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Abstract In this work we deal with exponentially fitted methods for the numerical

solution of second order ordinary differential equations, whose solutions are known

to show a prominent exponential behaviour depending on the value of an unknown

parameter to be suitably determined. The knowledge of an estimation to the unknown

parameter is needed in order to apply the numerical method, since its coefficients

depend on the value of the parameter. We present a strategy for the practical estimation

of the parameter, which is also tested on some selected problems.

Keywords Second order ordinary differential equations · Molecular dynamics ·
Exponential fitting · Two-step hybrid methods · Parameter estimation

1 Introduction

It is the purpose of this paper to analyse the family of two-step hybrid methods

Y
[n]
i = (1 + ci)yn − ciyn−1 + h2

s∑
j=1

aijf(Y
[n]
j ), i = 1, ..., s,

yn+1 = 2yn − yn−1 + h2
s∑
i=1

bif(Y
[n]
i ),

(1)

introduced by Coleman in [6] for the numerical solution of initial value problems based

on second order ordinary differential equations (ODEs)
y′′ = f(x, y),

y′(x0) = y′0,

y(x0) = y0,

(2)
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under the assumption that the function f : [x0, X] × Rd → Rd is smooth enough to

guarantee the existence and uniqueness of the solution. Although problem (2) can be

regarded as a doubled dimensional system of first order ODEs, it is more natural and

efficient to deal with its second order formulation and apply suited numerical methods

to approximate its solution.

1.1 The problem: reasons of interest

Second order ODEs (2), especially when their solutions exhibit a prominent periodic

or oscillatory behaviour, have a special interest in many applications (see for instance

[27] and the references therein contained), such as molecular dynamics (compare [1,4,

15,13]). For instance, problems of type (2) provide the equations of motion of atomic

systems, as it is briefly described here for a linear molecule. In this case, the angular

velocity ωs and the torque τs are both perpendicular to the molecular axis at all times:

therefore, denoting by es the unit vector along the axis, we have

τs = es × gs,

where gs =
∑
a daf

s
a is the resultant of the intermolecular forces. Then, the equation

of rotational motion can now be written as (see Singer et al. 1997)

ës = g⊥/I + λes, (3)

where g⊥ = gs− (gs ·es)es and I is the moment of inertia. The two terms in the right

hand side of (3) are the force g⊥ responsible for the rotation of the molecule and the

force λes along the bond which constraints the bond length to be a constant of the

motion. The radial Schrödinger equation [22]

y′′ + (E − V (x))y = 0, x > 0,

is also a second order problem (2) of interest in molecular dynamics. It depends on the

value E, which is a real number denoting the energy of the system, while V (x) is a given

potential. This equation, which is at the base of nonrelativistic quantum mechanics,

provides the description of various effects in nuclear, atomic and molecular physics

(compare [23]). An example is given by the radial part of the Schrödinger equation for

the hydrogen atom [3]

− ~
2µr2

d

dr

(
r2
dR

dr

)
+

(
~l(l + 1)

2µr2
− e2

4πε0r
− E

)
R(r) = 0,

where ~ is the Planck constant, µ is the reduced mass of the electron, r is the atomic

radius, R(r) is the radial wave function, e is the electron charge and ε0 is the vacuum

permittivity. The solution of this equation is

Rnl(r) = −
[

(n− l − 1)!

2n[(n+ l)!]3

]1/2(
2

na0

)
l + 3/2rl exp

(
− r

na0

)
L2l+1
n+l

(
2r

na0

)
,

where 0 ≤ l ≤ n − 1, a0 is the Bohr radius and the functions L2l+1
n+l

(
2r
na0

)
are the

associated Laguerre functions. The hydrogen atom eigenvalues are

En = − e2

8πε0a0n2
, n = 1, 2, . . .
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We observe that the solutions of the hydrogen Schrödinger equation are of exponential

type: this behaviour or, more in general, a behaviour described by an exponential of

real or complex argument, is quite typical in second order problems (2) of interest in

the applications.

1.2 The method: a family of special purpose formulae

It is worthy to mention that classical numerical methods for ODEs are not able to

efficiently follow a prominent exponential, periodic or oscillatory behaviour of the so-

lutions, because a small stepsize would be needed to accurately catch the oscillations

in the solution. On the contrary, the usage of special purpose numerical formulae, i.e.

formulae suited to solve a particular family of problems whose solution is linear combi-

nation of a selected set of functions, allows to obtain an accurate solution with larger

stepsizes than those needed when we apply classical formulae (see [21] and the refer-

ences therein contained).

In order to obtain special purpose formulae we should impose that a certain numer-

ical method exactly integrates (within the round-off error) problems of type (2) whose

solution can be expressed as linear combination of functions other than polynomials.

For instance, assuming that the solution of the problem is spanned by the functional

basis

{1, x, . . . , xK , exp (±µx), x exp (±µx), . . . , xP exp (±µx)}, (4)

where K and P are integer numbers, we obtain formulae based on the so-called expo-

nential fitting (EF, see [21]), i.e. formulae exactly integrating (within round-off errors)

problems whose solution is linear combination of (4). An extensive bibliography con-

cerning the EF technique can be found in the monograph [21].

The coefficients of classical formulae are constant matrices and vectors, while, on

the contrary, the coefficients of EF formulae are matrices and vectors depending on

the value of a parameter to be suitably determined. This parameter depends on the

solution of the problem and its behaviour: for instance, it could be the value of the

frequency of the oscillations when the solution is oscillatory, or the argument of the ex-

ponential function describing the exponential decay of a certain phenomenon modelled

by (2). The authors have recently introduced in [9] the family of EF-based methods

(1), assuming that the parameter is known in advance.

A rigorous theory for the exact computation of the parameter has not yet been

developed. However, some attempts have been done in the literature (see, for instance,

[26, 28] and references therein contained) in order to provide an accurate estimation

of the parameter, generally based on the minimization of the leading term of the

local discretization error. We aim to provide in this paper an analogous strategy to

determine an approximation to the parameter of EF methods (1), in such a way that its

performances are not compromised by the missing of the exact value of the parameter.

The paper is organized as follows: Section 2 reports the constructive strategy in-

troduced in [9] to derive EF-based formulae within the class (1); Section 3 is devoted

to the presentation of the parameter estimation technique, while Section 4 provides

some numerical tests. Some conclusions and further developments of this research are

reported in Section 5.
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2 Exponentially fitted two-step hybrid methods

In this section we recall the constructive technique introduced in [9] to derive EF-

based methods within the class (1). This strategy is based on the six-step flow chart

introduced by Ixaru and Vanden Berghe in [21] for the derivation of EF-based formu-

lae approaching many problems of Numerical Analysis (e.g. interpolation, numerical

quadrature and differentiation, numerical solution of ODEs) especially when their so-

lutions show a prominent periodic/oscillatory behaviour.

We associate to (1) the following s+ 1 linear operators

L[h,b]y(x) = y(x+ h)− 2y(x) + y(x− h)− h2
s∑
i=1

biy
′′

(x+ cih)

Li[h,a]y(x) = y(x+ cih)− (1 + ci)y(x) + ciy(x− h)

− h2
s∑
j=1

aijy
′′

(x+ cjh), i = 1, . . . , s,

and proceed as follows:

– step (i) We compute the starred classical moments (see [21]) by using formulae

L∗m(b) = h−(m+1)L[h; b]xm, m = 0, 1, 2, . . . ,

L∗im(a) = h−(m+1)Li[h; a]xm, i = 1, . . . , s, m = 0, 1, 2, . . .

– step (ii) Compatibility analysis. We examine the algebraic systems

L∗m(b) = 0, m = 0, 1, . . . ,M ′ − 1, (5)

L∗im(a) = 0, i = 1, . . . , s, m = 0, 1, . . . ,M − 1, (6)

to find out the maximal values of M and M ′ for which the above systems are

compatible. Assuming s = 2, we proved in [9] that such values are M = M ′ = 4.

– step (iii) Computation of the G functions. In order to derive EF methods, we need

to compute the so-called starred exponential moments (see [21], p. 42), i.e.

E∗0 (±z,b) = exp(±µx)L[h,b] exp(±µx), (7)

E∗0i(±z,a) = exp(±µx)Li[h,a] exp(±µx), i = 1, . . . , s. (8)

Once computed the reduced exponential moments, we derive the following set of

functions:

G+(Z,b) =
1

2

(
E∗0 (z,b) + E∗0 (−z,b)

)
,

G−(Z,b) =
1

2z

(
E∗0 (z,b)− E∗0 (−z,b)

)
,

G+
i (Z,a) =

1

2

(
E∗0i(z,a) + E∗0i(−z,a)

)
, i = 1, . . . , s,

G−i (Z,a) =
1

2z

(
E∗0i(z,a)− E∗0i(−z,a)

)
, i = 1, . . . , s,
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where Z = z2. In our case, the G functions take the following form

G+(Z,b) = 2η−1(Z)− 2− Z
s∑
j=1

bjη−1(c2jZ),

G−(Z,b) = −Z
s∑
j=1

bjcjη0(c2jZ),

G+
i (Z,a) = η−1(c2iZ) + ciη−1(Z)− 2(1 + ci)− Z

s∑
j=1

aijη−1(c2jZ),

G−i (Z,a) = ciη0(c2iZ)− ciη0(Z)− 2(1 + ci)− Z
s∑
j=1

cjaijη0(c2jZ).

We observe that the above expressions depend on the functions η−1(Z) and η0(Z)

(compare [18,21]), which are defined as follows

η−1(Z) =
1

2
[exp(Z1/2) + exp(−Z1/2)] =

 cos(|Z|1/2) if Z ≤ 0,

cosh(Z1/2) if Z > 0,

and

η0(Z) =


1

2Z1/2
[exp(Z1/2)− exp(−Z1/2)] if Z 6= 0,

1 if Z = 0,
=


sin(|Z|1/2)/|Z|1/2 if Z < 0,

1 if Z = 0,

sinh(Z1/2)/Z1/2 if Z > 0.

We next compute the p-th derivatives G±
(p)

and G±i
(p)

, taking into account the

formula for the p-th derivative of ηk(Z) (see [21])

η
(p)
k (Z) =

1

2p
ηk+p(Z),

and obtaining

G+(p)
(Z,b) =

1

2p−1
ηp−1(Z)−

s∑
j=1

bj
dp

dZp

(
Zη−1(c2jZ)

)
,

G−
(p)

(Z,b) = −
s∑
j=1

bjcj
dp

dZp

(
Zη−1(c2jZ)

)
,

G+
i

(p)
(Z,a) =

c2pi
2p

ηp−1(c2iZ) +
ci
2p
ηp−1(Z)−

s∑
j=1

aij
dp

dZp

(
Zη−1(c2jZ)

)
,

G−i
(p)

(Z,a) =
c2p+1
i

2p
ηp(c2iZ)− ci

2p
ηp(Z)−

s∑
j=1

aijcj
dp

dZp

(
Zη0(c2jZ)

)
.
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– step (iv) Definition of the function basis. We next decide the shape of the function

basis to take into account: as a consequence, the corresponding method will exactly

integrate (i.e. the operator L[h,b]y(x) annihilates in correspondence of the function

basis) all those problems whose solution is linear combination of the basis functions.

In the exponential fitting framework, the function basis (also known as fitting space)

is a set of M functions of the type

{1, x, . . . , xK , exp (±µx), x exp (±µx), . . . , xP exp (±µx)}

where K and P are integer numbers satisfying the relation

K + 2P = M − 3. (9)

Let us next consider the set of M ′ functions

{1, x, . . . , xK
′
, exp (±µx), x exp (±µx), . . . , xP

′
exp (±µx)}

annihilating the operators Li[h,a]y(x), i = 1, 2, . . . , s and assume that K′ = K

and P ′ = P , i.e. the external stage and the internal ones are exact on the same

function basis.

– step (v) Determination of the coefficients. After a suitable choice of K and P , we

next solve the following algebraic systems

G±
(p)

(Z,b) = 0, p = 0, ..., P,

G±i
(p)

(Z,a) = 0, i = 1, . . . , s, p = 0, ..., P,

and derive the coefficient of the corresponding EF-based method.

– step (vi) Error analysis. According to the used procedure [21], the general expres-

sion of the local truncation error for an EF method with respect to the basis of

functions (16) takes the form

lteEF (x) = (−1)P+1hM
L∗K+1(b(Z))

(K + 1)ZP+1
D2(D2 − µ2)y(x), (10)

with K, P and M satisfying the condition (9). For the sake of completeness, we

remark that this expression of the local truncation error can be derived by using

the approach of Coleman and Ixaru [8], who provided an adaptation of the theory

by Ghizzetti and Ossicini (1970) to the case of EF-based formulae. This approach

consists in regarding the error associated to an EF-based formula as

E[y] = L[y](ξ)

∫ h

−h
Φ(x)dx,

where ξ ∈ (−h, h) and, in our case, L[y] = Dk+1(D− µ)P+1y(x). We observe that

the kernel Φ(x) is an even function in the null space of L.

The expression of the local truncation error (10) is our starting point to estimate the

unknown parameter µ.
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3 Parameter selection

Step (vi) of the constructive procedure described above provided us the expression of

the local truncation error (10), with K, P and M satisfying the condition K + 2P =

M − 3. For instance, assuming K = 1, P = 0 and M = 4, we obtain

lteEF (x) = −h2L
∗
2(b(Z))

2µ2
D2(D2 − µ2)y(x). (11)

We aim to estimate the value of the parameter µ that annihilates or minimizes the

leading term of (10), by solving the equation

D2(D2 − µ2j )y(xj) = 0, (12)

where µj is an approximation to the unknown parameter µ in the point xj of the grid.

We observe that the values

µj = ±

√
y(iv)(x)

y′′(x)

∣∣∣∣
x=xj

, µj = ±y′′(x)

∣∣∣∣
x=xj

,

are solutions of (12). More generally, it can be shown that for any integer K and P ,

the value

µj = ±y′′(x)

∣∣∣∣
x=xj

satisfies the reference differential equation

DK+1(D2 − µ2)P+1y(x) = 0, (13)

in every point of the grid. This situation is formalized in the following result.

Proposition 1 For any grid point xj , µj = ±y′′(xj) is solution of (13) with multi-

plicity P + 1, P ≥ 0.

Proof Equation (13) can be regarded in the form

DK+1

(
P+1∑
i=0

(−1)i

(
P + 1

i

)
DP+1−iµij

)
y(xj) = 0.

Therefore, in correspondence of µj = y′′(xj), we obtain

DK+2P+3

(
P+1∑
i=0

(−1)i

(
P + 1

i

))
y(xj) = 0,

which is always satisfied because

P+1∑
i=0

(−1)i

(
P + 1

i

)
= (1 + (−1))P+1 = 0.

ut
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These preliminary remarks confirm that Equation (13) leads to different choices to

estimate the unknown parameter and, the more P is high, the more the number of

possible choices increases. In order to establish a suitable strategy for the derivation of

an appropriate and reliable estimation to the unknown parameter, we follow the lines

drawn in [17] in the case of two-point boundary value problems. In particular, we first

analyze the solutions of (13) when the solution y(x) belongs to the fitting space: for

instance, we assume that

y(x) = xqeµx.

Then, the following result holds.

Theorem 1 Let us assume that y(x) = xqeµx is solution to the differential problem

(2). Then,

ν2 = µ2

is a root of DK+1(D2 − µ2)P+1y(x) with multiplicity P − q + 1.

Proof In correspondence of y(x) = xqeµx = Dqµe
µx, the reference differential equation

(13) assumes the form

DqµD
K+1
x (D2

x − ν2)P+1eµx = 0

or, equivalently,

Dqµµ
K+1(µ2 − ν2)P+1eµx = 0.

By using the Leibniz rule for higher derivatives, the previous formula can be expressed

in the form

q∑
n=0

q−n∑
r=0

(
q

n

)(
q − n
r

)
βn,rµ

K+1−q+n+r(µ2 − ν2)P+1−rxneµx = 0, (14)

with

βn,r =
(K + 1)!

(K + 1 + n+ r − q)! ·
(P + 1)!

(P + 1− r)! .

The thesis is obtained by observing that the left hand side of (14) has a common factor

(µ2 − ν2)P−q+1. ut

This result can be exploited to establish a strategy for the approximation of the

unkwown parameter in the coefficients of the methods. We denote by p(µj) the value

of DK+1(D2 − µ2j )
P+1y(xj) and apply Theorem 1, i.e. we solve at each time step

the nonlinear equations p(µ) = 0, p′(µ) = 0, . . . , p(P−q+1)(µ) = 0. If there exist

a common solution for all these equations which is constant overall the integration

interval, then the solution to the problem we are solving belongs to the fitting space

and the obtained constant value is chosen as approximation to the unknown parameter

µ. On the contrary, if such common solution does not exist and the values of µj vary

along the integration interval, the solution to the approached differential problem does

not belong to the fitting space and the approximation to µ we choose at each time step

is the root of smallest modulus among the set of solutions of p(µ) = 0, p′(µ) = 0, . . . ,

p(P−q+1)(µ) = 0, in order to avoid inaccurate results due to numerical instability.

This approach for the estimation of the unknown parameter will next be applied

to some test cases reported in Section 4.
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4 Numerical results

We present the numerical results arising from the implementation of the following

methods belonging to the same family (1):

– HYB2, two-step hybrid method (1) having constant coefficients (see [6])

1√
6

1+
√
6

12

− 1√
6
−
√
6

12
1
12

1
2

1
2

(15)

with s = 2 and order 4;

– EXP2, one-parameter depending exponentially-fitted method (1), with s = 2 and

order 2, corresponding to the fitting space (4) with K = 1 and P = 0, i.e.

{1, x, exp(±µx)}, (16)

and depending on the following coefficients

b1 =
2c2(η1(Z)− 1)η0(c22Z)

−Z(c1η1(c22Z)η0(c21Z)− c2η1(c21Z)η0(c22Z))
,

b2 =
2c1(η1(Z)− 1)η0(c21Z)

Z(c1η1(c22Z)η0(c21Z)− c2η1(c21Z)η0(c22Z))
,

a11 =
c1(1 + c1)(c1 − 3c2 − 1)

6(c1 − c2)
,

a12 =
c1(1 + 3c1 + 2c21)

6(c1 − c2)
,

a21 =
−c2(1 + 3c2 + 2c22)

6(c1 − c2)
,

a22 =
c2(1 + c2)(3c1 − c2 + 1)

6(c1 − c2)
,

where c = [c1, c2]T is the abscissa vector.

Both methods depend on the same number of internal stages, therefore the computa-

tional cost due to the solution of the nonlinear system in the stages is the same and

the numerical evidence shows their comparison in terms of accuracy. The methods are

implemented with fixed stepsize

h =
1

2k
,

where k is a positive integer number. The reported experiments aim to confirm the

theoretical expectations regarding the derived methods and to test the strategy of

parameter estimation above described. We consider the following problems:

– the scalar linear test equation  y′′(x) = λ2y(x),

y(0) = 1,

y′(0) = −λ,
(17)

with λ > 0 and x ∈ [0, 1], whose exact solution is y(x) = exp(−λx);
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– the linear problem 
y′′(x)− y(x) = x− 1,

y(0) = 2,

y′(0) = −2,

(18)

with λ > 0 and x ∈ [0, 5] and exact solution y(x) = 1−x+exp(−x), which is linear

combination of the basis functions in (16);

– the Prothero-Robinson problem [28]

 y′′(x) + ν2[y(x)− exp(−λx)]3 = λ2y,

y(0) = 1,

y′(0) = −λ,
(19)

with x ∈ [0, 5], whose exact solution is y(x) = exp(−λx).

As regards EXP2 method, we apply the strategy described in Section 3 for the

estimation of the unknown parameter µ. To achieve this purpose, we consider the

reference differential equation

p(µ, x) = D2(D2 − µ2)y(x) (20)

and, according to the Theorem (1), we determine the roots of p(µn, xn) = 0 of mul-

tiplicity 1 − q, where xn is the current step point. Equation (20) requires the com-

putation of the second and forth derivatives of y(x); we observe that such derivatives

can be derived directly from the analytic formulation of the problem, in terms of

the partial derivatives of the function f . In fact, y′′(x) = f(x, y(x)) and y(iv)(x) =

fyy(x, y(x))(y′(x), y′(x)) + fy(x, y(x))f(x, y(x)), where the unkwown value of y′(x)

can be approximated by the finite difference

y′(x) ≈ y(x+ h)− y(x)

h
.

We observe that, in order to avoid further function evaluations, we can replace the val-

ues of the derivatives appearing in (20) by the corresponding backward finite differences

in the following way

y(r)(xn+1) ≈ 1

hn

n∑
i=0

(−1)i

(
n

i

)
yn−i. (21)

The numerical evidence is reported in Tables 1, 2 and 3. The results confirm that

EXP2 method is able to exactly solve the above problems within round-off error, since

their solutions belong to the linear space generated by (16). The superiority of EXP2

method in terms of accuracy is visible from the experiments, which reveal that it out-

performs HYB2 method on the considered test problems. Although EXP2 and HYB2

depend on the same number of stages, i.e. m = 2, and HYB2 has higher order of con-

vergence, a larger computational effort is necessary for the latter to obtain the same

accuracy of EXP2.
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λ k HYB2 EXP2
2 4 1.10e-5 1.09e-14

5 7.36e-7 8.45e-14
6 4.76e-8 1.20e-13

3 4 4.19e-4 2.02e-14
5 2.89e-5 2.29e-13
6 1.90e-6 4.02e-13

4 4 9.29e-3 9.49e-14
5 6.65e-4 6.08e-13
6 4.43e-5 4.96e-12

Table 1 Relative errors corresponding to the solution of the problem (17), for different values
of λ and k.

k HYB2 EXP2
4 2.65e-4 3.34e-16
5 1.96e-5 1.87e-14
6 1.33e-6 5.16e-14

Table 2 Relative errors corresponding to the solution of the problem (18).

k HYB2 EXP2
4 9.79e-2 2.43e-12
5 5.36e-3 1.79e-12
6 2.96e-4 1.35e-11

Table 3 Relative errors corresponding to the solution of the problem (19), with ν = 1.

5 Conclusions and further developments

We have presented a strategy for the estimation of the parameters involved in the

EF adaptation of the two-step hybrid methods (1) for the numerical solution of second

order problems (2) whose solution is supposed to be of exponential type. The strategy,

based on determining the roots of certain polynomials associated to the truncation

error, is tested on some selected problems. The numerical evidence confirm the theo-

retical expectations on the accuracy of the derived methods and the effectiveness of

the parameter estimation technique.

Future works will regard the usage of different basis of functions for the deriva-

tion of function fitted formulae belonging to the family (1). In fact, the only employ

of nonnegative powers and exponential functions in the chosen functional basis may

not be completely satisfactory if the problem under consideration has an asymptotic

exponential behavior which is accompanied by a noninteger power of the independent

variable for the infinite interval cases. In such cases some other basis of functions must

be accordingly constructed. This construction can be based on the informations com-

ing from the asymptotic behavior analysis of the ODE when the independent variable

goes to infinity, if the integration interval is entirely or semi infinite. For instance, a

different basis set can be performed in a such a way to reproduce the same asymptotic

behaviour of the exact solution. If the integration interval is finite, such asymptotic

analysis should be provided for both ends of the interval. Moreover, we aim to achieve
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orders of convergence greater than two, as it has been done for Runge-Kutta meth-

ods (compare [5,16]). This may change the values of the parameters depending on the

nature of the ODE under consideration.
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