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Abstract. We discuss the effectiveness of multi-value numerical methods in the
numerical treatment of Hamiltonian problems. Multi-value (or general linear) meth-
ods extend the well-known families of Runge-Kutta and linear multistep methods
and can be considered as a general framework for the numerical solution of ordinary
differential equations. There are some features that needs to be achieved by reliable
geometric numerical integrators based on multi-value methods: G-symplecticity,
symmetry and boundedness of the parasitic components. In particular, we analyze
the effects of the mentioned features for the long term conservation of the energy
and provide the numerical evidence confirming the theoretical expectations.

1 Hamiltonian problems

It is the aim of this paper to analyze the effectiveness and the long-term
behaviour of multi-value numerical methods for Hamiltonian problems

ẏ(t) = J−1∇H(y), J =

[

0 I
−I 0

]

, (1)

where the function H, denoted as Hamiltonian or energy of the system, is
exactly preserved along the solution of (1). Geometric numerical integrators
for (1) (compare [16] and references therein) are able to perform an excel-
lent long-time conservation of the Hamiltonian along the numerical solution:
this is classically the case of symplectic (or canonical) Runge-Kutta (RK)
methods [1,16,21,22], which are meant to exactly preserve quadratic invari-
ants possessed by (1) along the numerical solution (within round-off error).
Moreover, a symplectic numerical method is able to preserve any Hamilto-
nian function over exponentially long times with an exponentially decreasing
error, as proved by Benettin and Giorgilli (see [16], Theorem 8.1, §IX.8).

Symplecticity is a prerogative of certain RK methods, i.e. those satisfying
the algebraic constraint [1,16,19,22,23]

biaij + bjaji − bibj = 0. (2)

Indeed, linear multistep methods cannot be symplectic [24] as well as genuine
multi-value methods cannot be symplectic [14,20,4].

However, many contributions of the recent literature have been devoted to
the analysis and the construction of both multistep and multi-value methods
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meant to guarantee an excellent near conservation of invariants over long time
intervals (compare, for instance, [1–3,7–9,15,16] and references therein). The
aim of this paper is that of analyzing the main results achieved so far in the
case of multi-value methods and applying them to investigate the long-time
behaviour of a method recently developed in [9], both from a theoretical and
an experimental point of view.

2 Multi-value methods

Our attention is focused on the family of multi-value methods, which provides
a wide range of methods including multistage methods (e.g. Runge-Kutta
and multistep Runge-Kutta methods) and multistep methods (compare [1,18]
and references therein for a complete analysis of known methods regarded as
multi-value methods, extended in [10] to the case of second order ODEs).

The numerical scheme given by a multi-value method for the numerical
solution of the initial value problem

y′ = f(t, y), t ≥ 0 y(t0) = y0, (3)

consists in the following three basic steps:

– a starting procedure Sh, y
[0] = Sh(y0),

– a forward procedure Gh, y
[n+1] = V y[n] + hΦ(h, y[n]),

– a finishing procedure Fh, yn = Fh(y
[n]).

Thus, the method transfers along the grid a whole vector y[n] containing the
approximations of a set of quantities related to the solution of the problem
under investigation. At each step, one can always get the numerical approx-
imation of the solution in the current step point by applying the finishing
procedure.

Under some basic hypothesis described in details in [16] (compare Theo-
rem 8.1 in Section XV), one can prove that for any given forward and finish-
ing procedures, there exist a unique starting procedure S∗

h(y) and a unique
one-step method yn+1 = Φ∗

h(yn), such that

Gh ◦ S∗
h = S∗

h ◦ Φ∗
h, Fh ◦ S∗

h = id.

Thus, if the starting vector is computed by Y [0] = S∗
h(y0), then the numer-

ical solution obtained by the multi-value method is (formally) equal to that
of the one-step method Φ∗

h. Hence, Φ
∗
h is called underlying one-step method.

A widely used representation of multi-value methods is usually given by
the family of General Linear Methods (GLMs, compare [1,10,18] and refer-
ences therein)















Y
[n]
i = h

s
∑

j=1

aijf(Y
[n]
j ) +

r
∑

j=1

uijy
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i = h

s
∑

j=1

bijf(Y
[n]
j ) +

r
∑

j=1

vijy
[n]
j , i = 1, 2, . . . , r,

(4)
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The formulation (4) is provided in correspondence of the uniform grid

{t0+ih, i = 0, 1, . . . , N}, with h = (T−t0)/N . The vector y[n] = [y
[n]
1 , . . . , y

[n]
r ]T

denotes the vector of external approximations containing all the informations

we decide to transfer from step n to step n+1, Y
[n]
i provides an approximation

to the solution of (3) in the internal point tn+cih ∈ [tn, tn+1], i = 1, 2, . . . , s,

and Fj = f(Y
[n]
j ). A compact representation of GLMs collects their coeffi-

cient matrices A ∈ R
s×s, U ∈ R

s×r, B ∈ R
r×s, V ∈ R

r×r, in the following
partitioned (s+ r)× (s+ r) matrix

[

A U

B V

]

.

As mentioned in the previous section, even if GLMs cannot be symplectic
(unless they reduce to symplectic one step methods, compare [4,14,20]), the
recent literature has emphasized the possibility to effectively employ GLMs
for the numerical treatment of Hamiltonian problem (compare, for instance,
[1–3,7–9] and references therein). In particular, the state-of-art reveals that
some specific properties have to be satisfied by multi-value methods in order
to accurately approach Hamiltonian problems:

– G-symplecticity (introduced in the first edition of [16], also see[1–3,5,7–
9]), which ensures conjugate-symplecticity of the underlying one-step
method associated to the multivalue method (4);

– symmetry of the numerical scheme [16], which is a suitable property pro-
viding the discrete counterpart of the reversibility of the exact flow, in
case of reversible dynamical systems;

– boundedness of parasitic components over long times [3,11,16], which
ensures that the parasitic components generated by the numerical method
remain bounded over certain time intervals.

The above mentioned features are considered in the remainder of the
treatise.

3 G-symplecticity

As mentioned, the multivalue nature of GLMs does not allow them to be
symplectic, unless they reduce to RK methods. However, a near-conservation
property achievable by multivalue methods has been provided and analyzed
by the recent literature, defined as follows. If yTEy is a quadratic first integral
of the differential problem y′ = f(y), where E is a symmetric matrix, G-
symplecticity assures that

y[n+1]T(G⊗ E)y[n+1] = y[n]
T

(G⊗ E)y[n], (5)
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(compare [12]), being G a symmetric matrix. Taking into account that any
GLM (4) satisfies the following identity (compare [9] and references therein)

y[n+1]T(G⊗ E)y[n+1] = y[n]
T

(G⊗ E)y[n] +

r
∑

i,j=1

(G− V TGV )ijy
[n−1]
i

T

y
[n−1]
j

+ 2h
s

∑

i=1

r
∑

j=1

(DU −BTGV )ijy
[n−1]
i

T

F
[n−1]
j

+ h2
s

∑

i,j=1

(DA+ATD −BTGB)ijF
[n−1]
i

T

F
[n−1]
j ,

the G-symplecticity property (5) is achieved if the algebraic constraints

G = V TGV, DU = BTGV, DA+ATD = BTGB (6)

are satisfied [1,16].
Condition (5) reveals that G-symplectic multivalue method does not pre-

serve quadratic first integrals, but a related quadratic form y[n]
T

(G⊗E)y[n].
It was observed in [12] that the first terms of the expansion in powers of h of

the quadratic form y[n]
T

(G⊗E)y[n] is yTEy (compare [12]): thus, the more h
is small, the more the two forms are close each other. observe that condtions
(6) of G-symplecticity are equivalent to annihilating the algebraic stability
matrix of a GLM (compare [1,6,13,16]).

There is a strong formal relation between G-symplectic and symplectic
maps, which is highlighted in [11]. We report here the main result.

Theorem 1. Consider a G-symplectic multi-value method (4) of order p.
Then, for every finishing procedure the underlying one-step method is conjugate-

symplectic. More precisely, there exists a change of coordinates χh(y) =
y +O(hp), such that χh ◦ Φ∗

h ◦ χ−1
h is a symplectic transformation.

In other words, this results asserts that a G-symplectic method has the
same behavior of a symplectic one-step method after a global change of co-
ordinates that is O(hp) close to the identity [12].

4 Control of parasitism

One-step methods are the only candidates for symplecticity (compare [16,24]
for linear multistep methods and [4,15,20] for irreducible multivalue meth-
ods). This is due to the fact the multistep and multivalue methods gener-
ate parasitic components in the numerical solution which destroy the overall
long-time accuracy (see [3,11,16]). Hence, if one aims to derive non-symplectic
methods which are capable of nearly preserving invariants over the numeri-
cal solution, the parasitic behaviour of such methods has to be taken under
control over long time intervals [11].
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As announced, due to their multivalue nature, GLMs introduce parasitic
components in the numerical solution, which have to be controlled in order
to achieve a long-term near conservation of the invariants. Rigorous bounds
on parasitic solution components have recently been obtained in [11], where
the authors have proved that, for carefully constructed methods, the error in
the parasitic components typically grows like hp+4exp(h2Lt), where p is the
order of the method, and L depends on the problem and on the coefficients
of the method.

A basic property of boundedness for the parasitic components of multi-
value methods is achieved by annihilating the so-called growth parameters
[11,16]

µj = ξ−1
j v∗jBUvj , (7)

where ξj are the eigenvalues of the matrix V such that ξj 6= 1, vj and v∗j
are the right and left eigenvectors, respectively (V vj = ξjvj and v∗jV = ξjv

∗
j )

satisfying v∗j vj = 1. Examples of methods with zero-growth parameters, in the
context of multivalue methods, have been provided in [2,3,8,9]. In particular, a
G-symplectic, symmetric (i.e. the underlying one-step method is symmetric,
compare [16]), order 4 method (4) with zero growth parameter has been
introduced in [9]. Denoted by

γ = 2 +
3
√
4

2
+

3
√
2, δ =

(

1 +
3
√
2
)2

, ϕ =
15

4
+ 2

3
√
2 +

3
√
4,

such a method depends on the following coefficient matrices

[

A U

B V

]

=





















1
6γ 0 0 1 1

24

1
3γ − 1

6δ 0 1 1
24

1
3γ

1
6δ

1
6γ 1 1

24

1
6ϕ − 1

4 − 2 3
√
2

3 − 3
√
4

3
1
6ϕ 1 1

12

1 −2 1 0 −1





















. (8)

A starting procedure is given in details in [9].

5 Long-term behaviour

As explained in the previous section, ideal multi-value methods generate small
and bounded parasitic components over long time intervals. In order to derive
sharp long-term error estimates for multi-value methods, we have suitably
applied in [11] backward error analysis, a powerful tool successfully applied
to one-step and linear multistep methods (compare [16,15] and references
therein) which provides a crucial ingredient for the study of the long-time
behavior of numerical integrators. In [11], we have derived sharp estimates
for the parasitic components and the error in the Hamiltonian numerically
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Fig. 1. Error in the Hamiltonian (9) for the method (8) with stepsizes h = 0.25
(top) and h = 0.125 (bottom)

computed by a multi-value method: we realized that, for carefully constructed
methods (i.e. symmetric and with zero growth parameters) the error in the
parasitic components typically grows like hp+4 exp(h2Lt).

In particular, for the multi-value method (8), the following result holds
(compare [11]).

Theorem 2. If (8) is applied to a Hamiltonian system (1), then the energy

is nearly preserved according to

H(yn)−H(y0) = O(h4) +O(th8) +O
(

h8 exp(h2Lt)
)

as long as t = nh = O(h−2).

Thus, for method (8), parasitic components remain bounded on intervals
of steplength O(h−2), which is also confirmed by the numerical evidence.
We apply method (8) to the simple pendulum problem, depending on the
Hamiltonian function

H(p, q) =
1

2
p2 − cos q, (9)

and initial values q(0) = 3, p(0) = 0.
Figure 1 shows the Hamiltonian error obtained by using the step sizes

h = 0.25 and h = 0.125: confirming the predicted estimate of Theorem 2, the
error behaves like O(h4) on intervals of length O(h−2), and then follows an
exponential growth. We observe that method (8) is also able to preserve the
symplecticity of the phase space, as visible from the orbit pattern in Figure
2.
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Fig. 2. Orbit patterns of the mathematical pendulum (1) obtained by the multi-
value method (8) (left) and the symplectic Runge-Kutta method on two Gaussian
points (right)
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