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Abstract. The numerical solution of partial differential equations discretized atbagpace variables requires the employ
of highly stable methods, due to their intrisic multiscale (thus stiff) nature plingose of this paper is then the introduction
of some building blocks leading to an efficient and accurate treatmentbfsiff problems through highly stable multivalue
numerical methods. We present a strategy based on a suitable modifiohatiollocation technique which avoids, unlike
classical collocation based Runge-Kutta methods, the order reducmoptenon. Some novel issues on the error analysis,
in view of a combined variable stepsize-variable order implementatiomeaeepresented.
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INTRODUCTION

In this paper, we aim to consider the numerical solution ifff gtoblems of the general clagé = f(y) arising from
time-dependent partial differential equations discestialong the space variable. The key point in solving such sti
problems is that of employing suitable highly stable nuerinethods and, in the case of stiff differential systems,
to avoid order reduction phenomena, typical of classicalenical formulae such as Runge-Kutta methods [1]. Even
if there is an extensive bibliography regarding the nunadsolution of stiff problems (we refer, for instance, to the
monographs [1, 10, 11, 13] and references therein), thiissll deserves some attention.

“Stiff equations are multiscale problemsThis sentence, contained in the first pages of the paper [2] By Cash
provides an intuitive idea of the nature of stiffness, veoynmon in mathematical modeling: for instance, solving
time-dependent partial differential equations by the roétbf lines based on the employ of finite elements or finite
differences for the spatial discretization leads to stifftems of ordinary differential equations, due to theitrisic
multiscale nature.

Methodology: a brief review on (modified) collocation method

As announced, we aim to numerically treat stiff problemse Tdea we propose is that of employing numerical
methods based on modified collocation techniques. Collmtdl, 10, 13, 17] is an extensively applied technique
based on the idea of approximating the exact solution of engiunctional equation with a continuous approximant
belonging to a chosen finite dimensional space (desiralbger coherently with the qualitative behaviour of the
solution). Such an approximant usually satisfies intetpmaconditions in the grid points and exactly satisfies the
equation on a given set of points. We now briefly recall sorrsécbaspects regarding collocation methods, together
with some famous modifications developed in the literature.

- One-step collocatiorin classical one-step collocation methods (see [1, 10,th&]rollocation function is given
by an algebraic polynomid(t), t € [ty,th1], Satisfying

Pn(tn) - yn, Pr/](tn+C|h) - f(tn+C|h7 Pn(tn+C|h)), | - 1, 27...,m,

i.e. interpolating the numerical solutiontipand exactly satisfying the given system{iq +cih, i = 1,2,...m},
where ¢y, Cy,...,Cm are given real numbers. The solution tin; can then be computed from the function
evaluatiornyn+1 = Pn(th+1). Guillou and Soule [9] and Wright [17] independently provkdttone step collocation
methods form a subset of implicit Runge-Kutta methods, whmmefficients are given by certain integrals of the
fundamental Lagrange polynomials. The maximum attainafaer of such methods is12 and it is obtained by



using Gaussian collocation points [10, 13], while the umfarder of convergence over the entire integration
interval is onlym. As a consequence, they suffer from order reduction shoeffegtive order equal ton [1].
Concerning their linear stability properties, it is knovinat collocation methods based on Gaussian and Lobatto
IIIA nodes are A-stable, while the ones based on Radau llAtgare L-stable [1, 10, 13].

Perturbed collocation As remarked, only some implicit Runge-Kutta methods are afocation type. An
extension of the collocation idea, the so-called perturbatbcation, is due to Norsett and Wanner [16], and
applies to all IRK methods. The authors prove in [16] the egjence result between the family of perturbed
collocation methods and Runge-Kutta methods. The intefet$tis results is that the properties of collocation
methods (e.g. order, linear and nonlinear stability) capioged in a reasonable short, natural and very elegant
way, while it is known that, in general, these properties \sgy difficult to handle and investigate outside
collocation.

Multistep collocation.The idea of multistep collocation was first introduced by hred Norsett in [15] (also
see [9, 10, 14, 15]) and extends the collocation techniqukedamily of multistep Runge-Kutta method. The
collocation polynomiaR,(t) satisfies the following interpolation and collocation citiohs:

Pn(tnfi):ynfi i:O,].,...,k*l, %(tn+CJh): f(tn+CJh7P(tn+CJh)), J :1,...7m.

The numerical solution is then given gy, 1 = Pn(tn+1). Lie and Norsett [15] proved that the maximum attainable
order is 2n+ k— 1. They also proved the existence(Hf[l‘Il) nodes allowing superconvergence. However, the
corresponding methods are not stiffly stable, while in [18}tAble methods of highest ordem2-k — 2 are
introduced.

Two-step collocationTwo-step collocation methods [3] extend the collocatideai to the class of two-step
Runge-Kutta methods (introduced by Jackiewicz and Tragagr{12]), pursuing the aim of deriving highly
stable collocation-based methods which do not suffer frateioreduction. The continuous approximant is given

by
P(tn+sh) = ¢o(S)yn—1+ ¢1(S)yn+h Z (x,- (s)f(P(th—1+c;jh)) + j(s) T (P(th +c; h))), se€[0,1. (1)
=1

The collocation polynomial (1) is expressed as linear comfion of the unknown basis functions
{@0(9),91(9), Xj(s), ¥j(s),j = 1,2,...,m}, to be suitably determined. It is required that the polyraimi
P(tn +sh) mterpolates the solution in the poirtts 1 andt, and collocates it in the pointg_1 + ¢ih, t, + ¢ih,
i=12...,m As proved in [4], this is equivalent to determine the bagitfions as unique solution of the order
conditions system

¢o( )+¢1( S) = - o .
Y g4 § (e -1 g

s€[0,1], k=1,2,...,2m+ 1. Thus, the maximum attainable order of convergenceris-2, uniformly on the
overall integration interval. However, according to thenig&Moore conjecture [1] (i.e. the maximum attainable
order of am-stage A-stable method i1, such methods cannot be A-stable. Hence, a modificationi®fdea
has been proposed to achieve at least A-stability, leaditiget so-called family of almost collocation methods.

Almost collocationln order to fulfill the Daniel-Moore requirement, we are mgimterested in methods of
orderp= m+r, wherer = 1,2,...,m, obtained by relaxing some order conditions (thus, somerpolation
and/or collocation conditions). The formulas obtainedrpasing relaxed conditions are known in literature as
two-step almost collocation methods [4, 5, 6, 8] many A-stable and L-stable methods have be&oduced:
such methods do not suffer from the order reduction phenomanthe integration of stiff systems (see [1, 10]).
This is in contrast to implicit Runge-Kutta methods, whofeaive order of convergence is onty, suffering
from order reduction.



ERROR ANALYSIS

In [6] an expression of the local truncation error has beeniged, i.e.

of
&(th+sh) = thrle(S)y( P (ty) + hp+2Cp+1(S)y< P2 (ty) + hP*2Gp1(s) 5

3y (Y(t))yP V1) + O, (2)

where

v+1 _1\v+1 m v
C = o a3, (09 G ) G = 3 m (1 +h(s).

with v =p, p+ 1. To get a computable estimation of the local error, usefalvariable stepsize environment, possible
choices have been discussed in [4, 6]. In view of a varialderostrategy, the terms of ordpr+ 2 in (2) need to be
estimated. In particular, we look for estimates of the type

m
PR ) = oy o h S (Bf” f(Pltna+ih) 4y (Plta + h>)> @
J:
pr20f (p+1) B) B < [ 22 V2t

where the real parameten%k 0’1 ,B y(k with k=12 andj=1,2,....,m, can be computed according to the
following novel result, whose proof WI|| be reported in [7]

Theorem 1 Setting
(-1 t
W—Cp(—1)7 o(t) = a—cp+e(t)7

the parameters appearing in the estima@gsand (4) satisfy the following systems of equations:

P =

. i—1
GG (-1) S A R .
ap +a; =0, T oro +Z<BJ (i—1) +Y =1 =0, i=12,...,p,

m
Plaé")Jrle(Bj(k)ao cj— )+yj )ao(cj))zo, pzao )+ ZI(BJ o1(c )erJ al(c,)) 1,

Gpra(-1)ag’ + 3 (AGpra(ci 1)+ Cpua(cy)) =0,

TMB

for k= 1,2, being p the order of the method associatedlip

In this paper, we report the values of the parameters fordtimate (3) associated to the methods witk- 1,2,3,4
reported in [6]. We observe that, for all the methods in [B§re is no need to provide the estimate (4), since for those
methods we hav&,,1(s) = 0 for construction itself. In the case= 1, the values of the parameters in (3) are

m__9 m_ 9 m__9 m__9
% 5 1Ty h o A 10
For the method in [6] withm = 2, the coefficients in (3) are
a(l) 2432 C{(l) o 2432 (1) 4864 y(l) B 79728 1 2432
0~ 395 1 ~73950 " T3950 Y2 TT1gy Pt T 11gm

in correspondence qﬁ‘z(l) = 2. In the casen = 3, we have

1 245 1) 245 y(l) _ 3117 y(l) _ 3605 P 6125 Q 1959
1 - 2

a, = — — a = — _— B — = - = —
0 561 1 561 79’ 57’ & 232’ Ay 901’



in correspondence of the valuﬁél) = (l) =0. Finally for the method in [6] withm = 4, the coefficients in (3) are

ql _ 355 ql _ 355 (1) _ V( 3351 (1) B 1337 (1) 5671 1) 107
0 ~7236 1 T 2356 N 2

78 B T e % “seo P eses
in correspondence of the valuﬁél) = ﬁ3 D= Bﬁl) =0.
As a test example, we consider the Prothero-Robinson egquati

Y (t) =A(y(t) - G(t)) + G(v), (%)

with G(t) = sin(t), t € [0,2], y(0) = 0. The implementation strategy we employ combines the gegsntrol [6]

and the order control [7], by opportunely switching over tamily of methods introduced in [6] whose order of
convergence are the integers values in the intélivd]. Figure 1 reports the results far= 1e— 6 and tolerance 1e6:

this simple test is only intended to provide a first numereatience, obtained by applying the method to a classical
problem whose analytical solution is a priori known and,sthio realize whether basic theoretical expectations are
recovered or not. More advanced experiments on a large stiffgfroblems will be object of [7]. As expected, the
solver tends to increase the order of the method in critioaltp of the solution.
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FIGURE 1. Order of convergence of the method employed in each step point foutherical solution of (5). The implementa-
tion strategy is variable stepsize-variable order, involving two-step alootiscation methods [6] of orders from 1 to 4.
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