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Abstract

We focus our attention on the family of General Linear Meth¢@dLMs), for the nu-
merical solution of second order ordinanyffdrential equations (ODEs). These are
multivalue methods introduced in [18] with the aim to pravidn unifying approach
for the analysis of the properties of accuracy of numericathods for second order
ODEs. Our investigation is addressed to providing the gidlocks useful to ana-
lyze the linear stability properties of GLMs for second ar@®Es: thus, we present
the extension of the classical notions of stability matsibgbility polynomial, stabil-
ity and periodicity interval, A-stability and P-stabilitg the family of GLMs. Special
attention will be given to the derivation of highly stable K&, whose stability prop-
erties depend on the stability polynomial of indirect Rukgeta-Nystdm methods
based on Gauss-Legendre collocation points, which are iknowe P-stable. In this
way, we are able to provide P-stable GLMs whose order of agevese is greater than
that of the corresponding RKN method, without heightenimg ¢omputational cost.
We finally provide and discuss examples of P-stable irrddedsLMs satisfying the
mentioned features.

Key words: Second order Ordinary Berential Equations, General Linear Methods,
Linear stability analysis, P-stability.

1. Introduction

The paper is focused on the numerical solution of initialiegbroblems based on
special second order ODEs

y'(t) = f(y(1)), telto, T,
y(to) = Yo, (1.1)
Yy (to) =Yg,

being the functionf : RY — RY smooth enough in order to guarantee the Hadamard
well-posedness of the problem. Even though the problen) (dight be regarded as
an equivalent doubled dimensional system of first order Qs direct solution of
the second order version results to be more natural firuieat [23, 25].

We frame our treatise in the context of General Linear medtfod second order
ODEs (1.1), introduced by the authors in [18] and here dehate General Linear
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Nystrom (GLN) methods. In this paper we assume the following fdatien for the
family of GLN methods

s r
Y=k )y a i) ) upy i=1s
=1 i=1
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W=k 3 bt + D vy =1,
=1 =1

where the vector

(1.2)
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y[2n—l]

rd
e R,

y[n—l] —
yEn'—l]

denoted agmput vectorof the external stages contains all the informations wesfean
from pointt,_; to pointt, of the grid. We observe that such vector might also not only
contain approximations to the solution of the problem ingtid points inherited from
previous steps, but also other informations computed irp#st that we aim to use in
the integration process.

The vector

vl
is instead denoted as vector of theernal stages and its entries provide approximations
to the solution in the internal points_; + c;h, j=1,2,...,s

GLN methods (1.2) can also be represented in terms of th#icdeat matrices
A € R U € R¥, B € RS,V € R™, which are put together in the following

partitioned 6+ r) x (s+ r) matrix
[%%]. (1.3)

Using these notations, a GLM for second order ODEs admitSfdh@wing tensor
representation
Y = (A @ )FIM + (U )y,

Y =B e FM -+ (Ve

where® denotes the usual Kronecker tensor produds, the identity matrix inR%<d
andF = [F(YIMTf v, f YT

(1.4)



We observe that the formulation introduced in [18], i.e.
Y = (A @ )FIM + h(Pe y™ + (Ue HyI™ Y,
hy[ = h2(C @ FI" + h(R@ 1)y + (W e 1)y"1, (1.5)
Yy =B )FM +hQe )y ™+ (Ve )y,

differs from (1.4), where the first derivative approximatiors ot emphasized as in
(1.5). In thehybrid formulation (1.4) employed here

o the first derivative approximations might be hidden in thetoeyl™ of the exter-
nal stages as it happens, for instance, when it approxintaddordsieck vector
(compare, for instance, [26] and the references therein)

y(tn)
hy (tn)

Zy = : (1.6)

hr—ly(l:—l)(tn)

e approximations of the first derivative might be completedgiected in the nu-
merical integration process, as it is the case of hybrid odthcompare, for
instance, [7, 14, 15, 16, 17] and references therein).

The specific scope of this paper is the derivation of high oRdstable GLN meth-
ods which result to be competitive with classical P-stabéthods known in the liter-
ature, such as Runge-Kutta-Ny@tn methods based on indirect collocation on Gauss-
Legendre points. In order to succeed in pursuing this g@dher than neglecting
such known highly stable methods, we aim to let GLN formulaeerit their stabil-
ity polynomial through imposing simple algebraic consttaion the coficients of the
methods: this property will be denoted in the remainder efhper aRRunge-Kutta-
Nystrom stability In this way, some cd&cients of the GLN will be constrained to
reproduce the stability properties of a reference Runggakhysttom (RKN) method,
while the remaining degrees of freedom will be employed tdexe a certain order of
convergence, possibly heightening that of the referenc Ri€thod.

The paper is organized as follows: Section 2 is devoted todheergence analysis
of GLN methods (1.2), by suitably applying the results foripg@resented in [18];
Section 3 regards the linear stability analysis of GLN md&hd..2), with the particular
aim to the provide the extension of the classical notionstalbikty matrix, stability
polynomial, stability and periodicity intervals, A-stéihji and P-stability to the family
of GLN methods; Section 4 introduces the notion of RKN-digbior the family of
GLN methods. We aim to find examples of GLN formulae with RKislkslity of
higher order than that of the reference RKN method: the ddom of such examples
will be carried out within the family of Nordsieck GLN methgdwhich is introduced
and analyzed in Section 5. RKN-stability reveals to be atpgralcway to derive high
order P-stable methods: examples oriented in this dinectie reported in Section 6,
where the derived methods are also compared with classisttife RKN method on
a famous periodic dfi problem. Some conclusions are object of Section 7.



2. Convergence analysis

In this section, we suitably extend to the class of GLN meshdd?) the basic con-
cepts of consistency, zero-stability and convergencedinired in [18] for the general
formulation (1.5). These properties provide the minimaluieements of accuracy and
stability for the numerical solution of ODEs, as well knowrthe literature (compare,
for instance, the monographs [1, 2, 23, 26]).

Minimal accuracy requests for numerical methods solving)(are achieved if the
components of the input and output vectgfs! andyl™ in (1.4) respectively satisfy
(compare [18])

yi[n_l] = qi,Oy(tnfl) + qi,lh)/(tnfl) + Qi,zhzy’(tnfl) + O(h3)9
yi[n] = qi,Oy(tn) + qiylh)/(tn) + Qi,2h2y”(tn) + O(hs)’

i =1,2,...,r. We also assume that the components of the stage vé¢tan (1.4)
fulfill the condition

Y =y(tas+ah) + O, i=1....s

The above minimal accuracy demandings are achieved if a Getiand (1.4) satisfies

the algebraic constraints on the @agent matrices introduced in the following defini-
tions, which are the adaptations to the hybrid case (1.4)etbncepts introduced in
[18].

Definition 2.1. A GLM (1.2) is preconsistent if there exist two vectgggandg; such
that

Udo=€ VQo=0qo. Udi=cC, VQi=0o+0s (2.1)
wherec denotes the abscissa vector of the method.

Definition 2.2. A preconsistent GLM (1.2) is consistent if there exists #orep such
that q
Be+VQ; = EO + 01 + Q2. (2.2)

Definition 2.3. A consistent GLM (1.2) is stage-consistent if

C2
Ae+UqQ; = >

The minimal stability demanding are instead achieved byyapgpthe GLM (1.4)
to the problem
y’ =0,

obtaining the recurrence relation

y[n] — Vy[n—l]’

which leads to the following definition.



Definition 2.4. A GLN (1.4) is zero-stable if there exist two real constantar@d D
such that
IVl <mC+D, Vm=12,.... 2.3)

This definition assures that the classical root conditiomfanerical methods solving
second order ODEs (1.2) is satisfied. Such a condition isrtegén point (i) of the
following theorem (compare [18]).

Theorem 2.1.
The following statements are equivalent:

(i) the matrixV satisfies the bound (2.3);
(i) the roots of the minimal polynomial of the matrfix lie on or within the unit
circle and the multiplicity of the zeros on the unit circleatsmost two;
(iii) there exists a matrix B similar t& such that

supllBMl., < m+ 1.
m>1

We remark that conditioriif in Theorem 2.1 is peculiar for numerical methods for
second order ODEs (1.1), because for classical methodg$oofder ODEs at most
one root of the zero-stability matrix is allowed to have miodwone. Here two roots of
the minimal polynomial of the zero-stability might lie orethnit circle, also recovering
the case of complex conjugate roots of modulus one, typithe oscillatory case
(compare [23]).

We finally introduce a suitable notion of convergence, bypdéidg that introduced
in [18]. In force of the multivalue nature of GLN methods (1l @ starting procedure is
needed in order to determine the missing starting veétarin the context of conver-
gence analysis, we only need to assume that there existiagarocedure

Sy RY - R

associating, for any value of the stepsiza starting vectoyl® = Sy(yo) such that

im Sh(Yo) — (do ® 1)y(to)

b h = (q1.® )Y (to). (2.9)

The following definition is correspondingly given.

Definition 2.5. A preconsistent GLN method (1.2) is convergent if, for an{-pased
initial value problem (1.1), there exist a starting proceel®;, satisfying (2.4) such that
the sequence of vector8ly computed using n steps with stepsize it — tp)/n and
using V! = Sp(yo), converges tajgy(t), for anyt € [to, T].

As usual in the numerical integration of ODESs, consisteray zero-stability are
the needed ingredients producing the convergence of thieatheErom [18], the fol-
lowing theorem holds.

Theorem 2.2. A GLN method(1.2) is convergent if and only if it is consistent and
zero-stable.



3. Linear stability analysis

We now focus our attention to the analysis of the linear Stgipiroperties of GLN
methods (1.2). Linear stability demandings for numericathimods solving second or-
der ODEs (1.1) are classically provided with respect to tiades linear test equation

y' = -2, 3.1)

introduced by Lambert and Watson in [28]. Applying the GLNthael in tensor form
(1.4) to the test equation (3.1), we obtain

Yl = _22R2A v 4 gyin-1, (3.2)
Yl = —2R2BYIT 4 vyt (3.3)

We setz = AhandA = (I + 2A)™1, assuming that the matrlx+ Z2A is invertible. Then
it follows from (3.2) that
yin — AUy[n_ll,

and substituting this relation for the internal stages (B8t8), we obtain
Y =M@y,
where the matriM (z2), defined by
M(Z) =V - ZBAU e R™,

is the so-calledstability (or amplificatior) matrix, while its characteristic polynomial
p(w, 7) is denoted astability polynomial This is a polynomial of degreewith respect
to w and its cofficients are rational functions with respectzto

We now introduce the following definitions extending thessiaal notions of peri-
odicity interval and P-stability to the family of GLN methedl.2) [29, 32].

Definition 3.1. (0, H?) is a periodicity interval for the method (1.2) #Z € (0, H3),
the stability polynomial fw, %) has two complex conjugate roots of modulus 1, while
all the others have modulus less than 1.

Definition 3.2. A GLM is P— stable if its periodicity interval ig0, +co).

The importance of P-stability lies in its ability tdfeiently integrateperiodic stff
problems as clarified, for instance, in [31]. Such problenescharacterized by a peri-
odic theoretical solution expressed as combination of @rapts with dominant short
frequencies and components with large frequencies and amalitudes. An accu-
rate numerical solution of periodic Stproblems would impose severe restriction on
the stepsize length. However, this limit can f&ogently overcome by applying P-
stable methods, sinde-stability ensures that the choice of the stepsize is indepe
dent from the values of the frequencies, but it only depemdthe desired accuracy
[9, 30, 31]. In some sense, this notion completely paratleds of A-stability for first
order ODEs, since A-stable methods are particularly relevethe numerical solution
of stiff problems, eliminating any stepsize restriction due toiktabeasons (compare,
for instance, [2, 24] and references therein).



4. Runge-Kutta-Nystrom stability

In [28], the authors proved th& stable linear multistep methods for second order
ODEs (1.1)

k k
2 @iV = 1P ) Bt Y.
=0 =0

can achieve maximum order 2. Moreover, Coleman [8] provetl nio P-stable one
step symmetric collocation methods exist.
In the context of RKN methods [24, 29]

S
Y, =y + Ghy, + h2Zajf(tn+cjh,Yj), i=12..s
=1

S
Va1 = Yo+ iy + 0 > i (ta + Gh, ),
i=1

S
Yoer =Ya+h > bif(tn+ ch,Y),
i=1

manyA-stable andP-stable methods exist, but the ones falling in the subcladsect
collocation methods, whose diieients (see [23]) have the form

C
a = fo Li(9ds
b = folLi(s)ds
b - fol(l—sm(s)ds

have only bounded stability intervals and are Regtable [30].

In the context of collocation methods for second order eéquat interesting in-
sights in the possibility of achieving a good balance betwaéer of convergence and
P-stability come from the family of so-calldddirect collocation formulae [10, 32].
Indirect collocation methods are generated by applying Ibbcation based Runge-
Kutta method (for the classical idea of numerical collomatand its extensions com-
pare[2,12,13, 19, 20, 22, 23]) to the first order represemtat§ (1.1). Given ag, A, b)
collocation based Runge-Kutta method, the tableau of thegponding indirect col-
location method is

c| A2
ATb
bT

which results in a Runge-Kutta-Nystm method [23]. The theory of indirect colloca-
tion methods completely parallels the well-known theorgafocation methods for



first order equations (see [32]) and, therefore, the pra@sedf a collocation method
are totally inherited by the corresponding indirect caditian method. Thus, the max-
imum attainable order is2 wheres is the number of stages, and it is achieved by
Gauss-type methods, which are asatable, whileL-stability is achieved by Radau
IIA-type methods, of order2- 1.

It is important to highlight the fact that indirect colloa@at methods based on the
Gauss-Legendre collocation points are P-stable (com@32ig. [ Such methods have
order Z and stage ordesand represent, at the best of our knowledge, the family of P-
stable methods with the highest order of convergence wéieet to those known in the
literature. This is the starting point in our search for higter P-stable GLN methods
(1.2), compare [21]. In order to understand this aspectidehake a digression to the
first order case.

In the context of the numerical integration of first order GDRunge-Kutta meth-
ods provide an excellent balance between strong stabildpesties and high order
of convergence. For this reason, in recent times, the ateof many authors has
been devoted to the construction of GLMs for first order ODRgirlg the same sta-
bility properties of Runge-Kutta methods (see [2, 26] arfdnances therein). Thus, if
M(2) € R™" is the stability matrix of a certain GLM, this method is saidie Runge-
Kutta stablef its stability polynomialp(w, 2) takes the form

P 2 = " Hw - RQ),

whereR(2) is the stability function of a reference Runge-Kutta methd@his means
that the corresponding GLM inherits the same stability prips of the Runge-Kutta
method assumed as reference. Butcher and Wright (see [2,] 4n#l6references
therein) characterized Runge-Kutta stability in terms Igebraic conditions on the
codficient matrices of the method, introducing the concepinbtrent Runge-Kutta
stability.

Following the above described lines drawn in the literatnrde context of GLMs
for first order ODEs (also compare [3, 5, 6, 11]), we introdaneanalogous notion of
stability for GLN methods (1.2), in order to let these methotherit the same stability
properties of a certain RKN method assumed as reference.

Definition 4.1. A GLN method1.2) is said to beRunge-Kutta-Nystdom stableif its
stability polynomial assumes the form

p(w,?) = 0 (G@w* + h(Dw + h(d),

where g(2)w? + 01 (2w + qo(2) is the stability polynomial of a certain reference Runge-
Kutta-Nystrom method.

In other words, the stability properties of GLN methods meth having RKN-
stability are determined by the polynomial

(Do’ + Qa(w + Go(2),

which is exactly the stability polynomial of a RKN method. érbfore GLN methods
(1.2) with RKN-stability on Gaussian points afestable and, in particulaP-stable.



Section 6 reports examples of GLN methods with RKN-stabilhich result to
be P-stable and having higher order of convergence thanofhidte corresponding
reference RKN method, i.e., that based on indirect collonabn Gaussian points.
Such examples are derived within the family of GLN method2)(vhose input vector
approximates the so-called Nordsieck vector. This familgnethods is introduced in
next section.

5. GLN methods of Nordsieck type

We now assume that the input vecid® of the GLN (1.2) approximates the so-
called Nordsieck vector (compare [26] and references ihere

y(tn)

hy (tn)
. : (5.1)

hPyP(tn)

i.e. thei-th entryy'™ of the input vector approximates the scalktl derivativeh'y(-1(t,),
i =0,1,...,p, wherepis the order of convergence of the method. We observe that,
since the input vector and the Nordsieck one respectively damensions andp + 1,
we will always assume that= p + 1.

As a direct consequence of the form of the input vector, tttoreqo, q; andqg,
involved in the definitions of preconsistency and consistehave the form

1 0 0
0 1 0
Jo = 0 , O = 0 , Oo= 1
0 0 0

Hence, for a Nordsieck GLN, the vectays, q; andq, are the first three vectoes,
&, €3 in the canonical basis d¥. This remark is helpful in order to provide a com-
plete convergence analysis of GLN methods in Nordsieck favhich is given in the
following result.

Theorem 5.1. A GLN (1.4)whose input vectorl§} approximates the Nordsieck vector
(5.1)is convergent if and only if

Q) Be+Vq2=%+e2+e3;

(i) its Butcher tableau has the form

[Ae c
Ble ete

<l

whereU € R(-2 andV e RS-



(iii) all the eigenvalues of have modulus strictly less than 1, beMghe matrixV
deprived of its first two rows.

Proof. In force of the criterion provided by Theorem 2.2, we arewa#id to establish the
analysis of convergence of GLN methods (1.4) on provinggmsistency, consistency
and zero-stability. Since in the case of Nordsieck methibeséctors)p andq; are the
first two vectorse;, e of the canonical basis iR", the conditions of preconsistency
(2.1) applied to such methods assume the form

Ues=e Ver=e, Ug=c Ve=e+e,

providing that the first two columns of the mattikare the vectoreandc, respectively,
while those of the matri¥ aree; ande; + &, respectively, which gives the poirit)(
of the thesis.

Point () of the thesis is, instead, direct consequence of consigtndition (2.2),
where the vectors|p, q; and g, are replaced by, & ande;, respectively. Once
consistency is assessed, the remaining point to analyzergsstability. Thus, we
investigate if the root conditioriif in Theorem 2.1 is satisfied. This point is clarified
by observing the expression of the mat¥ixonce preconsistency is imposed, which
assumes the following form

whereV; andV, are the first two rows of the matri¥. Hence, the matri®y/ of a
preconsistent GLN in Nordsieck form is block lower triargulAs a consequence, the
root condition {i) in Theorem 2.1, which guarantees the zero-stability ofrtfe¢hod,

is satisfied if the eigenvalues ®fare all in modulus strictly less than 1. This implies
point (iii ) of the thesis and completes the praaf.

Theorem 5.1 suggests that the first two columns of the matticandV play a
special role in the convergence of a GLN method (1.2) in Nedksform. We now
prove that the remaining columns dfandV dictate the order of convergence of the
method.

Theorem 5.2. A GLN method1.4)in Nordsieck form has order and stage-order both
equal to p if and only if

Sl _ N 8t BOT?
=0 (k=2) 52)
uk+D) = kA
Tk (k-2
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k=2,...,p+1, being ¥+ and U< the (k + 1)-st columns of the matricds andV,
respectively.

Proof. We remind (compare [18]) that a GLN has orgbef and only if, by definition,

P
Yy = ghlyi(t) + O(hP).
j=0

Correspondingly, it is known from the general theory of GLKthods (compare [18])
that such a method has order and stage-opdeand only if

c* — k(k — 1)Ac2 - klUq, = 0,

k Kl
> Htker — Kk - DBE — KIVg, =0,

fork = 2...,p+ 1. In the case of GLN methods in Nordsieck form, the vectprs
j=0,1,..., pform the canonical basis &' sincer = p+ 1. Thus, the above system
of order conditions assume the form

¢ — k(k - 1)Ac*2 - klUg,1 = 0,

k
k!
D jr 8t — Kk = DBS? — KVes = 0,
=0 *

fork=2..., p+ 1, which is equivalent to (5.2), completing the proaf.

We observe that order conditions (5.2) also holds true whermtderp and stage-
orderq differs by one, i.e. wheq = p — 1 (compare [18, 26]).

6. Derivation of P-stable methods

We now apply all the tools introduced in the previous seditinderive examples
of RKN-stable GLN methods (1.4) whose input vector appr@tes the Nordsieck
vector (5.1). In particular, as first examples, we suppose ttie dimension of the
internal stage vector is = 1 and assume as reference RKN method the one based on
indirect collocation on one Gauss-Legendre point

111

2| 4
6.1
! (6.1)

1

whose stability polynomial is
, 2(-4+2)
q((A),ZZ) =w +Ww+l,

11



thus it is P-stable.
In order to make a comparison among formulae having the samguatational

cost, since method (6.1) has order 2, we look for one-stade B&thods (thus, having
the same computational cost of (6.1)) of order greater thateRce, in our derivation

process:
e we impose the conditions guaranteeing the convergencegh#éthod, given in
Theorem 5.1;
¢ we derive the remaining columns of the matritkandV given by Theorem 5.1,
in order to achieve order of convergence at least equal to 3;

o we force the remaining degrees of freedom to provide a #apiblynomial of

the form
2(-4+7)

p(u),Zz):u)r*z (1)2+W(1)+1 ,

ensuring that the corresponding method is automaticatiiaBle.

Sincer = p+ 1 and we wish order at least equal to 3, we first assumet. We
correspondingly obtain a one-staBestable method of ordep = 3 and stage order

q=2, withc = %zand

1 1 22V2 1-v2 12
4 2 2 6
322 |1 1 _¥2  _2
B v = 5+?éZ 0 1 lf?éZ 2122
2+V2 V2 1
2|0 0 -%F 3
1 /o o -1 ¥

If r =5, we gain a one-stage stable method of ordgy = 4 and stage ordey = 3,
with A =[],

_ 1422 c(-3+c®
U_[l c =7 %2(3?0"‘(:3) (24)]’

[ 42-64c+37c2-10c3+¢* 1
24

67—76c+30c%—4c3
24

B = (=3+c)(—2+c)
2
5
5= Cc
1

12



[ 1 1 —30+64c—37c2+10c3—c* 4-42c+64c2—37c3+10c* —c° 2-42c2+64c3-37c*+10c5—c®
24 24 73
0o 1 —43+76c-30c%+4¢3 12-67c+76c2-30c3+4c* 16-67¢?+76c3-30c* +4¢°
24 48
_ —4+5¢-c? 2-60+5c2—c® 2-6c%+5c¢3—c*
V=100 -2 - 2 - 4 >
5 5c 4-5c2+2¢%
00 c—-3 1- 5+ c? Y
[0 0 -1 —c 1-¢

wherec ~ 0.3754243604533405 is the only root in {0 of the polynomial
a(x) = 6 — 210 + 320x* — 185¢° + 50x° — 5x/,

having two pairs of complex conjugate roots and two realganttside the interval
(0, 1).

This order 4 method (denoted as GLN4) is now compared withRiKi one con-
sidered as reference method, i.e. the indirect colloca®KN method based on one
Gauss-Legendre collocation point (next denoted as RKNBgyTare both one-stage
methods, thus they require the same computational coshéimtegration process.
Such methods are applied on the periodiff gtioblem introduced by Kramarz in [27]

V’(t)=[’1’:i i’u__zi]y(t), t € [0, 201]

with initial conditions

y(0)=[2,-1]". y(0)=[0,0]".

The eigenvalues of the Jacobian of the fo®nt matrix of the problem arel, —u:
consequently, the analytical solution of the system depemmdthe two frequencies
1 and ju. However, the high frequency component, corresponding/iowhen
u > 1, is eliminated by the initial conditions: the exact saduatiis indeedy(t) =
[2 cost), —cost)]". Notwithstanding this, its presence in the general satutibthe
system dictates restrictions on the choice of the stepsizthat the system is ffi

We show the numerical evidence originated by applying threerhethods in a fixed
stepsize environment, with stepsize

T
_?’

beingk an integer number. The results, reported in Table 1, exgeratly confirm the
theoretical order of convergence and reveal the supegriofithe GLN4 method.

h

7. Conclusions

We have analyzed the stability properties of GLN method4)(and investigated
the possibility of obtaining P-stable formulae of highederthan that known in the

13



RKN2 GLN4

k llerr(20m)]|w p fe llerr(207)||e p fe

447.101 477 5.86-101 480
124101 198 | 957 399-102 | 387 | 959
2.82-107 199 | 1917 | 253-10° | 398 | 1916
7.05-10°3 199 | 3837 | 159-10% | 3.99 | 3838
176-10° | 200 | 7677 | 994-10° | 400 | 7670
441-10% | 200 | 15357 | 6.21-107 | 4.00 | 15340

0 N O O b W

Table 1: Numerical results for RKN2 and GLN4 on Kramarz problesmereerr(20r) is the global error in
the endpoint of the integratiom,is estimated order of convergende the number of function evaluations

literature, without heightening the computational cost.sticceed in this aim we have
first selected a family of reference P-stable methods, nathel class RKN method
based on indirect collocation on Gauss-Legendre pointd,farced our methods to
inherit the same stability polynomial. This leads to theaapt of RKN-stability. We
have introduced RKN-stable GLN methods (1.4) whose inpatores the Nordsieck
vector (5.1). As first examples, we have derived P-stabléaoust of order 3 and 4 of
convergence, which is higher than that of the analog RKNreefee method, without
heightening the computational cost. The numerical evidezanfirm the theoretical
order of convergence and confirm thifeetiveness andficiency of the introduced
methods. The introduced technique can be next used to gemsthods depending
on a larger number of internal stages, which result to hagteraf convergence higher
than that of the reference RKN method.
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