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Abstract

It is the purpose of this paper to revise the exponential fitting technique for the numerical solution of special second
order ordinary differential equations (ODEs)y′′ = f (x, y), with oscillatory or periodic solutions, by Runge-Kutta-
Nyström methods. Due to the multistage nature of these methods, the proposed technique takes into account the
contribution to the error arising from the computation of the internal stages. The benefit on the accuracy of the overall
numerical scheme is visible in the presented numerical evidence.
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1. Introduction

The paper is focused on the numerical solution of Hadamard well-posed special second order ordinary differential
equations (ODEs)

y′′ = f (x, y), y′(x0) = y′0, y(x0) = y0 ∈ R, (1.1)

assumed to exhibit an a priori known periodic/oscillatory behaviour. Classical numerical methods for ODEs may
not be well-suited to follow a prominent periodic or oscillatory behaviour because, in order to accurately follow the
oscillations, a very small stepsize would be required with corresponding deterioration of the numerical performances,
especially in terms of efficiency. For this reason, many classical numerical methods have been adapted in order
to efficiently approach oscillatory problems. One of the possibleways to proceed in this direction is obtained by
imposing that a numerical method exactly integrates (within the round-off error) problems of type (1.1) whose solution
can be expressed as linear combination of functions other than polynomials: this is the spirit of the exponential fitting
technique (EF, see [20, 21] and references therein), where the adapted numerical method is developed in order to be
exact on problems whose solution is linear combination of

{1, x, . . . , xK ,exp (±µx), x exp (±µx), . . . , xP exp (±µx)},

whereK andP are integer numbers.
The methods we consider in this paper belong to the class of explicit Runge-Kutta-Nystr̈om methods (compare

[2, 15] and references therein)

Yi = yn + cihy′n + h2
i−1
∑

j=1

ai j f (xn + c jh,Y j), i = 1,2, . . . , s,

y′n+1 = y′n + h
s
∑

i=1

b′i f (xn + cih,Yi), yn+1 = yn + hy′n + h2
s
∑

i=1

bi f (xn + cih,Yi),

(1.2)

and we aim to derive a suited EF adaptation of these methods, which takes into account their multistage nature.
In the context of Runge-Kutta and Runge-Kutta-Nyström methods, exponentially-fitted methods have already been
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considered, for instance, by Franco [13, 14], Simos [27, 28], Vanden Berghe [29], Van de Vyver [30] while their
trigonometrically-fitted version has been developed by Paternoster in [22]; mixed-collocation based Runge–Kutta–
Nyström methods have been introduced by Coleman and Duxbury in [3].

The standard EF technique [20] disregards the contributionof the error in the internal stagesYi (given by the first
equation in (1.2)) to the error of the overall numerical scheme. Here, following the spirit of [5, 18], we explain how to
derive EF-based methods which also take into account the error provided by the internal stages computation, which
cumulates to the truncation error of the overall scheme.

2. Revised operators

A fundamental role in the standard construction of EF-basedexplicit RKN methods (compare [20] and references
therein) is played by the followings + 2 functional operators

Li[h, a]y(x) = y(x + cih) − y(x) − cihy′(x) − h2
i−1
∑

j=1

ai jy
′′(x + c jh), i = 1, . . . , s, (2.1)

L(1)[h,b′]y(x) = hy′(x + h) − hy′(x) − h2
s
∑

i=1

b′iy
′′(x + cih), (2.2)

L[h,b]y(x) = y(x + h) − y(x) − hy′(x) − h2
s
∑

i=1

biy
′′(x + cih), (2.3)

associated to (1.2). In standard derivations of EF Runge-Kutta methods, the elementsbi andb′i are computed under
the tacit assumption that the error in the internal stages iscompletely neglected, i.e.Yi = y(xn + cih). Our aim is now
that of deriving EF-based methods where the influence of the errors

εi = Yi − y(xn + cih), i = 1,2, . . . , s, (2.4)

associated to the internal stages is also taken into account.
We consider the local error associated to the external approximationyn+1 in (1.2)

LR[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − hy′(xn) − h2
s
∑

i=1

bR
i f (xn + cih,Yi), (2.5)

where the superscriptR denotes that we are consideringrevised EF methods. Taking into account that

y′′(xn + cih) = f (xn + cih,Yi + εi) = f (xn + cih,Yi) + εi fy(xn + cih,Yi) + O(ε2i ) (2.6)

we obtain the revised operators

L(1),R[h,b]y′(x)
∣

∣

∣

∣

x=xn

= y′(x + h) − y′(x) − h
s
∑

i=1

b′i
R
(

y′′(xn + cih) − fy(xn + cih,Yi)εi

)

, (2.7)

LR[h,b]y(x)
∣

∣

∣

∣

x=xn

= y(xn + h) − y(xn) − hy′(x) − h2
s
∑

i=1

bR
i

(

y′′(xn + cih) − fy(xn + cih,Yi)εi

)

, (2.8)

which, unlike (2.2) and (2.3), explicitly depend on the errorsεi associated to the computation of the internal stagesYi.
Hereinafterf (i)

y is the short-hand notation forfy(xn + cih, Yi).

3. Construction of a family of methods

Let us now consider, as a case study, the practical derivation of revised EF formulae (1.2) withs = 2, by assuming
as fitting spaces the

F̂ = {1, e±µx}, F = {1, eµx}, (3.1)
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which are respectively associated to the external and internal stages computation: i.e. the external value is exact on
the linear space generated byF̂ , while the internal stages approximations are exact on the linear space spanned by
F . We observe that, in the choice of the fitting spaces (3.1), wehave totally neglected the presence of monomials
(which are typically at the basis of classical continuous methods [15, 1]), in order to derive methods which are more
exponentially fitted, thus more suited to integrate differential problems with non-polynomial solutions.

In order to compute the unknown coefficientsa21, b1
′, b2

′, b1 andb2, we proceed as follows:

• we annihilate the operator (2.1) onF and, due to the invariance in translation [20], we restrict to x = 0, i.e. we
compute the solution of

L2
R[h,b]eµx

∣

∣

∣

∣

x=0
= 0,

obtaining

a21(z) =
ec2z − c2z − 1

z2
.

We observe that the obtaineda21(z) corresponds toϕ2(c2z), a function commonly used in the context of expo-
nential integrators (compare [16]);

• we compute the errorε2, needed to compute the revised operators (2.7) and (2.8). Weobserve that the basis
functions ofF in (3.1) are solutions of the reference differential equation

y′′ ± µy′ = 0,

thus, the leading term of the error in the computation ofY2 is given by

ε2 = Y2 − y(xn + c2h) = h2α(z)(y′′(x) ± µy′(x)), (3.2)

whereα is the stage error constant associated toY2. Following the procedure used in [5, 18], we computeα as
solution of the linear equation

L2[h, a]x2
∣

∣

∣

∣

x=0
= ε2

∣

∣

∣

∣

y(x)=x2, x=0
,

obtaining

α(z) =
c2

2 − 2a21(z)

2
; (3.3)

• we finally evaluate the revised operators in correspondenceto the elements ofF in (3.1). SinceLR[h,b]1 = 0,
we derivebR

1(z) andbR
2(z) as solution of the linear system























LR[h,b]eµx
∣

∣

∣

∣

x=0
= 0,

LR[h,b]e−µx
∣

∣

∣

∣

x=0
= 0,

obtaining

bR
1(z, fy) =

2µ2ec2z(z − sinh(z)) + β(z, fy)(ez − z − 1)

β(z, fy)z2
, bR

2(z, fy) =
2µ2(sinh(z) − z)
β(z, fy)z2

,

with β(z, fy) = 2
(

µ2 − fy
)

sinh(c2z) + fy(c2z(c2z + 2)− 2 cosh(c2z) + 2). In analogous way, we computeb′1
R(z)

andb′2
R(z) as solution of the linear system























L(1),R[h,b]eµx
∣

∣

∣

∣

x=0
= 0,

L(1),R[h,b]e−µx
∣

∣

∣

∣

x=0
= 0,

3



obtaining

b′1
R(z, fy) =

(ez − 1)
(

µ2e(2c2−1)z − µ2e(2c2−1)z+z + γ(z, fy)
)

γ(z, fy)z
, b′2

R(z, fy) =
(ez − 1)2 µ2e(c2−1)z

γ(z, fy)z
,

with γ(z, fy) = e2c2z
(

µ2 − 2 fy
)

+ fyec2z(c2z(c2z + 2)+ 2)− µ2.

4. Numerical experiments

We now provide a numerical evidence to highlight the behaviour of EF-revised methods with respect to the analo-
gous standard ones. The computations have been performed ona node with CPU Intel Xeon 6 core X5690 3,46GHz,
belonging to the E4 multi-GPU cluster of the Department of Mathematics of the University of Salerno.

It is evident that, in order to effectively apply the methods derived in Section 3, it is necessary to provide an
accurate estimation of the parameterµ (compare [8, 9, 17, 19, 26]). To this purpose, we approximatethe value of the
parameter related to the solution computed in then-th step point by the formula

µn = ±
y′′(xn)
y′(xn)

. (4.1)

We observe that this value annihilates the leading term of the local truncation error which, due to choice (3.1) of the
fitting spaceF , is equal to the reference differential equation

(D(2) ± µD)y(x) = 0

times a constant term.
Due to the nature (1.1) of the operator under investigation and supposing that the problem is autonomous, we have

y′′(xn) = f (y(xn)),

thus

µn = ±
f (yn)
y′n
, (4.2)

whereyn andy′n are the approximations to the solution of (1.1) and its first derivative carried out by the RKN method
(1.2) in then-th step point.

We first consider the Prothero-Robinson problem















y′′(x) = −
(

y(x) − e−µx) + µ2e−µx, x ∈ [0,1],

y′(0) = −µ, y(0) = 1,
(4.3)

whose exact solutiony(x) = e−µx belongs to the fitting space, thus the derived methods are able to solve this problem
exactly. In Table 4, we report the global errors in the final step points, obtained in correspondence of several fixed
values of the stepsize and the abscissac2. We observe that both the revised and the standard versions exactly compute
the solution of problem (within round-off error), as expected. In addition, the revised method is ableto achieve a
better accuracy than the standard one, with the same computational cost. In Table 4 we report the minima and maxima
approximated values of the parameterµ, computed by (4.2).

We next consider the undamped Duffing problem















y′′(x) = −(1+ y2)y + (cos(x) + ǫ sin(10x))3 − 99ǫ sin(10x), x ∈ [0,100],

y′(0) = 10ǫ, y(0) = 1,
(4.4)

with ǫ = 10−3, whose exact solutiony(x) = cos(x)+ ǫ sin(10x) does not belong to the chosen fitting space. The results,
reported in Table 4, show a better performance of the revisedmethod with respect to the standard one.
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µ h
c2 = 1/2 c2 = 3/4

S SA R RA S SA R RA

1/512 1.0e-10 5.5e-16 2.0e-13 7.2e-162.3e-10 6.7e-16 8.6e-14 7.2e-16
1 1/1024 1.3e-11 4.4e-16 1.1e-14 4.4e-162.9e-11 3.9e-16 4.9e-15 3.9e-16

1/2048 1.6e-12 5.0e-16 1.2e-15 4.9e-163.6e-12 5.0e-16 6.6e-16 4.9e-16
1/4096 2.0e-13 4.4e-16 4.4e-16 4.4e-164.5e-13 4.4e-16 4.4e-16 4.4e-16

1/512 5.68e-07 1.1e-15 3.0e-13 3.3e-161.4e-09 9.9e-16 1.0e-12 3.0e-16
2 1/1024 1.42e-07 1.3e-15 2.0e-14 1.8e-151.7e-10 1.3e-15 6.6e-14 1.3e-15

1/2048 3.55e-08 1.1e-15 2.4e-15 5.8e-162.2e-11 7.8e-16 6.0e-15 7.8e-16
1/4096 8.89e-09 2.8e-16 2.5e-16 2.8e-162.7e-12 3.3e-16 1.1e-16 3.6e-16

Table 1: Numerical results originated from the application of standard and revised EF methods to problem (4.3). S and SA (R and RA) denote the
errors for the standard (revised) version, without and withapproximation of parameterµ, respectively.

µ h SA RA
min(µn) max(µn) min(µn) max(µn)

1

1/4 0.999999999934466 1.00000000000000001.0000000000000000 1.000000694302470
1/8 0.999999999999546 1.00000000000000001.0000000000000000 1.000000018623597
1/16 0.999999999999996 1.00000000000000001.0000000000000000 1.000000000529162
1/32 0.999999999999999 1.00000000000000001.0000000000000000 1.000000000015725

2

1/4 2.0000000000000000 1.9999999813004312.0000000000000000 2.000074030808046
1/8 2.0000000000000000 1.9999999998517762.0000000000000000 2.000002393779446
1/16 2.0000000000000000 1.9999999999988602.0000000000000000 2.000000073872768
1/32 2.0000000000000000 1.9999999999999912.0000000000000000 2.000000002275468

Table 2: Minimum and maximum value of approximated paramaterµn on problem (4.3) forc2 = 1/2, various stepsizeh and real value ofµ.

5. Conclusions

We have introduced a revised technique for the computation of the coefficients of EF-based RKN methods (1.2),
which takes into account the multistage nature of the methods under investigations, by considering the contributions
of the stage errors in the overall numerical scheme. The methods depend on the values of parameters to be suitably
determined: the proposed strategy, consisting in applyingEquation (4.2) at each step, does not require the computation
of further function evaluations The numerical experimentshave underlined the superiority of the revised EF methods
with respect to the standard ones and accuracy of the parameter estimates. Further developments regard the application
of the revised technique to other family of methods, such as two-step hybrid methods [4, 6, 7], two-step Runge-Kutta-
Nyström methods [23, 24, 25] and general linear methods [10] for (1.1) and ODEs with discontinuous right-hand side
[11, 12].
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