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Abstract. The numerical solution of partial differential equations discretized alongthe space variables requires the employ
of highly stable methods, due to their intrisic multiscale (thus stiff) nature. Thepurpose of this paper is then the introduction
of some building blocks leading to an efficient and accurate treatment of such stiff problems through highly stable multivalue
numerical methods. We present a strategy based on a suitable modification of collocation technique which avoids, unlike
classical collocation based Runge-Kutta methods, the order reduction phenomenon. Some novel issues on the error analysis,
in view of a combined variable stepsize-variable order implementation, arehere presented.
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INTRODUCTION

In this paper, we aim to consider the numerical solution of stiff problems of the general classy′ = f (y) arising from
time-dependent partial differential equations discretized along the space variable. The key point in solving such stiff
problems is that of employing suitable highly stable numerical methods and, in the case of stiff differential systems,
to avoid order reduction phenomena, typical of classical numerical formulae such as Runge-Kutta methods [1]. Even
if there is an extensive bibliography regarding the numerical solution of stiff problems (we refer, for instance, to the
monographs [1, 10, 11, 13] and references therein), this issue still deserves some attention.

“Stiff equations are multiscale problems".This sentence, contained in the first pages of the paper [2] byJ. R. Cash
provides an intuitive idea of the nature of stiffness, very common in mathematical modeling: for instance, solving
time-dependent partial differential equations by the method of lines based on the employ of finite elements or finite
differences for the spatial discretization leads to stiff systems of ordinary differential equations, due to their instrisic
multiscale nature.

Methodology: a brief review on (modified) collocation methods

As announced, we aim to numerically treat stiff problems. The idea we propose is that of employing numerical
methods based on modified collocation techniques. Collocation [1, 10, 13, 17] is an extensively applied technique
based on the idea of approximating the exact solution of a given functional equation with a continuous approximant
belonging to a chosen finite dimensional space (desirably chosen coherently with the qualitative behaviour of the
solution). Such an approximant usually satisfies interpolation conditions in the grid points and exactly satisfies the
equation on a given set of points. We now briefly recall some basic aspects regarding collocation methods, together
with some famous modifications developed in the literature.

• One-step collocation.In classical one-step collocation methods (see [1, 10, 13])the collocation function is given
by an algebraic polynomialPn(t), t ∈ [tn, tn+1], satisfying

Pn(tn) = yn, P′
n(tn+cih) = f (tn+cih,Pn(tn+cih)), i = 1,2, ...,m,

i.e. interpolating the numerical solution intn and exactly satisfying the given system in{tn+cih, i = 1,2, . . .m},
where c1,c2, . . . ,cm are given real numbers. The solution intn+1 can then be computed from the function
evaluationyn+1 =Pn(tn+1). Guillou and Soule [9] and Wright [17] independently proved that one step collocation
methods form a subset of implicit Runge-Kutta methods, whose coefficients are given by certain integrals of the
fundamental Lagrange polynomials. The maximum attainableorder of such methods is 2m, and it is obtained by



using Gaussian collocation points [10, 13], while the uniform order of convergence over the entire integration
interval is onlym. As a consequence, they suffer from order reduction showingeffective order equal tom [1].
Concerning their linear stability properties, it is known that collocation methods based on Gaussian and Lobatto
IIIA nodes are A-stable, while the ones based on Radau IIA points are L-stable [1, 10, 13].

• Perturbed collocation.As remarked, only some implicit Runge-Kutta methods are of collocation type. An
extension of the collocation idea, the so-called perturbedcollocation, is due to Norsett and Wanner [16], and
applies to all IRK methods. The authors prove in [16] the equivalence result between the family of perturbed
collocation methods and Runge-Kutta methods. The interestof this results is that the properties of collocation
methods (e.g. order, linear and nonlinear stability) can beproved in a reasonable short, natural and very elegant
way, while it is known that, in general, these properties arevery difficult to handle and investigate outside
collocation.

• Multistep collocation.The idea of multistep collocation was first introduced by Lieand Norsett in [15] (also
see [9, 10, 14, 15]) and extends the collocation technique tothe family of multistep Runge-Kutta method. The
collocation polynomialPn(t) satisfies the following interpolation and collocation conditions:

Pn(tn−i) = yn−i i = 0,1, ...,k−1, P′
n(tn+c jh) = f (tn+c jh,P(tn+c jh)), j = 1, ...,m.

The numerical solution is then given byyn+1 =Pn(tn+1). Lie and Norsett [15] proved that the maximum attainable
order is 2m+ k−1. They also proved the existence of

(m+k−1
k−1

)

nodes allowing superconvergence. However, the
corresponding methods are not stiffly stable, while in [10] A-stable methods of highest order 2m+ k− 2 are
introduced.

• Two-step collocation. Two-step collocation methods [3] extend the collocation idea to the class of two-step
Runge-Kutta methods (introduced by Jackiewicz and Tracogna in [12]), pursuing the aim of deriving highly
stable collocation-based methods which do not suffer from order reduction. The continuous approximant is given
by

P(tn+sh) = ϕ0(s)yn−1+ϕ1(s)yn+h
m

∑
j=1

(

χ j(s) f (P(tn−1+c jh))+ψ j(s) f (P(tn+c jh))
)

, s∈ [0,1]. (1)

The collocation polynomial (1) is expressed as linear combination of the unknown basis functions
{ϕ0(s),ϕ1(s),χ j(s),ψ j(s), j = 1,2, . . . ,m}, to be suitably determined. It is required that the polynomial
P(tn + sh) interpolates the solution in the pointstn−1 and tn and collocates it in the pointstn−1 + cih, tn + cih,
i = 1,2, . . . ,m. As proved in [4], this is equivalent to determine the basis functions as unique solution of the order
conditions system
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s∈ [0,1], k = 1,2, . . . ,2m+1. Thus, the maximum attainable order of convergence is 2m+1, uniformly on the
overall integration interval. However, according to the Daniel-Moore conjecture [1] (i.e. the maximum attainable
order of am-stage A-stable method is 2m), such methods cannot be A-stable. Hence, a modification of this idea
has been proposed to achieve at least A-stability, leading to the so-called family of almost collocation methods.

• Almost collocation.In order to fulfill the Daniel-Moore requirement, we are mainly interested in methods of
order p = m+ r, wherer = 1,2, . . . ,m, obtained by relaxing some order conditions (thus, some interpolation
and/or collocation conditions). The formulas obtained by imposing relaxed conditions are known in literature as
two-step almost collocation methods. In [4, 5, 6, 8] many A-stable and L-stable methods have been introduced:
such methods do not suffer from the order reduction phenomenon in the integration of stiff systems (see [1, 10]).
This is in contrast to implicit Runge-Kutta methods, whose effective order of convergence is onlym, suffering
from order reduction.



ERROR ANALYSIS

In [6] an expression of the local truncation error has been provided, i.e.

ξ (tn+sh) = hp+1Cp(s)y
(p+1)(tn)+hp+2Cp+1(s)y

(p+2)(tn)+hp+2Gp+1(s)
∂ f
∂y

(

y(tn)
)

y(p+1)(tn)+O(hp+3), (2)

where

Cν(s) =
sν+1

(ν +1)!
−

(−1)ν+1

(ν +1)!
ϕ0(s)−

m

∑
j=1

(

χ j(s)
(c j −1)ν

ν !
+ψ j(s)

cν
j

ν !

)

, Gp+1(s) =
m

∑
j=1

η j
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with ν = p, p+1. To get a computable estimation of the local error, useful in a variable stepsize environment, possible
choices have been discussed in [4, 6]. In view of a variable order strategy, the terms of orderp+2 in (2) need to be
estimated. In particular, we look for estimates of the type

hp+2y(p+2)(tn)≈ α(1)
0 yn−1+α(1)

1 yn+h
m
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β (1)
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where the real parametersα(k)
0 ,α(k)

1 ,β (k)
j ,γ(k)j , with k = 1,2 and j = 1,2, . . . ,m, can be computed according to the

following novel result, whose proof will be reported in [7].

Theorem 1 Setting

ρℓ =
(−1)p+ℓ

(p+ ℓ)!
−Cp(−1), σℓ(t) =

t p

p!
−Cp+ℓ(t),

the parameters appearing in the estimates(3) and (4) satisfy the following systems of equations:
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for k= 1,2, being p the order of the method associated to(1).

In this paper, we report the values of the parameters for the estimate (3) associated to the methods withm= 1,2,3,4
reported in [6]. We observe that, for all the methods in [6], there is no need to provide the estimate (4), since for those
methods we haveGp+1(s) = 0 for construction itself. In the casem= 1, the values of the parameters in (3) are

α(1)
0 =−

9
5
, α(1)

1 =
9
5
, γ(1)1 =−

9
10

, β (1)
1 =−

9
10

.

For the method in [6] withm= 2, the coefficients in (3) are

α(1)
0 =

2432
395

, α(1)
1 =−

2432
395

, γ(1)1 =
4864
395

, γ(1)2 =−
9728
1185

, β (1)
1 =

2432
1185

,

in correspondence ofβ (1)
2 = 2. In the casem= 3, we have

α(1)
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, γ(1)3 =−
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232

, β (1)
1 =
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901

,



in correspondence of the valuesβ (1)
2 = β (1)

3 = 0. Finally, for the method in [6] withm= 4, the coefficients in (3) are
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, α(1)
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28

, γ(1)2 =
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, γ(1)4 =
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, β (1)
1 =

107
6565

.

in correspondence of the valuesβ (1)
2 = β (1)

3 = β (1)
4 = 0.

As a test example, we consider the Prothero-Robinson equation

y′(t) = λ (y(t)−G(t))+G′(t), (5)

with G(t) = sin(t), t ∈ [0,2π], y(0) = 0. The implementation strategy we employ combines the stepsize control [6]
and the order control [7], by opportunely switching over thefamily of methods introduced in [6] whose order of
convergence are the integers values in the interval[1,4]. Figure 1 reports the results forλ = 1e−6 and tolerance 1e−6:
this simple test is only intended to provide a first numericalevidence, obtained by applying the method to a classical
problem whose analytical solution is a priori known and, thus, to realize whether basic theoretical expectations are
recovered or not. More advanced experiments on a large set ofstiff problems will be object of [7]. As expected, the
solver tends to increase the order of the method in critical points of the solution.

FIGURE 1. Order of convergence of the method employed in each step point for thenumerical solution of (5). The implementa-
tion strategy is variable stepsize-variable order, involving two-step almostcollocation methods [6] of orders from 1 to 4.
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