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Abstract

It is the purpose of this paper to derive diagonally implexponentially fitted (EF)
Runge-Kutta methods for the numerical solution of initialue problems based on
first order ordinary dterential equations, whose solutions are supposed to &xdmbi
exponential behaviour. In addition to the standard appgrdacthe derivation of EF
methods, we provide a revised constructive technique &haistinto account the con-
tribution to the error inherited from the computation of theernal stages. The derived
methods are then compared to those obtained by neglecenptitribution of the er-
ror associated to the internal stages, as classically dotteeistandard derivation of
multistage EF-based methods. Standard and revised EF dsethe then compared in
terms of linear stability and numerical performances.

Key words: Ordinary diferential equations, diagonally implicit methods, expdian
fitting.

1. Introduction

It is the purpose of this paper to introduce special purpesei-emplicit Runge-
Kutta (RK) methods for the numerical solution of ordinarffeliential equations (ODES)
{ Yy (¥ = f(xy(x), xe[x,X],
y(x0) = yo € R,

wheref : [, X] x RY — RY is a suficiently smooth function ensuring that the corre-
sponding problem is well posed. The class of methods we agarisider is the family
of singly diagonally implicit Runge-Kutta (SDIRK) methods

(1.1)

m
Ynet = Yo+ h D bif %+ cih, YIT),
o (1.2)
MLV hzajf(xn+cjh,vll”1), i=12...m
=1

conventionally represented in terms of their Butcher table
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where all the diagonal elemerag, i = 1,2,...,m, are all equal to a common value

A1eR.

It is known from the literature that the lower triangulanstiure of the matrixA
allows to solve thend-dimensional nonlinear system in (1.2)rimforward steps, each
consisting in the solution of d&dimensional nonlinear system. Moreover, if all the ele-
ments on the diagonal are equal, in solving the nonlinedesysby means of Newton-
type iterations, the repeated use of the stored LU factiioiz@f the Jacobian is made
possible. If the matriXA is diagonal, the nonlinear system can also be solved in a
parallel computational environment (see, for instance28).

Within the class of RK methods (1.2), we aim to introduce aiffamwf formulae
depending on non-constant ¢heients for the numerical solution of (1.1) whose so-
lution is supposed to exhibit a prominent exponential behay Classical numerical
methods for ODEs may not be well-suited to follow a prominexypponential or os-
cillatory behaviour of the solutions, because a very smafpsize would be required,
with corresponding deterioration of the numerical perfantes, especially in terms of
efficiency. One of the possible ways to proceed in order to deriveerical methods
particularly tuned to the behaviour of the solution can k#ized by imposing that a
numerical method exactly integrates (within the rourfiteoror) problems of type (1.1)
whose solution can be expressed as linear combination ofifuns other than polyno-
mials: this is the spirit of the exponential fitting (EF) tedlue (compare [26, 31]
and references therein), where tiaptednumerical method is developed in order to
exactly solve problems whose solution belongs to the lispace spanned by

(L, x,..., x5, exp @ux), xexp Eux), . .., X" exp Eux)},

with K andP integer numbers. Whenis purely imaginary, the oscillatory case is also
recovered.

EF-based adaptations of both explicit and implicit RK fotagsuhave been intro-
duced in [34, 37] and later on investigated, for instancg3,ii5, 28, 29, 35, 36, 38, 39]
and references therein, also for second order ODEs [2092B12and the Scladinger
equation [1]. Such methods reveal to be a valid alternativdassical methods shaped
on algebraic polynomial basis (compare, for instance [8, 12, 16, 17, 18, 19], and
references therein), when the problem exhibits a non-pohal behaviour. For an up-
dated state-of-the art on exponential fitting, compare.[Blifther adaptations of other
families of multistage methods are object of [4, 11, 13, B},3R, 33]

Here we focus our attention on the derivation of twiietient EF versions of (1.2):
the first one, in accordance to the standard EF technique iR6lerived by assum-
ing that the values of the approximations inherited fromabmputation of the internal



stages are exact and, thus, they do not provide any furtinvileation to the discretiza-
tion error of the overall scheme; the second version, whotthws the spirit of [10, 25],
instead takes into account the error provided by the intestages computation, which
cumulates to the truncation error of the overall schemeeilat, we refer to the former
version astandardEF-technique, while the latter is denotedregisedEF-technique.

EF-based RK methods (1.2) depend on the value of a pararodtesuitably deter-
mined. The estimation of the unknown parameter is, in génangontrivial problem.
In fact, up to now, a rigorous theory for the exact computatid the parameter has
not yet been developed, but several attempts have been mitme literature (see, for
instance, [24, 26, 27] and references therein containeolder to provide an accurate
estimation. In this paper, following the spirit of [37], wp@oximate the value of the
unknown parameter by minimizing the leading term of the lldéscretization error.

The paper is organized as follows: Section 2 presents thieararguments for
the EF adaptation of a diagonally implicit RK methods, adaug to the standard EF
technique; Section 3 introduces a revisitation of this méghe, taking into account the
multistage nature of the solver in a deeper way; Section ¥iges examples of both
standard and revised singly diagonally implicit RK methoflke numerical evidence
is reported in Section 5, while some conclusions are regant&ection 6.

2. Standard EF-based SDIRK methods

The building blocks employed in the standard construcéelmique for the deriva-
tion of EF-based multistage methods (compare [6, 26]) asedan the followingn+ 1
functional operators

L[h, bly(x) = y(x+h) —y(x) —h Z biy (x+ cih), (2.3)
i=1

Li[h,aly(x) = y(x+ ¢h) — y(X) — hZ ay(x+ch), i=1....m (2.4)

=t

respectively associated to the first and second equatioh.2). (In particular, thel
operator is associated to the so called external stag¢hé@pproximatiory,,, of the
solution in the point,,1, while each operataf; is connected to the internal approxi-
mationY; of y(x, + ¢jh), also denoted as internal stage.

We aim to derive methods able to exactly solve ODE based @nab(1.1), whose
solutions belong to the linear space spanned by

F = {1,exp ux), Xexp ux), ..., X exp ux)},

whereP is a suitable integer number. We observe that, in this basisomials are
absent (i.eK = 0): this choice is due to the fact that we aim to derive methvalish
are more exponentially fitted, thus more suited to integdéterential problems with
non-polynomial solutions.

We first analyze the set of conditions that the weidhtsf the RK method (1.2)
have to satisfy in order to annihilate the operator (2.3) gy function belonging to



. We introduce the matricé3, D whose entries are given by
Gj = jcij‘l, i=12....m j=212...,P,

dj=c¢, i=12...mj=12..,P

and the matrixE = diag€®®, where the vectoe®* denotes the componentwise expo-
nentiation of the abscissa vectorThen, the following result holds.

Theorem 2.1. Suppose that the weights vector b of the RK metlio?) satisfy the

algebraic constraints

precz= -1
z (2.5)
b"E(C + D2) = €1,

where z= uh and1 denotes the unit vector iR°. Then, the linear operatof2.3) is
identically equal to zero for any function belongingfo

Proof. We annihilate the linear operator (2.3) in correspondarftke elements of the
functional basis~. The operator is identically zero whg(x) = 1 while, in correspon-
dence ofy(x) = exp uXx) , it annihilates if

exp@ - 1- zzm: b exp(iz) = 0.
i=1

If y(x) = X<exp ux), fork = 1,2, ..., P, then the operator (2.3) is identically equal to
zero provided that the weighls satisfy the algebraic constraints

m
exp@) — Z bic(k+ ¢z exp2) =0, k=1,2,....P
i=1

By collecting such conditions in matrix form, the result Itained.]

We observe that iP = m— 1, the linear system resulting from (2.5) has a unique
solution: this can be proved by observing that the determiofits coeficient matrix
is related to that of a Vandermonde matrix (compare, foaims¢, Theorem 2.1 in [15]).
Hence, the following corollary holds.

Corollary 2.1. If P = m-1, then the weights of the EF-based RK method correspond-
ing to the fitting spac& are the solution of linear syste(d.5).

We observe that, whentends to 0, conditions (2.5) recover the classical subset of
order conditions
¢ 1
Zbicik’l:—, k=12...,m,
. k
i=1
for RK methods, associated to the bushy tregs feported for instance in [2, 22].

By analogous arguments, we obtain the following result far ¢élements of the
codficient matrixA.



Theorem 2.2. Suppose that the matrix A of the RK metlip®) satisfy the algebraic
constraint
e€-1
= 1,
z (2.6)
AE(C + zD) = D.

Ag*

Then, the linear operator@.4) annihilate on the functional sét.

Proof. Following the lines drawn in the proof of Theorem 2.1, weiailate the linear
operators (2.4) on the fitting spage. They are all identically equal to zero when
y(X) = 1 while, in correspondence gfx) = exp (X) , they annihilates if

i
exp(ciz)—l—zZaij expii2 =0, i=12,....m
=1

If y(x) = X*exp ux), fork = 1,2,..., P, then the operators (2.4) are identically zero
provided that the algebraic conditions

i
cF—Zaijc‘j(‘l(k+cjz)exp(cjz)=O, i=12....m k=212....P
=t

are satisfied. By collecting such conditions in matrix fothe result is obtained.]

We observe that iP = m - 1, the linear system (2.6) has a unique solution, by
similar arguments to those thevector. Thus, the following corollary holds.

Corollary 2.2. If P = m-1, then the weights of the EF-based RK method correspond-
ing to the fitting spac& are the solution of linear syste(g.6).

We observe that, whentends to 0, conditions (2.6) recover the classical simplify
ing assumptions

T
=1 i=12....m k=12,...,q,

.ok

i
=1

for RK methods [2, 22], being the stage order of the method.

3. Revised EF-based SDIRK methods

In standard derivations of EF Runge-Kutta methods, the ehésh; of the weights
vector are computed with the underlying assumption that

Yi = y(Xa + Gih),

i.e. the error in the computation of the internal stages metely neglected. Our aim
is now that of deriving EF-based methods where the influehti@ecerror inherited by



the computation of the internal stages is taken into accduhis investigations follows
the spirit of [10, 25].
We denote by
& =Y — y(X, + ¢ih), i=12,....m 3.7)

the error associated to the internal approximations. Tdgeserrors (3.7) are generally
non-zero and, thus, we want to consider their contributiaihé error associated to the
overall integration process. We consider the local errsociated to the external stage
Yni1 in (1-2)

LR blY(X)| =y +h) —y(x) - h Zm: b f (xa + cih, Yi), (3.8)
X=X

i=1

where the superscrifi® denotes that we are considerireyisedEF methods. Taking
into account that

Y (% +ch) = f(x + 6h, Y — &) = f(x + G, Y) — & fy (% + cih, Y) + O(s7)  (3.9)

we obtain

LIh.bly()| = y(a+h)-y(x)-h DUBR(Y (0 + 6ih) + fy(% + G, Y)ai). (3.10)
" i=1

Hereinafterf," is the short-hand notation fdy(x, + cih, Y;).

We observe that, far = 0, we recover the expression of the standard error operator
(2.3). The practical derivation of revised RK methods ara ¢bmparison of such
methods with respect to the standard ones in terms of diadild numerical results is
object of the following sections.

4. Derivation of two-stage SDIRK methods

We now derive examples of singly diagonally implicit SDIRKethods (1.2) by
both applying the standard and the revised techniquesriezbim the previous section.
The methods we are going to present are all depending on thesvaf two internal
stages.

We first focus our attention on the family of standard EF-daSBIRK methods
(1.2) withm = 2, by applying the results derived in Section 2. In this ctse Jinear
operators (2.3) and (2.4) associated to (1.2) are

L[h,b]z(X) = z(x, + h) — z(x) — h(b1Z (X + c1h) + bZ (x + czh)),
La[h, a]y(x) = y(xn + c1h) — y(X) — hay'(x + c1h),
Lo[h,aly(X) = y(xn + c2h) — y(X) — h(azy (X + €1h) + Y (X + c2h)) .
Due to the results carried out in Section 2, the fitting spaghave to consider are

F = {1,e* xeX, F ={1,€e"%}, (4.11)



which are respectively associated to the external andnatstages computation: i.e.
the external value is exact on the linear space generat&d bshile the internal stages
approximations are exact on the linear space spanné&d. bhhus, we next derive the
codficients, ap;, by andb, by imposing that

Li[h,alz(x) =0, =12 foranyzx)e¥F,
and N
L[h,b]z(x) =0, foranyz(x) e ¥,
or, equivalently, by means of Theorems 2.1 and 2.2. We obtain
1-e@? ghz — ghz
/l = =
7 a S@oz
by — l+cz+€(-1+2z-c2) l1+cz-€(l-z+c12)
te (C1 — Cp) 212 ’ (C1 — Cp)Z2ec22

with z = uh. We observe that the methods belonging to the derived famaye order
2 since, forztending to 0, they satisfy the set of conditions

2
1
dbdt=2 k=12
. k
i=1
guaranteeing order 2 for RK methods depending on two stay@2].
We next derive the cdicients of the revised EF-based SDIRK methods, by assum-
ing that the fitting spaces and¥ are the same as in the standard case. The internal
stage approximations result to be exact on the intersestibn

b, =

FAF ={1, expux)}.

Since these two functions are solutions of thi@edential equation

y' —uy =0,
the leading term of the error in the computation of each ir@kstage is
& = Yi = Y(% + cih) = PPRi(y” (%) -y (%)) + O(h°), i=1,2, (4.12)

whereF; is thei-th stage error constant. The stage errors (4.12) are dgrmeoa-zero
and, thus, we want to consider their contribution to theresssociated to the overall
integration process. The knowledge of these errors needsatbulation of the values
of the stage error constarfs in (4.12): this is done by following the procedure used
in [10, 25], i.e. by solving the linear system

Lilhalx = & }y(x):x, i=12,

with respect td~; andF,, whereg; is defined in (4.12). The obtained values are

ajj — G

= (4.13)

M



We next consider the revised linear operator (3.10)

2
LDIYOY| | = Y0 +h) = y(x) - th bR (Y (% + GH) = fy(x0 + GH, Yi)e),

and evaluate it in correspondence to the elements af (4.11): in particular, we
observe thatZR[h, b]1 is automatically equal to zero, while the requested \sloke
b(2) andbf(2) are those satisfying

LR[h, b]e™ o= LR[h, b] xe™ =0
ie.
o a@Pby+ e (-1+ ) fPh(-2677 + €77 + 97 (1 - ;7))
bi(2) = 27 + B()hz - 419
1 1z
03 = a(22by + (-1 ;(i;;]‘yir);((zl) ;ZeC (-1+ clz)), (4.15)
where

a(2) = (c1 — cp) ¥z,
B@) = (-2 + &2 (1D + ) + @M (-1 + ¢12) + @271, (1 - ¢2)).
Thus, the parameters of the methods are now completelynigied. We observe that
the codficients of the revised methods depend on evaluations of ttialpderivative

of f with respect toy that, in the following sections, are assumed to be compuyed b
exact diterentiation of the vectorial field in (1.1).

4.1. The case of glerential systems

We have introduced so far a technique for the derivation wkeel EF methods
suited to integrate scalar problems. We now turn our atiartth the case of system
of equations, by deriving the version of method (4.14)%3.dpplicable to integrate
differential systems.

Taking into account that, in the case of systems, (3.9) hasetformulated as
follows

Y (¥ +G6h) = f(X + Gh Y + &) = (X + Gh, Y) + £3(X, + 6h. ) + O(?).
whereJ is the Jacobian of the vector field, the revised operator resuraes the form
m
LhblYO)| = YO +h)=y0)—h D bR (Y (k0 + 6ih) = Ik + Gih. Y)en) . (4.16)
" i=1
Then, we assume as fitting space the analog of (4.11), i.e.

F = (1, &*1, xe*1},



beingl the vector of ones having the dimension of thffedential problem, and eval-
uate (4.16) on them. This gives, in case of two stage methbddpllowing revised
codficients

bY@ = T (@] + €% (-1 + &) h(-2677 + €77 + €7 (1 - 32)) I?), (4.17)
bX(2 = T(@(@(@Z02] + (-1 + ) h(1+ (-1 + ¢12) IV, (4.18)

wherel'(2) = (a(z)z3l + A(z)hz)_l, being
A(2) = (-26720@ + 22 (JD 4 J@) 1 o @2ID) (~1 + ¢12) + 220 (1 - 7)) .

In the above expression, we have used the shorthand notitiom denotel(x, +
¢hY),i=12.

5. Linear stability analysis

We next consider the linear stability analysis of the detirethods with respect to
the classical test problegt = wy, with Rew) < 0, as done in [5]. The application of
a RK method to such problem leads to the recurrence relgtian= R(v, 2)y,, where

R(v,2) =1+ vb"@)(l - vA(2) e,

is the stability function of the method, beieg: R* the unit vector. In correspondence
to this notion, we recall the following definition of stalyliregion [10].

Definition 5.1. The region of the three-dimension@e(), Im(v), 2) space on which
the inequality
IR(v,2)| <1 (5.19)

is satisfied is called a region of stabilify for the EF-based method..2).

Figures 1 and 2 present a selection of sections through &lhdist region by planes
wherezis constant, for fixed values of the nodgs= 0 andc, = 1: we can advise from
the picture that the regions corresponding to revised ERoadstare larger than those
corresponding to standard EF methods. Such a behaviourris amal more visible
when the exponential behaviour of the solution becomes praminent.

6. Numerical experiments

We finally provide a numerical evidence to assert tfieativeness of our approach,
by considering the numerical solution of the nonlinear ¢gigna

_AYA(x) + 232
{ YO =—75 (6.20)
y(1)=¢€',

with x € [1,5], whose exact solution ig(x) = x?e™ does not belong to the space
F N ¥, thus the derived methods are unable to solve these proleieaictly.
We compare the following solvers:



Im(w)

Standard EF

4 T T T T T
2r ]
of QT
_2 L 4
-4 L L L L L
-6 -5 -4 -3 -2 -1 0
Re(w)
Revised EF
4 T T T T T
2 i
| N
_2 - 4
_4 1 1 1 ! !
-6 -5 -4 -3 -2 -1 0
Re(w)

Figure 1: Section through the stability regions by plare-2 for (1.2), withc; =0,co =1

Im(w)

Standard EF

4 T T T T T
2r ]
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Re(w)
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2r i
i “|«l““\|||||\l|||||nw
_2 L 4
—4 . . . . .
-6 -5 -4 -3 -2 -1 0
Re(w)

Figure 2: Section through the stability regions by plare—4 for (1.2), withc; = 0,c, =1
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¢ the classical second order SDIRK method (compare [2])

C1
cl| A ()
bT

¢ its standard EF adaptation

C1
C—Cp C1

1-2c, 1-2¢
2c, — 2C; 2C1 — 2C,

l-e%*
z

¢l AR o 2% — gf1? 1-e @2
o= ze? z
b’ (2)

l+cz+e(-1+z2-¢C2) -1-ciz+e(1+(-1+c1)2
(€1 - cp)Z%en? (€1 — c) %2

C1

e its revised EF adaptation

1-e@2
C1
z
c| A®Q gz _ gz | _ gz
b'(zf) | gz =
B

with b}, b of the forms (4.14) and (4.15), respectively, in case ofascatob-
lems. In the case of systent} andb} have the forms (4.17) and (4.18).

In both the standard and the revised EF methods, we compeéehistep point the
valuez = unh, whereu, is the fitted parameter approximated by the formula (compare
[37])

s = Y’ (% ,
y(%n)

which provides a minimizer for the leading error term.

The computations have been done on a node with CPU Intel Xexmme5X5690
3,46GHz, belonging to the E4 multi-GPU cluster of Mathecwbepartment of Salerno
University. The results, reported in Table 1, suggest tlott the EF adaptations are
able to approach the problem in a more accurate way thandbsichl SDIRK method
of the same order. Moreover, by integrating both methodis thié same constant step-
size h, the revised EF method is generally more accuratetiieastandard one: the
more the exponential behaviour is prominent, the more tipersority of the revised
adaptation is evident. Table 2 reports the numerical edidenmiginated by applying
the order 2 EF-based RK method

%
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A h err® cd® errs cd® errR caR
-2 2 6.58e-1 0.18 | 2.80e-2 1.55 1.83e-3 2.74
1 1.14e-1 0.94 | 8.36e-3  2.08 3.08e-4 3.51
1/2 2.14e-3 2.67 | 2.03e-3 2.69 1.84e-5 4.73
1/4 1.33e-4 3.88 | 6.33e-5 4.20 3.82e-6 5.42
-4 2 unstable 1.14e-3 294 2.64e-6 5.58
1 unstable 4.47e-7 6.32 9.77e-8 7.01
1/2 unstable 3.05e-7 6.51 1.23e-7 6.91
1/4 4.16e-6 538 | 3.77e-8 7.42 2.74e-8 7.56
-8 2 unstable 1.82e-2 1.74 | 8.81e-12  11.05
1 unstable 1.30e-6 5.89 | 4.93e-10 9.31
1/2 unstable 1.77e-7 6.75 | 5.45e-11  10.26
1/4 2.41e-4 3.62 | 3.23e-7 6.49 | 3.95e-15 14.40

Table 1: Numerical results originated from the applicatibolassical, EF-standard and EF-revised SDIRK
method with two-stages and order 2, to problem (6.20) filedént values of the parameteand of the step-
sizeh. err® andcd® denote the global error and the number of gained correcsdiitthe classical SDIRK
method, respectively, whilerrS, cd®, errR andcd® are analogous quantities associated to the standard and
the revised EF-based methods, respectively

0 1
1| cos@ &Z(Z) (6.21)
sin@) sin@)
z(cos@) + 1) 2z(cosk) + 1)

derived in [37]. The spirit of this test is that of comparimgptmethods having the same
order of convergence, both exponentially fitted on fittingags which do not contain
the exact solution of problem (6.20). The numerical evigemwveals a better accuracy
of our EF-based adaptation of the RK methods. Also in thig egs observe that the
more the exponential behaviour is prominent, the more tpersority of our revised
EF method is visible, also when compared to other EF-basédiistage formulae.

We next consider the following linear system

%(X)}:[ 1 2Hyl(x)}’ 6.22)
¥>(¥) A1 y2(x)

with x € [1, 5], whose exact solution is

|

X2

y(x) = [x%e™, xe™]T.

12



A h err cd
-2 1/2 2.24e-2 1.65

1/4 | 4.69e-4 333
4 |12 |492e-1 031

1/4 1.49e-5 4.83
-8 1 6.0le-4  3.22

1/4 241e-1 0.62

Table 2: Numerical results originated from the applicatibthe EF method (6.21) of order 2, forftkrent
values of the parametdrand of the stepsizle. err andcd denote the global error and the number of gained
correct digits, respectively

The results are reported in Table 3. We observe that, foeasing values of the pa-
rameters, the results originated by the standard methedgeay inaccurate, and the
method itself does not exhibit its theoretical order of @angence. This is not the case
of the revised method, which preserve its order convergenee for high values of the
parameter.

We conclude this section presenting the numerical resbitsired for the nonlinear
system

A 2
00 = 3000 0 +
Y209 (5 + 2y2(x) + XCya(x) — A7) (6.23)
V) = x3(1 + xew) ’

yil)=e', y2(1) =1+¢€',

for x € [1, 3], whose exact solution is
y(x) = [x3e™, x(1+ xe™)]".

The results obtained for several valueg @ire collected in Table 4. Also in this case we
realize that, the more the exponential behaviour is prontjrtbe more the superiority
of the revised method is visible.

7. Conclusions

We have introduced in this paper singly diagonally implRitnge-Kutta meth-
ods adapted for the solution offtirential problems with a prominent exponential
behaviour. Such adaptation is provided by means of the exgiai fitting theory,
which is properly extended to the case object of study. Atathet of our knowledge,
this is the first attempt of introducing EF-based Runge-&uatiethods depending on
structured cogicient matrices. Due to the multistage nature of the methodsave
introduced not only the standard constructive approachalso a revised one which
takes into account the contribution of the error inheritgdtre computation of the
internal stages. The superiority of the revised methodh véspect to the standard

13



Pl h errs cd® errR cdR
-4 1/32 2.83e-1 0.55 7.81e-3 2.11

1/64 1.64e-1 0.78 2.03e-3 2.69
1/128 9.25e-2 1.03 5.14e-4  3.29

1/256 5.16e-2 1.29 1.29e-4  3.89
-8 1/32 9.75e-1 0.01 4.77e-2 1.32

1/64 8.14e-1 0.09 1.15e-2 1.94
1/128 5.59e-1 0.25 2.83e-3 255

1/256 3.35e-1 0.47 7.04e-4  3.15
-16 1/32 9.99e-1  5.75e-12 | 5.72e-1  0.24

1/64 9.99%e-1 3.90e-5 1.80e-1 0.74
1/128 9.84e-1 7.02e-3 4.75e-2  1.32
1/256 8.58e-1 6.62e-2 1.20e-2 192

Table 3: Numerical results originated from the applicatiéfEB-standard and EF-revised SDIRK method
with two-stages and order 2, to problem (6.22) fdfetient values of the parametéand of the stepsize.
errS, cd®, errR andcd® denote the global error and the number of gained correcsdigitthe standard and
the revised EF-based methods, respectively

Pl h errs cd® errR cdR
-1 1/16 5.01e-4 3.30 3.99e-4 3.40

1/32 1.24e-4 390 | 1.05e-4 3.98
1/64 3.11e-5 451 | 2.70e-5 457

1/128 7.77e-6 511 | 6.84e-6 5.16
-2 1/16 8.8le-4 3.05 | 2.22e-5 4.65

1/32 2.15e-4  3.67 | 537e-6 5.27
1/64 53le-5 427 | 13le-6 5.88

1/128 1.32e-5 4.88 | 3.25e-7 6.49
-4 1/16 2.00e-3 2.70 | 6.32e-7 6.20

1/32 4.74e-4  3.32 1.67e-7 6.78
1/64 1.15e-4 3.94 | 4.27e-8 7.37
1/128 2.85e-5 454 | 1.08e-8 7.97

Table 4: Numerical results originated from the applicatiéfEB-standard and EF-revised SDIRK method
with two-stages and order 2, to problem (6.23) fdfatient values of the parametéand of the stepsizb.
errS, cd®, errR andcd® denote the global error and the number of gained correcsdigitthe standard and
the revised EF-based methods, respectively
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ones becomes more visible the more the problem exhibitsraipemt exponential be-
haviour. Anyway, we are aware of the fact that the price to &id for the increased
accuracy of the revised formula is the evaluation of the Biaroof the vector field for
the computation of the cdiécients of the method. In order to avoid further function
evaluations due to the computation of the fa&nts of the revised EF-methods, we
aim to suitably approximate the partial derivatives thatesy in the coféicients of the
revised formula, by means of numericaffdrentiation formulae whose accuracy is co-
herent with the expected order of convergence of the oveualierical scheme. This
topic will be object of future research.
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