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1 Introduction

For the numerical solution of differential equations

ẏ = f(y), y(0) = y0 (1)

with one-step methods, the long-time behavior is well understood (backward
error analysis). In particular, it is known that symplectic methods nearly pre-
serve the energy of Hamiltonian systems over exponentially long times, and
they exactly preserve quadratic first integrals of the system.

For multi-value methods, for which the discrete flow evolves in a higher
dimensional space, the situation is much more delicate. Inspired by the work
of [7] for multistep methods, an extension of symplecticity to general linear
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methods (an important class of multi-value methods) has been discussed in the
thesis [12]. The name G-symplecticity has been proposed in the first edition
of [10]. Until now it is an open question whether G-symplecticity has also
an impact on the long-time behavior of numerical solutions. This question is
addressed in the recent publication [2], which starts with the sentence “The
aim of this work is to understand the possible role in the long-term integration
of conservative systems of ‘G-symplectic’ methods”.

The present note gives an answer to this question. We prove that G-
symplecticity of a general linear method implies conjugate-symplecticity of
the underlying one-step method. G-symplecticity does not play a role in the
boundedness of parasitic solution components (bounds on parasitic terms are
given in [6]). As long as parasitic solution components can be neglected, the
numerical solution of a G-symplectic general linear method behaves like that
of symplectic one-step method after a global transformation χ(y) that is O(hp)
close to the identity (p is the order of the method). Section 2 recalls the frame
of multi-value methods, Section 3 discusses the notion of G-symplecticity, and
Section 4 presents the main results including proofs.

2 Multi-value methods

This article is concerned with multi-value methods. They are given by a for-

ward step procedure

Yn+1 = (V ⊗ I)Yn + hΦ(h, Yn), (2)

a starting procedure

Y0 = Sh(y0), (3)

and a finishing procedure

yn = Fh(Yn). (4)

The multi-value character of the method is due to the fact that Yn is a super
vector of dimension rd, which contains r vectors of the dimension d of (1).
The finishing procedure defines the numerical approximation to the solution
of (1). To get an accurate approximation, the starting procedure Sh(y0) has
to be close to the so-called “exact” starting procedure S∗

h(y0) (typically given
as a formal series in powers of the step size h). The main interest of this
exact starting procedure is the fact that, for a given forward step procedure
and a given finishing procedure, there exist a unique S∗

h(y0) and a unique
(formal) one-step method Φ∗

h(y0), such that for Y0 = S∗

h(y0) the numerical
solution given by (2) and (4) satisfies the one-step relation yn+1 = Φ∗

h(yn) (see
Theorem XV.8.2 of [10]). This one-step method is called underlying one-step

method. Written out as formulas, the (formal) mappings S∗

h(y0) and Φ∗

h(y) are
seen to be given by

Gh ◦ S∗

h = S∗

h ◦ Φ∗

h and Fh ◦ S∗

h = identity, (5)
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where the forward step procedure is abbreviated as Yn+1 = Gh(Yn). In the
following we assume that the matrix V has ζ1 = 1 as simple eigenvalue with
eigenvector v1, and that it possesses a set of r linearly independent eigenvectors
vj , j = 1, . . . , r corresponding to eigenvalues ζj .

We are mainly interested in general linear methods. For them, the forward
step procedure is given by

Yn+1 = (V ⊗ I)Yn + h(B ⊗ I)f(W ), W = (U ⊗ I)Yn + h(A⊗ I)f(W ),

where for a super vector W = (Wi)
s
i=1 with Wi ∈ R

d, the super vector f(W ) is
defined by f(W ) = (f(Wi))

s
i=1. The matrices V , B, U , and A are of dimension

r× r, r× s, s× r, and s× s, respectively. The finishing procedure is typically
given by Fh(Yn) = (dT ⊗ I)Yn with a vector d satisfying dTv1 = 1, but it can
also be of the form

Fh(Yn) = (dT ⊗ I)Yn + h(eT ⊗ I)f(W ),

where the super vector W is given by a formula similar to that in the forward
step procedure with possibly different coefficient matrices U and A.

For such methods, the underlying one-step method and the exact starting
procedure can be written as formal series in powers of h, and a comparison of
like powers of h in (5) yields

S∗

h(y) = v1 ⊗ y + h s1 ⊗ f(y) + h2s2 ⊗ f ′(y)f(y) +O(h3) (6)

which is recognized as a vector of B-series. Here, v1 is the first eigenvector of
V and s1, s2 are vectors in R

r. For readers who are not familiar with B-series
we suggest to take a quick look at Chapter III of [10].

3 G-symplecticity of multi-value methods

Since the condition for symplecticity is a quadratic first integral of the vari-
ational equation, numerical flows that preserve quadratic first integrals are
symplectic. A quadratic form Q(y) = yTEy with symmetric matrix E is a first
integral of ẏ = f(y) if it is preserved along solutions. This is expressed by the
condition yTEf(y) = 0.

Definition 1 LetG be a symmetric matrix satisfying vT1Gv1 = 1. The forward
step procedure (2) is called G-symplectic, if for all quadratic first integrals
Q(y) = yTEy of ẏ = f(y) the propagation vector satisfies

Y T

n+1(G⊗ E)Yn+1 = Y T

n (G⊗ E)Yn.

The use of a symmetric matrix G in this definition is very natural, be-
cause the same matrix also appears in the study of contractivity of multi-
value methods for stiff differential equations (G-stability for one-leg methods
and algebraic stability for general linear methods).
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Lemma 1 A G-symplectic forward step procedure satisfies

V TGV = G,

and it holds vTi Gvj = 0 if ζiζj 6= 1.

Proof Inserting the forward step procedure into the condition of G-symplecticity
and putting h = 0 proves the relation V TGV = G. Multiplication with vTi from
the left and with vj from the right yields vTi Gvj = ζiζjv

T

i Gvj , which proves
the second statement. ⊓⊔

It is shown in [7] that all symmetric one-leg methods are G-symplectic.
A first example of a G-symplectic general linear method, which is neither a
Runge–Kutta method nor a multistep method, is given in [1]. Further examples
are presented in [2] and [3].

4 Main result

For linear multistep methods, which constitute an important class of multi-
value methods, the following is known: the underlying one-step method cannot
be symplectic [13], but for symmetric multistep methods it is conjugate to a
symplectic integrator [8]. Can we have a similar result for more general multi-
value methods? The results of [9] (see also [4]) strongly indicate that the
underlying one-step method of a general linear method cannot be symplectic
unless the method can be reduced to a one-step method.

Lemma 2 Consider a multi-value method with underlying one-step method

Φ∗

h(y) and with exact starting procedure S∗

h(y), and let Q(y) = yTEy be a first

integral of ẏ = f(y). If the method is G-symplectic, then the expression

Qh(y) = S∗

h(y)
T(G⊗ E)S∗

h(y) = yTE y +O(h2)

is preserved by the underlying one-step method Φ∗

h(y), i.e., in the sense of

formal power series we have Qh

(

Φ∗

h(y)
)

= Qh(y).

Proof For the choice Yn = S∗

h(y), condition (5) yields Yn+1 = S∗

h

(

Φ∗

h(y)
)

.
The definition of G-symplecticity thus implies that Qh(y) is preserved by the
method Φ∗

h(y). The closeness to yTEy follows from (6) and from the fact that
yTEf(y) = 0. ⊓⊔

Theorem 1 Consider a G-symplectic general linear method of order p. Then,

for every finishing procedure the underlying one-step method is conjugate-sym-

plectic. More precisely, there exists a change of coordinates χh(y) = y+O(hp),
such that χh ◦ Φ∗

h ◦ χ−1

h is a symplectic transformation.
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Proof For general linear methods the underlying one-step method and the
components of the exact starting procedure S∗

h(y) can be expressed as B-series.
The expression Qh(y) of Lemma 2 is thus precisely of the form that is required
for the application of Theorem VI.8.5 of [10], see also [5]. This theorem implies
that the underlying one-step method is conjugate to a symplectic method
with a change of coordinates χ̂h that is O(h2) close to the identity. Once the
conjugate-symplecticity is established, an application of Lemma 3.3 of [11]
shows the existence of a change of coordinates z = χh(y) satisfying χh(y) =
y +O(hp), such that in the coordinates z the method is symplectic. ⊓⊔

Let us discuss the impact of this result to the long-time integration of
Hamiltonian differential equations:

– Conjugate-sympletcicity of the underlying one-step method means that for
yn+1 = Φ∗

h(yn) the approximations zn = χh(yn) behave like that of a sym-
plectic one-step method: The Hamiltonian is preserved up to an error of
size O(hp) on exponentially long time intervals. For integrable Hamilto-
nian systems, all action variables are nearly preserved over long times, and
the global error increases at most linearly with time. Quadratic first in-
tegrals are not exactly preserved, but they are preserved up to O(hp) on
exponentially long times.

– We emphasize that the present work gives only information on the long-
time behavior of the underlying one-step method. Rigorous bounds on para-
sitic solution components, which are always present in multi-value methods,
have recently been obtained in [6]. Unfortunately, G-symplecticity does not
seem to have an impact on the boundedness of parasitic components.

The conclusion of the present investigation is that, as long as parasitic com-
ponents are small and bounded, the numerical solution obtained by a G-
symplectic multi-value method has the same behavior as that of a symplectic
one-step method after a global change of coordinates that is O(hp) close to
the identity. This is confirmed by the numerical experiments of [3] and [6].
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13. Y.-F. Tang, The symplecticity of multi-step methods, Computers Math. Applic. 25

(1993), 83–90.


