

We have implemented an algorithm for numerical search for algebraically stable TSRK methods written as GLMs
(3.1). This algorithm is based on minimizing the objective function which computes the negative value of the mini-
mum of the eigenvalues of the matrix He(D̃N(ξ)) for ξ such that |ξ| = 1 and ξ ∈ C−σ(V). This objective function is a
numerical realization of the necessary condition 4 for algebraic stability, which is listed at the end of Section 2. Once
the methods for which He(D̃N(ξ)) ≥ 0 for ξ such that |ξ| = 1 and ξ ∈ C − σ(V) are found, the remaining necessary
conditions 1-3 for algebraic stability are verified on the case by case basis.

In what follows we will present the results of our search for A-stable and algebraically stable methods (3.1) with
the number of stages s = 1, s = 2, and s = 3.

1. Methods with s = 1, p = 2, and q = 2. Solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2,

we obtain a one-parameter family of methods of order p = 2 and stage order q = 2 with coeffcients given by

u A B

ϑ v w
=

0 c(2−c)
2

c2

2

0 3−2c
2

2c−1
2

,
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where c is the abscissa. These methods are not algebraically stable for any c and are A-stable only if c = 1, for which
the resulting method is equivalent to the trapezoidal rule

yn = yn−1 +
h
2

(
f (yn−1) + f (yn)

)
.

2. Methods with s = 1, p = 2, and q = 1. Solving stage order and order conditions

C1 = 0, C̃1 = 0, C̃2 = 0,

we obtain a two-parameter family of methods of order p = 2 and stage order q = 1 depending on a and c. The
coeffcients of these methods are given by

u A B

ϑ v w
=

0 a c − a

0 3−2c
2

2c−1
2

.

It can be verified using the Schur criterion discussed in Section 3 that these methods are A-stable if a ≥ 1/2. It can be
also verified using the approach based on Albert theorem described in Section 2 that the conditions (2.13), (2.14) and
(2.16) are satisfied if

g22 > 0 and 0 <
g11

g22
<

4
1 − 4c + 4c2 and a =

1 + 4c − 4c2

4
+

g22

g11
.

This implies that these methods are algebraically stable if a > 1/2. Puttting, for example, c = 3/4 and a = 1 we obtain
the method

u A B

ϑ v w
=

0 1 − 1
4

0 3
4

1
4

for which the matrix M defined in Section 2 is nonnegative definite if we choose

G =

 g11 g12

g21 g22

 =
 1 1

4
1
4

9
16

 , D = 1.

This confirm again that this particular TSRK method is algebraically stable.

3. Methods with s = 2, p = 4, and q = 4. Solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain a two-parameter family of methods of order p = 4 and stage order q = 4 depending on the components of
the abscissa vector c1 and c2. The coefficients of these methods are not listed here. However, we were not able to find
the methods which are algebraically stable or A-stable and we suspect that such methods do not exist in this class.

4. Methods with s = 2, p = 4, and q = 3. Solving stage order and order conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain a four-parameter family of methods of order p = 4 and stage order q = 3 depending on c1, c2, a12 and a22.
The stability polynomial p̃(η, z) defined by (3.3) takes the form

p̃(η, z) = p0(z)η3 − p1(z)η2 + p2(z)η − p3(z),

where
p0(z) = 1 + p01z + p02z2, p1(z) = 1 + p11z + p12z2, p2(z) = p21z + p22z2, p3(z) = p31z2.

9



In our search for A-stable methods we compute first the parameter a22 from the algebraic equation

p31 = 0

and then apply the Schur criterion discussed in Section 3 to the quadratic polynomial

p0(z)η2 − p1(z)η + p2(z).

The results of this search are presented in Fig. 1 in the parameter space (c1, c2) for selected values of the parameter
a12, and in Fig. 2 in the parameter space (c1, a12) for c2 = 1.

a12 = −1 a12 = − 1
15
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c
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0.8

0.9

1
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c
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a12 = − 1
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0 0.2 0.4 0.6 0.8
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c
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0.4 0.5 0.6 0.7 0.8 0.9 1
c1

1.7

1.8

1.9

2

2.1

2.2

c
2

Figure 1: Regions of A-stability in the parameter space (c1, c2) for TSRK methods with p = 4 and q = 3, for specific values of a12.

We will next search for algebraically stable methods using the conditions 1–4 listed at the end of Section 2. This
search is based on minimizing the negative value of the objective function which computes the minimum of the
eigenvalues of the matrix He(D̃N(ξ))|ξ=eit for t ∈ [0, 2π]. It can be verified using formula (3.4) that

lim
t→0

det
(
He

(
D̃N(ξ)

)∣∣∣∣
ξ=eit

)
= − F(c1, c2, a12, a22)2

(c1 − c2)2(c1 − c2 − 1)4(c1 − c2 + 1)4 ,

where F(c1, c2, a12, a22) is a polynomial with respect to c1, c2, a12, a22. To satisfy the condition 4 at the end of Sec-
tion 2, i.e.,

He
(
D̃N(ξ)

) ≥ 0, |ξ| = 1, ξ ∈ C − σ(V),
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Figure 2: Region of A-stability in the parameter space (c1, a12) for TSRK methods methods with p = 4 and q = 3 for c2 = 1.

for ξ = 1 or t = 0, t = 2π, we compute the parameter a12 from the equation

F(c1, c2, a12, a22) = 0. (5.1)

The search in the parameter space (c1, c2, a22) did not lead to any methods which are algebraically stable. We were
only able to find methods for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −2.68 · 10−3, (5.2)

t ∈ [0, 2π]. Not imposing the condition (5.1) and searching in the parameter space (c1, c2, a12, a22) we were able to
find some algebraically stable methods but, unfortunately, with unrealistically large values of some parameters c1, c2,
a12, or a22. Restricting this search to 0 ≤ c1, c2 ≤ 1, −1 ≤ a12, a22 ≤ 1 we found methods for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −5.28 · 10−4, (5.3)

t ∈ [0, 2π].

5. Methods with s = 3, p = 4, and q = 4. Solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain an eleven-parameter family of methods of order p = 4 and stage order q = 4 depending on c1, c2, c3, ai j,
i = 1, 2, 3, j = 1, 2, v3, and w3. Searching for A-stable methods we assume that the abscissa vector c = [0, 1/2, 1]T .
The stability polynomial (3.3) for this family of methods takes the form

p̃(η, z) = η
(
p0(z)η4 − p1(z)η3 + p2(z)η2 − p3(z)η + p4(z)

)
.

where pi(z) are polynomials of degree 3 with respect to z. We compute next the parameters a11 a12, and a13 to
annihilate polynomials p3(z) and p4(z). This leads to a five-parameter family of methods depending on a22, a31, a32,
v3, and w3 whose stability properties are determined by quadratic polynomial

p0(z)η2 − p1(z)η + p0(z).

The results of computer search based on the Schur criterion are presented in Fig. 3 in the parameter space (v3,w3)
for selected values of the parameters a22, a31, a32. We also searched for methods which are algebraically stable with
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Figure 3: Regions of A-stability in the (v3,w3)-plane, for TSRK methods with s = 3 and p = q = 4, for specific values of the parameters
a22, a31, a32.

general abscissa vector c. Although we did not find such methods, we found formulas for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −3.50 · 10−11, (5.4)

t ∈ [0, 2π]. This bound was obtained by dividing the interval [0, 2π] into n = 10000 subintervals. Dividing [0, 2π] into
n = 1000 and n = 100 subintervals, these bounds are equal to 0.

The coeffcients of a method satisfying (5.4) are

c =
[

0.748023646320140 −0.088623514454709 1.356515696201252
]T
,

A =


0.421393024773032 0.363279074448260 −0.048601648229138

−0.136821530809582 0.352101387625363 0.033470857866822

0.730130053789655 0.254440972752177 0.213275751785994

 ,

B =


−0.061994904923431 −0.014321664726926 0.088269764978343

−0.413117314149065 0.027004921378105 0.048738163633648

−0.090220513163391 0.002986566608366 0.245902864428450

 ,
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v =
[

0.622394316996030 0.313242750536090 −0.011784503142076
]T
,

w =
[
−0.062831671181596 −0.008857653267082 0.147836760058631

]T
.

6. Methods with s = 3, p = 4, and q = 3. Solving stage order and order conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain an eleven-parameter family of methods of order p = 4 and stage order q = 3 depending on ai j, i, j = 1, 2, 3,
v3, and w3. In our search for A-stable methods we assume again that c = [0, 1/2, 1]T . We compute the parameters
a11, a12, and a13 to reduce the degree of stability polynomal to 3. As a result we obtain an eight-parameter family of
methods depending on a21, a22, a23, a31, a32, a33, v3, and w3. The result of this search are produced on Fig. 4. The
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Figure 4: Regions of A-stability in the (v3,w3)-plane, for TSRK methods with s = 3 and p = q = 4 for specific values of the parameters

four cases in Fig. 4 correspond to:

• Case 1: a21 = 2/3, a22 = 1, a23 = 1, a31 = −1/3, a32 = −1, a33 = 1/2.

• Case 2: a21 = 2, a22 = 1/2, a23 = 1, a31 = 1, a32 = −1, a33 = 1.

• Case 3: a21 = 2, a22 = 1, a23 = 1, a31 = 0, a32 = 1, a33 = 1.

• Case 4: a21 = 2, a22 = 1/2, a23 = 1/2, a31 = 1, a32 = 1/4, a33 = 1.
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In our search for algebraically stable methods, we found formulas for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −3.77 · 10−11, (5.5)

t ∈ [0, 2π]. As before, this bound was obtained by dividing the interval [0, 2π] into n = 10000 subintervals. Dividing
[0, 2π] into n = 1000 and n = 100 subintervals, these bounds are equal to 0.

The coeffcients of a method satisfying (5.5) are

c =
[

0 9
10

1
5

]T
,

A =


1.923612711387117 0.332510317035363 −2.361485324294705

−0.042296580010526 0.264934173014572 0.753491461692750

−0.754264567991751 −0.285410192009791 1.590352848308200

 ,

B =


−0.059505325459301 0.350609358761479 −0.185741737429953

0.035823298712475 −0.054110902952294 −0.057841450456976

0.583885022389948 −0.292809804314522 −0.641753306382084

 ,
v =

[
0.085993246200685 0.374327773490317 0.659375459065431

]T
,

w =
[

0.123800116578393 −0.056810353776912 −0.186686241557912
]T
.

6. Examples of TSRK methods with ϑ , 0 and u , 0.

As in Section 5, we will use Schur criterion to search for A-stable TSRK methods, and the criterion based on
conditions 1-4 listed at the end of Section 2 to search for TSRK methods which are algebraically stable. In the
remainder of this section we will present the results of our search for such methods (4.1) with the number of stages
s = 1, s = 2, and s = 3.

1. Methods with s = 1, p = 2, and q = 2. Assuming that c = c1 = 1 and solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2,

we obtain a two-parameter family of methods of order p = 2 and stage order q = 2 with coeffcients given by

u A B

ϑ v w
=

u 1−u
2

1+3u
2

ϑ 1−ϑ
2

1+3ϑ
2

.

It can be verified using Schur criterion that these methods are A-stable if and only if

−1 < ϑ < 0 and
ϑ(ϑ + 3)
2(ϑ + 1)

≤ u ≤ ϑ
2

or u = ϑ = 0. The last case corresponds again to the trapezoidal rule obtained in Section 5.
To search for methods which are algebraically stable we use the criteria (2.15) or (2.16) based on Albert’s theorem

discussed in Section 2. The example of such a method is given by

u A B

ϑ v w
=
− 3

4
7
8 − 5

8

− 1
2

3
4 − 1

4

.
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We can verify that choosing positive definite matrices G and D,

G =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 =


14
13 − 9

13 − 21
52

− 9
13

1
2

4
13

− 21
52

4
13

27
104

 , D =
[

5
26

]
,

the matrix M defined in Section 2 is nonnegative definite.

2. Methods with s = 2, p = 4, and q = 4. Solving stage order and order conditions

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain a five-parameter family of methods of order p = 4 and stage order q = 4 depending on c1, c2, u1, u2, and
ϑ. In our search for A-stable methods we computed first ϑ, u1, and u2 to reduce the degree of stability polynomial
from 4 to 2. As a consequence we obtain a two-parameter family of methods depending on c1 and c2. The results of
computer search are presented on Fig. 5.
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c1

0.8
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Figure 5: Regions of A-stability and in the (c1, c2)-plane, for TSRK methods with s = 2 and p = q = 4

We were not able to find algebraically stable methods in this class, and the best bound we were able to satisfy is

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −2.89 · 10−3,

t ∈ [0, 2π].

3. Methods with s = 2, p = 4, and q = 3. Solving stage order and order conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain a seven-parameter family of methods of order p = 4 and stage order q = 3 depending on c1, c2, a12, a22, u1,
u2, and ϑ. To search for A-stable methods we assume that c = [1/2, 1]T . We next determine ϑ to reduce the degree of
p̃(η, z) from 4 to 3. This leads to a four-parameter family of methods depending on a12, a22, u1, and u2. The results of
the search are presented in Fig 6 for selected values of the parameters u1 and u2.

As in the previous case, we were not able to find algebraically stable methods in this class, and the best bound we
were able to satisfy is

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −7.70 · 10−8,
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Figure 6: Regions of A-stability in the (a12, a22)-plane, for TSRK methods with s = 2, p = 4, and q = 3, for specific values of the parameters u1
and u2.

t ∈ [0, 2π]. The coeffcients of a method corresponding to this bound are ϑ = 0.045477710128446,

c =
[

2.336580469857886 1.243897612851233
]T
,

u =
[
−0.009140162241697 −0.004971562691777

]T
,

A =

 0.382519266813101 1.231791538880037

−0.067916000101827 0.439694807309414

 ,
B =

 0.123031161533802 0.590098340389249

0.161425752706173 0.705721490245697

 ,
v =

[
−0.033116900308262 −0.046491551194616

]T
,

w =
[

0.309391097083087 0.815695064548217
]T
.

We have also tried to find methods with c1 and c2 in the interval [0, 1]. We found methods for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −4.42 · 10−5,
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t ∈ [0, 2π]. The coeffcients of a method corresponding to this bound are ϑ = 0.334852100666355,

c =
[

0.817535264370424 0.111499700613041
]T
,

u =
[

0.381412710198958 0.549351922349542
]T
,

A =

 0.261809682531266 0.716578941913569

−0.055221137652820 0.331382626202203

 ,
B =

 0.064452365556917 0.156106984567630

0.115480859585862 0.269209274827339

 ,
v =

[
0.484238639043203 0.651111475466369

]T
,

w =
[

0.058567341150044 0.140934645006739
]T
.

4. Methods with s = 3, p = 4, and q = 4. Solving stage order and order conditions

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Θ

w
3

Figure 7: Regions of A- and L-stability in the (ϑ,w3)-plane, for TSRK methods with s = 3, p = 4, and q = 4

Ck = 0, C̃k = 0, k = 1, 2, 3, 4,

we obtain a fifteen-parameter family of methods of order p = 4 and stage order q = 4 depending on c1, c2, c3, ai j,
i = 1, 2, 3, j = 1, 2, v3, w3, u1, u2, u3, and ϑ. We used most of these parameters to reduce the degree of stability
polynomial from 5 to 3 and to acheve L-stability. In Fig. 7 we present the A- and L-stable methods in the parameter
space (ϑ,w3).

We next investigate algebraic stability. In this family we have found methods for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ 0,

t ∈ [0, 2π], with small negative c1 and with c2 and c3 in the interval [0, 1]. The coefficients of such a method are
ϑ = −0.848157324846955,

c =
[
−0.001034365439338 0.460202200222726 0.904412078001496

]T
,
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Figure 8: Eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(
D̃N(ξ)

)
for ξ = eit , t ∈ [0, 2π]

u =
[
−4.095771377315513 −8.224398492425298 −1.491121282659948

]T
,

A =


0.313393425882524 −0.230606333014524 0.057318614979789

0.145030029219694 0.433646707347174 −0.082047057840003

0.298592649650861 0.485659580434091 0.175944782009046

 ,

B =


−0.589101054212143 −2.620606437887970 −1.027203958502527

−1.339460229044111 −4.705966457621601 −2.215399284263721

−0.206836462942642 −0.983942583478110 −0.356127170331698

 ,
v =

[
0.174157205530582 0.575265278532646 0.258760729183023

]T
,

w =
[
−0.135787037506238 −0.496815665848241 −0.223737834738728

]T
.

The eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(
D̃N(ξ)

)
for ξ = eit, t ∈ [0, 2π], are plotted in Fig. 8.

5. Methods with s = 3, p = 4, and q = 3. Solving stage order and order conditions

Ck = 0, k = 1, 2, 3, C̃k = 0, k = 1, 2, 3, 4,

we obtain an eighteen-parameter family of methods of order p = 4 and stage order q = 4 depending on c1, c2, c3,
ai j, i, j = 1, 2, 3, v3, w3, u1, u2, u3, and ϑ. Similarly as before we use most of these parameters to reduce the degree
of stability polynomial from 5 to 3 and to obtain L-stability. The results of this search are presented on Fig 9 in the
parameter space (ϑ,w3) for selected values of the parameter v3.
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Figure 9: Regions of L-stability in the (ϑ,w3)-plane, for TSRK methods with s = 3, p = 4, and q = 3, for selected values of v3

Concerning algebraic stability, we were looking for methods with the abscissas c1, c2, and c3 in the interval [0, 1].
We have found such methods for which

He
(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ 0,

t ∈ [0, 2π]. The coefficients of such a method are ϑ = −0.564128015497646,

c =
[

0.070458343197336 0.681445056919784 0.952288029979521
]T
,

u =
[
−1.270302241246827 −1.227105131502048 −1.431550985893559

]T
,

A =


0.421381377377544 −0.267169299260385 0.109795290241695

0.043388505707860 1.529849094557059 −0.802719654220106

1.009683545410309 −0.770029595044248 0.856095443003834

 ,

B =


−0.319430622728631 −1.232896302162007 0.088475658482292

−0.184576227521167 −1.251755340576103 0.120153547470190

−0.633408516424409 −0.641844792716881 −0.299759040142642

 ,
v =

[
0.400771327681170 0.573865935770521 0.071538532173898

]T
,

w =
[
−0.165958972572252 −0.440020959651672 −0.004323878899313

]T
.
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Figure 10: Eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(
D̃N(ξ)

)
for ξ = eit , t ∈ [0, 2π]

The eigenvalues λ1(t), λ2(t), and λ3(t) of the matrix He
(
D̃N(ξ)

)
for ξ = eit, t ∈ [0, 2π], are plotted in Fig. 10.

7. Example of algebraically stable method of Hewitt and Hill

To put things in some perspective we analyze also the example of algebraically stable GLM of with s = 2, p = 4,
and q = 3 constructed by Hewitt and Hill [16]. For this method the abscissa vector c and the coefficient matrices A,
B, U, and V are given by

c =
[

0 193y2−129y4−297y6−243y8

8 − 1
6

]T
,

A=


265
864+

793y2

576 −
5y4

6 −
123y6

64 −
27y8

16
215
864−

5299y2

576 +
623y4

96 +
915y6

64 +
189y8

16

101
432+

3821y2

288 −
463y4

48 −
669y6

32 −
135y8

8
67

432+
793y2

288 −
5y4

3 −
123y6

32 −
27y8

8

 ,
B =

 2
3

1
3

17y−1125y3+828y5+1783y7+1458y9

24
−11y+1125y3−828y5−1782y7−1458y9

24

 ,

U =

 1 − 7y+9y3

16

0 y+9y3

8

 , V =

 1 0

0 1
2

 .
Here y = ±

√
z/3 and z is one of the two positive roots of the equation

9z5 + 33z4 + 46z3 − 186z2 + 9z + 1 = 0.

Choosing the root z = 0.1032814360 and y =
√

z/3, the decimal representation of the resulting method is

c = [0, 0.6432188884]T ,
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 A U
B V

 =


0.3530415762 −0.0595835887 1 −0.08476931053

0.6782443859 0.2477498188 1 0.03037947026

0.6666666667 0.3333333333 1 0

−0.1598351741 0.2062215576 0 0.5


.

It can be verified that for this method
He

(
D̃N(ξ)

)∣∣∣∣
ξ=eit
≥ −5.21 · 10−11,

t ∈ [0, 2π]. This bound was obtained by dividing the interval [0, 2π] into n = 10000 subintervals. Dividing [0, 2π] into
n = 1000 and n = 100 subintervals, the bounds are −1.84 · 10−13 and −1.32 · 10−15, respectively.

8. Concluding remarks

We investigated A-stable and algebraically stable TSRK methods of order p and stage order q = p or q = p − 1.
These methods are first reformulated as GLMs with abscissa vector c and coefficient matrices A, U, B and V. We
use Schur criterion applied to the stability function p(η, z) = det(ηI − S(z)), where S(z) = V + zB(I − zA)−1U, is the
stability matrix of the method, to search for methods which are A-stable. We use the criteria proposed recently by
Hill [18] and Hewitt and Hill [16], [17] to search for algebraically stable methods. Examples of highly stable methods
with s = p and q = p and q = p − 1 are given for s = 1, 2, and 3.

Future work will address the construction of TSRK methods of order p = s and stage order q = p up to order 8.
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