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Abstract

It is the purpose of this paper to revise the exponentiahjttechnique for the numerical solution of special second
order ordinary dierential equations (ODEs)’ = f(x,y), with oscillatory or periodic solutions, by Runge-Kutta-
Nystrdm methods. Due to the multistage nature of these methodgrtposed technique takes into account the
contribution to the error arising from the computation af thternal stages. The benefit on the accuracy of the overall
numerical scheme is visible in the presented numericakexd.
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1. Introduction

The paper is focused on the numerical solution of Hadamatdpeeed special second order ordinarffeliential
equations (ODES)
y, = f(X’ y)? y/(XO) = YO’ y(XO) =Yo € R’ (11)

assumed to exhibit an a priori known perig@discillatory behaviour. Classical numerical methods forE3Dnay

not be well-suited to follow a prominent periodic or osdiiey behaviour because, in order to accurately follow the
oscillations, a very small stepsize would be required withr@sponding deterioration of the numerical performances
especially in terms of ficiency. For this reason, many classical numerical metheds been adapted in order
to eficiently approach oscillatory problems. One of the possitdg's to proceed in this direction is obtained by
imposing that a numerical method exactly integrates (withé round-€f error) problems of type (1.1) whose solution
can be expressed as linear combination of functions otla@rgblynomials: this is the spirit of the exponential fitting
technique (EF, see [20, 21] and references therein), wheradapted numerical method is developed in order to be
exact on problems whose solution is linear combination of

(1,%..., XK, exp @ux), xexp Eux), ..., X" exp Eux)},

whereK andP are integer numbers.
The methods we consider in this paper belong to the classphicéxRunge-Kutta-Nysidim methods (compare
[2, 15] and references therein)
i1
Y, =yn+cih)/n+hZZa;jf(xn+cjh,Yj), i=12...,5
. =1 . (1.2)
Yors =Va+h D B0+ GH YD), Yoa = Yo+ By, + 1P D" Bif (% + Gh, YY),
i=1 i=1

and we aim to derive a suited EF adaptation of these methddishwakes into account their multistage nature.
In the context of Runge-Kutta and Runge-Kutta-Ngstrmethods, exponentially-fitted methods have already been
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considered, for instance, by Franco [13, 14], Simos [27, ¥8hden Berghe [29], Van de Vyver [30] while their
trigonometrically-fitted version has been developed beiPaister in [22]; mixed-collocation based Runge—Kutta—
Nystrom methods have been introduced by Coleman and Duxbury.in [3]

The standard EF technique [20] disregards the contribatidhe error in the internal stag&s(given by the first
equation in (1.2)) to the error of the overall numerical sukeHere, following the spirit of [5, 18], we explain how to
derive EF-based methods which also take into account tlee grovided by the internal stages computation, which
cumulates to the truncation error of the overall scheme.

2. Revised operators

A fundamental role in the standard construction of EF-basgticit RKN methods (compare [20] and references
therein) is played by the following+ 2 functional operators

i-1

Li[h, aly(x) = y(x + cih) — y(x) — cihy’(x) — h2 Z aijy’(x+ ch, i=1...,s (2.1)
j=1
LO[h, b'ly(x) = hy' (x+ h) — hy'(x) — h? i by’ (x + ch), (2.2)
i=1
L[, bly(x) = y(x+ h) — y(x) — hy'(x) — h? Z by’ (x + ¢h), (2.3)
i=1

associated to (1.2). In standard derivations of EF Rungitakuethods, the elementssandb; are computed under
the tacit assumption that the error in the internal stagesrnpletely neglected, i.&; = y(x, + ¢h). Our aim is now
that of deriving EF-based methods where the influence ofrttoese

& =Y —y(X, + ch), i=12..., S, (2.4)

associated to the internal stages is also taken into account
We consider the local error associated to the external appationyn,; in (1.2)

S
LBl _, = Y0+ 1) = Y(%) = hy () = b 3" b (%0 + G, ), (2.5)
i=1
where the superscrift denotes that we are considerireyised EF methods. Taking into account that
Y O +6h) = f0a +ch, Y + &) = 0 + 6h, Yi) + & fy(x, + Gih, Yi) + O(&f) (2.6)

we obtain the revised operators

LOFBlY ()] =y 0+ 1) =y 09 = h > bR (Y (x0 + Gh) - 0+ Gh. V). 2.7)
i=1
LNV = Y0+ 1) = y0) —hy (09 = 12 3 R (Y (0 + 6h) = fyxa + G YDe). (28)

i=1

which, unlike (2.2) and (2.3), explicitly depend on the esig associated to the computation of the internal stages
Hereinaﬁerf§') is the short-hand notation fdy(x, + cih, ;).

3. Construction of a family of methods

Let us now consider, as a case study, the practical denivaficevised EF formulae (1.2) with= 2, by assuming
as fitting spaces the A

F ={lL e, F ={1le%}, (3.1)
2



which are respectively associated to the external andniakstages computation: i.e. the external value is exact on
the linear space generated %y while the internal stages approximations are exact onitigal space spanned by
. We observe that, in the choice of the fitting spaces (3.1)hawe totally neglected the presence of monomials
(which are typically at the basis of classical continuoushmds [15, 1]), in order to derive methods which are more
exponentially fitted, thus more suited to integrat@ediential problems with non-polynomial solutions.

In order to compute the unknown dfeientsayy, by’, b,’, by andb,, we proceed as follows:

e we annihilate the operator (2.1) ghand, due to the invariance in translation [20], we restact £ 0, i.e. we
compute the solution of

LN[hble*| =0,
x=0
obtaining
€2 —cz—1
2 )
We observe that the obtainegh(2) corresponds tg,(c,2), a function commonly used in the context of expo-
nential integrators (compare [16]);

a1(2) =

e we compute the erras,, needed to compute the revised operators (2.7) and (2.8)oba&rve that the basis
functions ofF in (3.1) are solutions of the referencdfdrential equation

y'+uy =0,
thus, the leading term of the error in the computatiolY,0is given by
&2 = Yz = Y(%n + Coh) = h2a(@)(y” (%)  py (X)), (3.2)

whereq is the stage error constant associatedtoFollowing the procedure used in [5, 18], we compautas
solution of the linear equation

Lo[h, a]x2’ =&

x=0

y(x)=x2, x=0"
obtaining

(3.3)

« we finally evaluate the revised operators in correspondanttes elements of in (3.1). SinceLR[h, b]1 = 0,
we deriveb(z) andbf}(2) as solution of the linear system

LR[h, b]e¥ o™ 0,
LR[h, b]e™#X o o,
obtaining
20072(5 _ o 7 2(ci _
b?(z, i) = 2ue?*(z- sinh@) + B(z fy) (e —z-1) b?(Z i) = 2u“(sinh@) — 2)

Bz 1,)Z ’ Bz )2

with B(z fy) = Z(u2 - fy) sinhC22) + fy(C2z(Coz + 2) — 2 cosh(,2) + 2). In analogous way, we compute’(2)
and b’ZR(z) as solution of the linear system

LOR[h, ble™

:0,
0

X=
LOR[h, bex
3

=0
x=0 ’



obtaining

(ez _ 1) (ﬂze(Zcz—l)z _ ,uze(2c2—1)2+2 + ’}/(Z, fy))
¥z fy)z

(ez _ 1)2/128(02_1)2

, b’ R z £) =
2 (2 ) Y(z fy)z

bz f,) =

with y(z. ;) = €222 (u? - 2fy) + f,e%(Coz(Coz + 2) + 2) — 112,

4. Numerical experiments

We now provide a numerical evidence to highlight the behavid EF-revised methods with respect to the analo-
gous standard ones. The computations have been perforneedade with CPU Intel Xeon 6 core X5690 3,46GHz,
belonging to the E4 multi-GPU cluster of the Department oti\danatics of the University of Salerno.

It is evident that, in order toffectively apply the methods derived in Section 3, it is nemss$o provide an
accurate estimation of the parametgicompare [8, 9, 17, 19, 26]). To this purpose, we approxirttegesalue of the
parameter related to the solution computed inritl step point by the formula

LY 0)
Y (%)
We observe that this value annihilates the leading termenfdbal truncation error which, due to choice (3.1) of the

fitting spacef, is equal to the referenceftirential equation

Hn = (4.1)

(D@ £ uD)y(x) = 0

times a constant term.
Due to the nature (1.1) of the operator under investigatimhsaupposing that the problem is autonomous, we have

Y (%) = f(y(xn)),

thus
1o
Y'n
wherey, andy;, are the approximations to the solution of (1.1) and its fieshwétive carried out by the RKN method
(2.2) in then-th step point.
We first consider the Prothero-Robinson problem

{ Y' (%) = - (y() - e*) + e, xe[0,1],
y@)=-u  ¥0)=1

whose exact solutiop(x) = e** belongs to the fitting space, thus the derived methods aectalsiolve this problem
exactly. In Table 4, we report the global errors in the finapgpoints, obtained in correspondence of several fixed
values of the stepsize and the abscigsaVe observe that both the revised and the standard versianyecompute
the solution of problem (within roundfiberror), as expected. In addition, the revised method is @biehieve a
better accuracy than the standard one, with the same cotigmatecost. In Table 4 we report the minima and maxima
approximated values of the parameatecomputed by (4.2).

We next consider the undamped g problem

(4.2)

Hn =

(4.3)

{ Y/ (X) = —(1+ Y?)y + (cos) + e sin(1X)® — 99 sin(1), x € [0,100] @4

y(0)=10,  y(0)=1,

with € = 1073, whose exact solutioy(x) = cos() + € sin(10x) does not belong to the chosen fitting space. The results,
reported in Table 4, show a better performance of the revisettiod with respect to the standard one.
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H C=1/2 c = 3/4
K S SA R RA S SA R RA

1/512 1.0e-10 5.5e-16 2.0e-13 7.2e-162.3e-10 6.7e-16 8.6e-14 7.2e-16
1| 1/1024 | 1.3e-11 4.4e-16 1l.le-14 4.4e-162.9e-11 3.9e-16 4.9e-15 3.9e-16
1/2048 | 1.6e-12 5.0e-16 1.2e-15 4.9e-163.6e-12 5.0e-16 6.6e-16 4.9e-16
1/4096 | 2.0e-13 4.4e-16 4.4e-16 4.4e-164.5e-13 4.4e-16 4.4e-16 4.4e-16

1/512 | 5.68e-07 1.1e-15 3.0e-13 3.3e-161.4e-09 9.9e-16 1.0e-12 3.0e-16
2 | 1/1024 | 1.42e-07 1.3e-15 2.0e-14 1.8e-151.7e-10 1.3e-15 6.6e-14 1.3e-15
1/2048 | 3.55e-08 1.1e-15 2.4e-15 5.8e-162.2e-11 7.8e-16 6.0e-15 7.8e-16
1/4096 | 8.89e-09 2.8e-16 2.5e-16 2.8e-1&2.7e-12 3.3e-16 1.1e-16 3.6e-16

Table 1: Numerical results originated from the applicatibstandard and revised EF methods to problem (4.3). S and SAqMRA) denote the
errors for the standard (revised) version, without and afiproximation of parametegs, respectively.

w!| h SA RA
min(un) max(un) min(un) max(,)

1/4 0.999999999934466 1.0000000000000000.0000000000000000 1.000000694302470
1/8 0.999999999999546 1.0000000000000Q000.0000000000000000 1.000000018623597

! 1/16 | 0.999999999999996 1.000000000000000@.0000000000000000 1.000000000529162
1/32 | 0.999999999999999 1.0000000000000000.0000000000000000 1.000000000015725
1/4 | 2.0000000000000000 1.9999999813004312.0000000000000000 2.000074030808046

2 1/8 | 2.0000000000000000 1.9999999998517}&.0000000000000000 2.000002393779446

1/16 | 2.0000000000000000 1.99999999999886(®.0000000000000000 2.000000073872768
1/32 | 2.0000000000000000 1.99999999999999P.0000000000000000 2.000000002275468

Table 2: Minimum and maximum value of approximated paramatemn problem (4.3) foc, = 1/2, various stepsizk and real value ofi.

5. Conclusions

We have introduced a revised technique for the computafidimeocodficients of EF-based RKN methods (1.2),
which takes into account the multistage nature of the methimder investigations, by considering the contributions
of the stage errors in the overall numerical scheme. The adstdepend on the values of parameters to be suitably
determined: the proposed strategy, consisting in appEingation (4.2) at each step, does not require the computatio
of further function evaluations The numerical experimdrege underlined the superiority of the revised EF methods
with respect to the standard ones and accuracy of the paaastimates. Further developments regard the application
of the revised technigue to other family of methods, suchvasstep hybrid methods [4, 6, 7], two-step Runge-Kutta-
Nystrom methods [23, 24, 25] and general linear methods [10] fdr) @nd ODEs with discontinuous right-hand side
[11, 12].
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