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Abstract

The paper is concerned with the analysis of the error associated to a family of multi-
value numerical methods for the solution of initial value problems based on special sec-
ond order ordinary differential equations. Such methods, denoted as General Nyström
methods, provide at each step point an approximation to the Nordsieck vector associ-
ated to the solution of the problem. Order issues for such methods based on the theory
of rooted trees are here provided, as well as an accuracy analysis is carried out, leading
to a representation of the local truncation error.
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1. Introduction

We focus our attention on the numerical solution of special second order Ordinary
Differential Equations (ODEs)



y′′(x) = f (y(x)), x ∈ [x0,X],

y(x0) = y0 ∈ R
d,

y′(x0) = y′0 ∈ R
d,

(1.1)

with f : Rd → R
d smooth enough to ensure the well-posedness of the problem. The

specific purpose is that of analyzing the accuracy properties of the family of General
Linear Nystr̈om (GLN) methods

Y[n]
i = h2

s∑

j=1

ai j f (Y[n]
j ) +

r∑

j=1

ui j y
[n−1]
j , i = 1, ..., s,

y[n]
i = h2

s∑

j=1

bi j f (Y[n]
j ) +

r∑

j=1

vi j y
[n−1]
j , i = 1, ..., r,

(1.2)

introduced in [8] and furtherly investigated in [9, 10, 11],as extension of the family of
General Linear Methods for first order ODEs [1, 5, 6, 18]. The procedures involved in
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(1.2) essentially updates the vector of approximations

y[n−1] =



y[n−1]
1

y[n−1]
2

...

y[n−1]
r



∈ Rrd,

from the pointxn−1 to xn of the discretization. The supervectory[n−1] is usually denoted
as vector of theexternalstages. It is worth observing that every subvectory[n−1]

i ∈

R
d approximates some solution related quantities (such as thesolution itself, linear

combinations of its derivatives, past evaluations of thef function and so on). The
supervector

Y[n] =



Y[n]
1

Y[n]
2

...

Y[n]
s



∈ Rsd, (1.3)

whose components appear in (1.2), is the so-called vector ofinternalstages, providing
approximations to the solution in a set of internal pointsxn−1 + c jh, j = 1,2, . . . , s,
wherec = [c1, c2, . . . , cs]T is the vector of theabscissaeof the method.

We observe that a more specialized formulation of (1.2) can be given (see [8])
by splitting the vectory[n−1] in two complementary parts, one of which containing
all the approximations related to the first derivative of thesolution. Such a splitted
formulation, widely employed in [8], is not considered in this manuscript, which is
mainly focused on the more general formulation (1.2).

A more compact representation of (1.2) is obtained by regarding it in tensor form,
i.e.

Y[n] = h2(A ⊗ I )F [n] + (U ⊗ I )y[n−1],

y[n] = h2(B ⊗ I )F [n] + (V ⊗ I )y[n−1],
(1.4)

where⊗ denotes the usual Kronecker tensor product of matrices. This representation
involves the coefficient matricesA ∈ R

s×s, U ∈ R
s×r , B ∈ R

r×s, V ∈ R
r×r , which can

be collected in the following partitioned (s+ r) × (s+ r) matrix
[

A U
B V

]
, (1.5)

denoted as the Butcher tableau of the method.
The treatise is focused on the family of GLN methods (1.4) in Nordsieck form, i.e.

such that the vector of external approximations satisfies

y[n] ≈



y(xn)
hy′(xn)

h2y′′(xn)
...

hry(r)(xn)



, (1.6)
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that is an approximation to the Nordsieck vector [2, 17, 18, 20]. In particular, we aim
to carry out an error analysis, which allows to introduce initial building blocks for
implementation issues, such as the development of error estimators.

More specifically, the paper is organized as follows: Section 2 summarizes the
main tool needed along the treatise, i.e. the theory of rooted trees for (1.4), introduced
in [11]; Section 3 provides a theory of order conditions for Nordsieck methods which
exploits the special structure of the method; Section 4 contains an error analysis for
Nordsieck methods, while issues for error estimation are presented in Section 5; some
conclusions are given in Section 6.

2. Order Conditions for GLNs

In [11], the authors have introduced a theory of rooted treesfor (1.2), generalizing
the results in [7, 16, 17]. In particular, the set of Special Nyström-trees (SNT)

S NT= { , , , , , . . .}

is the domain where the basic operators involved in the formulation of order conditions
are defined. Such operators are now recalled.

Let us considert1, . . . , tk ∈ S NT and the treet = [t1, . . . , tk] obtained according
to the composition rules described in [11]. Correspondingly, we define elementary
differentials by recursion, as follows

F( )(y, y′) = y′,

F( )(y, y′) = y′′ = f ,

F(t)(y, y′) = f (k) (F(t1)(y, y′), . . . , F(tk)(y, y
′)
)
.

Moreover, for a given treet = [tµ1

1 , t
µ2

2 , . . . , t
µk

k ], we recursively define the following
useful functionsρ andα (compare [7, 16])

ρ( ) = 1, ρ( ) = 2, ρ(t) = 2+
k∑

i=1

µiρ(ti),

α( ) = α( ) = 1, α(t) = (ρ(t) − 2)!
k∏

i=1

1
µi !

(
α(ti)
ρ(ti)

)µi

.

(2.1)

In correspondence to the introduced theory of rooted trees,a general set of order
conditions for (1.2) has been derived in [11]. To this purpose, the main tool is given by
S N-series

S N(a, y, y′) =
∑

t∈S NT

hρ(t)

ρ(t)!
α(t)a(t)F(t)(y, y′) (2.2)

related to the problem (1.1). By denotingη and ξ the coefficients of theS N-series
expansions of the internal and external stages respectively, we obtain by (1.2) that



η(t) = Aη(t) + Uξ(t),

ξ̂(t) = Bη(t) + Vξ(t).
(2.3)
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whereη(t) = ρ(t) (ρ(t) − 1) η′′(t), being

η′′(t) =



0, if t = ∅,

1, if t =

η(t1) · · · η(tk), if t = [t1, . . . , tk].

The following result holds, compare [11].

Theorem 2.1. If the operator̂ξ in (2.3)of a given GLN(1.2) is such that̂ξi(t) coincide
with the corresponding coefficients Eξi(t) in the Taylor series expansions of the exact
values approximated by y[n]

i for any t ∈ S NT of orderρ(t) ≤ p, then the method has
order p, i.e.

Eξ(t) = Bη̄(t) + Vξ(t), t ∈ S NT, ρ(t) ≤ p. (2.4)

Moreover, the method has stage order q if the operatorsηi(t), i = 1, . . . , s, in (2.3)
coincide with the coefficients Eηi of the Taylor series expansion of y(x0 + cih), for any
t ∈ S NT of order less or equal to q.

3. Nordsieck methods

For GLN methods (1.2) depending on input vectors of the form (1.6), the values of
the entries ofξ(t) can be easily computed as follows

ξi(t) = ρ(t)!δρ(t),i−1, i = 1, . . . , r, (3.1)

being t ∈ S NT andδi, j the usual Kronecker delta. This formula can be obtained by
S N-series arguments: indeed, looking for aS N-representation of the input vector

y[n−1]
i = S N(ξi , y, y

′),

and taking into account thaty[n−1]
i ≈ hi−1y(i−1)(xn−1), we have

hi−1y(i−1)(xn−1) = S N(ξi , y, y
′)

= 0 · y(xn−1) + 0 · hy′(xn−1) + . . . +
hi−1

(i − 1)!
ξiy

(i−1)(xn−1) + . . .

Thus, by comparison of the left and right-hand sides, we get (3.1).
The corresponding values ofEξ(t) can be again computed by means of Taylor se-

ries expansion and are reported in Table 1. We are able to provide order conditions
specialized to the Nordsieck case [2, 17, 18, 20], i.e.

e1 + 3e2 + 6e3 + 6e4 = 6(Bc+ Ve4)

for order 2,
e1 + 4e2 + 12e3 + 24e4 + 24e5 = 12(Bη( ) + 2Ve5)

for order 3,

e1 + 5e2 + 20e3 + 60e4 + 120e5 + 120e6 = 20(Bη( ) + 6Ve6)
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Eξ(∅) Eξ( ) Eξ( ) . . . Eξ(t)

1 1 1 . . . 1
0 1 2 . . . ρ(t)
0 0 2 . . . ρ(t)(ρ(t) − 1)
0 0 0 . . . ρ(t)(ρ(t) − 1)(ρ(t) − 2)
...

...
...

...
...

0 0 0 . . . ρ(t)!

Table 1: Values ofEξ(t) in (2.4) for Nordsieck methods

for order 4, with

η( ) = 2(Ae+ Ue3),

η( ) = 6(Ac + Ue4),

beinge the vector of ones inRs andei the i − th vector of the canonical basis ofRr if
i <= r and the zero-vector otwerwise.

3.1. A remark on convergence analysis

The results reported in Section 2 are now employed to providean alternative proof
of convergence for GLN methods (1.4) in Nordsieck form. To this purpose, we recall
the following classical results, adapted to GLN methods in [8].

Theorem 3.1. A GLN method(1.4) is convergent if and only if it is consistent and
zero-stable.

The notions of consistency for GLN methods (1.4) is now givenin terms of opera-
tors of rooted trees.

Definition 3.1. A GLN method (1.2) is consistent if

Uξ(∅) = e, Vξ(∅) = Eξ(∅),

Uξ( ) = c, Vξ( ) = Eξ( ), (3.2)

2Be+ Vξ( ) = Eξ( ).

We also recall the definition of zero-stability given in [8].

Definition 3.2. A GLN method (1.2) is zero-stable if the roots of the minimal polyno-
mial of theV matrix lie on or within the unit circle and the multiplicity of the zeros on
the unit circle is at most two.

Thus, the following convergence result holds.
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Theorem 3.2. A GLN method(1.2)with input vector y[n] defined as in(1.6) is conver-
gent if its Butcher tableau(1.5)has the form


A e c c2

2 − Ae Ũ

B e1 e1 + e2
e1
2 + e2 + e3 − Be Ṽ

 (3.3)

with Ũ ∈ Rs×(r−3), Ṽ ∈ Rr×(r−3) and all the eigenvalues ofV have modulus strictly less
than 1, whereV is obtained by the matrixV removing its first two rows and columns.

Proof: In force of the criterion provided by Theorem 3.1, we are allowed to study the
convergence of GLN methods (1.4) by consistency and zero-stability analysis. Due to
the nature (1.6) of the input vectors, we have

ξ(∅) = e1, ξ( ) = e2, ξ( ) = 2e3.

The vectorsEξ(∅),Eξ( ) andEξ( ) respectively assume the forme1,e1+ e2,e1+ 2e2+

2e3 (see Table 1). Taking into account these expressions of the mentioned vectors,
conditions (3.2) give the expression (3.3) of the Butcher tableau. Correspondingly, the
matrixV assumes the form

V =



1 1
1
2
−

s∑

i=1

b1i ṽ1

0 1 1−
s∑

i=1

b2i ṽ2

0 00 0
...
... V

0 0



,

whereṽ1 and ṽ2 are the first two rows of the matrix̃V. Hence, the matrixV is block
upper triangular, with a 2× 2 block having eigenvalues 1 with multiplicity 2. As a
consequence, the method is zero-stable if the eigenvalues of V have moduli strictly less
than 1, which completes the proof.�

4. Error analysis

Following the lines drawn in [3, 4, 6, 18] for the first order case, we now analyze
the local discretization error associated to GLN methods (1.2), whose vector of external
stages is given by the Nordsieck vector (1.6). Since we are approximating the Nord-
sieck vector at each step, we define the vectors ˜y[n−1], ỹ[n] ∈ R

rd of the local solutions
by

ỹ[n−1]
i = δi0y(xn−1) + δi1hy′(xn−1) + . . . + δiphpy(p)(xn−1),

ỹ[n]
i = δi0y(xn) + δi1hy′(xn) + . . . + δiphpy(p)(xn),
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whereδi j is again the usual Kronecker delta. Thus, the local discretization error asso-
ciated to thei − th external stage of (1.2) is given by

lei(xn) = ỹ[n]
i − h2

s∑

j=1

bi j f (Ỹ[n]
j ) −

r∑

j=1

vi j ỹ
[n−1]
j , i = 1,2, . . . , r, (4.1)

being

Ỹ[n]
i = h2

s∑

j=1

ai j f (Ỹ[n]
j ) −

r∑

j=1

ui j ỹ
[n−1]
j , i = 1,2, . . . , s. (4.2)

The following result holds.

Theorem 4.1. For the numerical solution of the(1.1), with f globally Lipschitz, con-
sider a GLN method(1.2)of order p and stage order q. Denoted byI the identity matrix
in R

r×r , the local truncation error associated to the grid point xn is given by

le(xn) = (φp ⊗ I )hp+1y(p+1)(xn−1) +O(hp+2), (4.3)

if q = p or q= p− 1, where

φp =

p+1∑

k=1

ep+1−k

k!
−

Bcp−1

(p− 1)!
.

Proof: We observe that, due to the fact that the method (1.2) has stage orderq,

y(xn−1 + cih) = h2
s∑

j=1

ai j f (y(xn−1 + c jh)) +
r∑

j=1

ui j ỹ
[n−1]
j + ζi(h), (4.4)

where

ζi(h) =


O(hp+1), if q = p,

O(hp), if q = p− 1.
(4.5)

Subtracting (4.4) from (4.2), we obtain

Ỹ[n]
i − y(xn−1 + cih) = h2

s∑

j=1

ai j

(
f
(
Ỹ[n]

i

)
− f (y(xn−1 + cih))

)
− ζi(h), i = 1, . . . , s.

Supposing thatL > 0 is the Lipschitz constant off , we have
∥∥∥Ỹ[n] − y(xn−1 + ch)

∥∥∥ ≤ h2L ‖A‖
∥∥∥Ỹ[n] − y(xn−1 + ch)

∥∥∥ + ‖ζ(h)‖,

i.e.
(1− h2L ‖A‖)

∥∥∥Ỹ[n] − y(xn−1 + ch)
∥∥∥ ≤ ‖ζ(h)‖,

wherey(xn−1 + ch) = [y(xn−1 + cih)]s
i=1. We assume thath0 is a real number such that

h0L‖A‖ < 1.
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Hence, for anyh2 ≤ h0,
∥∥∥Ỹ[n] − y(xn−1 + ch)

∥∥∥ ≤ ‖ζ(h)‖
1− h0L‖A‖

.

Consequently, for (4.5),

∥∥∥Ỹ[n] − y(xn−1 + ch)
∥∥∥ =


O(hp+1), if q = p,

O(hp), if q = p− 1.

In the caseq = p, insertingỸ[n] = y(xn−1 + cih) +O(hp+1) into (4.1), we obtain
p∑

k=0

δikhky(k)(xn) = h2
s∑

j=1

bi j y
′′(xn−1 + c jh) +

r∑

j=1

p∑

k=0

vi jδ jkhky(k)(xn−1) − lei(xn).

Expandingy(k)(xn) andy′′(xn−1 + c jh) in Taylor series aroundxn−1 and collecting in
powers ofh, we get

p∑

k=0


k∑

l=0

k!
l!
δi,k−l −

s∑

j=1

(k(k− 1))bi j c
k−2
j −

r∑

j=1

k!vi jδ jk


hk

k!
y(k)(xn−1)+

+


p+1∑

l=1

δi,p+1−l

l!
−

s∑

j=1

bi j c
p−1
j

(p− 1)!

 hp+1y(p+1)(xn−1) = lei(xn) +O(hp+2).

If q = p or q = p − 1, all the terms up to orderO(hp) vanish (compare [9]), and the
local truncation error takes the form

lei(xn) =


p+1∑

l=1

δi,p+1−l

l!
−

s∑

j=1

bi j c
p−1
j

(p− 1)!

 hp+1y(p+1)(xn−1) +O(hp+2),

that is equivalent to (4.3).�
An alternative proof of Theorem 4.1 can be given using SN series (2.2), as follows.

The expression ofle(xn) given in (4.1) is equivalent to (compare Theorem 2.1)

le(xn) = ỹ(xn) − y[n] = S N(Eξ, y, y′) − S N(Bη̄ + Vξ, y, y′) = S N(Eξ − Bη̄ − Vξ, y, y′),

i.e.

le(xn) =
∑

t∈S NT

hρ(t)

ρ(t)!
α(t) (Eξ(t) − Bη̄(t) − Vξ(t)) F(t)(y, y′)

and, since the method has orderp, all the terms corresponding to the trees of order less
or equal top disappear, providing

le(xn) =
∑

ρ(t)=p+1

hρ(t)

ρ(t)!
α(t) (Eξ(t) − Bη̄(t) − Vξ(t)) F(t)(y, y′) +O(hp+2). (4.6)

The coefficientsE(ξ)(t) andξ(t) depend only onρ(t) = p + 1 and not on the specific
considered tree (compare (3.1) and Table 1). We observe that, if t = [t1, t2, . . . , tk], we
have (see [11])

η̄(t) = ρ(t)(ρ(t) − 1)η(t1)η(t2) . . . , η(tk) = p(p+ 1)cp−1.

Substituting this expression in (4.6) gives the thesis.
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5. A remark on error estimation

As an application of the result proved in Section 4, we derivea computable error
estimate for given a GLN method (1.4) of orderp and stage-orderq = p− 1. In order
to achieve this purpose, we propose a formula to approximatethe (p+ 1)-st derivative
appearing in (4.3), of the form

hp+1y(p+1)(xn−1) = h2(α ⊗ I )F [n] + (β ⊗ I )y[n−1] +O(hp+2), (5.7)

with α ∈ Rs andβ ∈ Rr . Such a choice, similarly as in [18], is carried out in order to
provide a formula only depending on quantities already computed in a prescribed step,
i.e. the vector of stage derivativesF [n] and the vector of the external stagesy[n−1], thus
avoiding to increase the computational cost of the numerical scheme.

First, we replace in (5.7) theS N-series expansion ofF [n] andy[n−1]

hp+1y(p+1)(tn−1) = (α ⊗ I )S N(η̄, y, y′) + (β ⊗ I )S N(ξ, y, y′)

and we determineα andβ by comparing the corresponding powers ofh appearing in
the left and right-hand sides. We compute these values for the one-stage GLN method
of order 4 and stage order 3 introduced in [9], withA =

[
1
4

]
,

U =
[

1 c −1+2c2

4
1
12

(
3c
2 + c3

) c(−3+c3)
24

]
,

B =



42−64c+37c2−10c3+c4

24

67−76c+30c2−4c3

24

(−3+c)(−2+c)
2

5
2 − c

1



,

V =



1 1 −30+64c−37c2+10c3−c4

24
4−42c+64c2−37c3+10c4−c5

24
2−42c2+64c3−37c4+10c5−c6

48

0 1 −43+76c−30c2+4c3

24
12−67c+76c2−30c3+4c4

24
16−67c2+76c3−30c4+4c5

48

0 0 −4+5c−c2

2
2−6c+5c2−c3

2
2−6c2+5c3−c4

4

0 0 c− 5
2 1− 5c

2 + c2 4−5c2+2c3

4

0 0 −1 −c 1− c2

2



,

wherec ≈ 0.3754243604533405 is the only root in (0,1) of the polynomial

a(x) = 6− 210x3 + 320x4 − 185x5 + 50x6 − 5x7.
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As regards the coefficientsα ∈ R andβ ∈ R
5 in (5.7) for this method, they result as

solution of the linear system

βe1 = 0

βe2 = 0

2αe+ 2βe3 = 0

6αc+ 6βe4 = 0

12αc2 + 24βe5 = 0

20αc3 = 120

providing

α =
6
c3
, β =



0

0

−
6
c3

−
6
c2

−
3
c



.

We test the effectiveness of the approach on the periodic stiff problem introduced
by Kramarz in [19]

y′′(t) =

[
µ − 2 2µ − 2
1− µ 1− 2µ

]
y(x), t ∈ [0,20]

with initial conditions

y(0) = [2,−1]T , y′(0) = [0,0]T .

The exact solution isy(t) = [2 cos(x),− cos(x)]T and does not depend onµ (the depen-
dence on this particular solution is eliminated by the initial conditions). Assuming that
µ = 2500, Fig. 1 depicts the error

[
y[n]

1
y[n]

2

]
−

[
2 cos(xn)
− cos(xn)

]
, n ≥ 1 (5.8)

and the principal error term in (4.3), where the vector of error costantsφp is equal to



3−c3(42−64c+37c2−10c3+c4)
72

12−67c3+76c4−30c5+4c6

72

1
2 −

(−3+c)(−2+c)c3

6

6−5c3+2c4

6

1− c3

3



.
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Figure 1: Pointwise comparison of the error (5.8) and the principal error term in (4.3)

6. Conclusions

We have analyzed some accuracy issues related to the numerical solution of second
order ODEs (1.1) by means of GLN methods (1.2). In particular, we have assumed that
the methods provide approximations to the Nordsieck vector(1.6) at each step point.
For such methods, some issues regarding order conditions and convergence have been
given by employing the theory of rooted trees, leading to general order conditions up
to order 4 that are satisfied in a more general setting than that described in [9]: indeed,
the order conditions provided in [9] hold true only for high stage order methods; this
hypothesis is here neglected. In addition, an accuracy analysis has been provided, in
order to obtain a possible representation of the local truncation error associated to (1.2)
and its estimate, as discussed in Section 5.

Future developments of this research will be devoted to explore, within the family
of GLN methods, near-conservation properties arising fromsymmetry or a general-
ization of G-symplecticity, defined for multi-value methods solving first order ODEs
(compare [12, 14, 15] and references therein), in order to appoach conservative prob-
lems such as second order Hamiltonian systems, and the analysis of their long-term
properties [13, 15]. In addition, in order to exploit the generality of the approach and
the large number of degrees of freedom involved in the formulation of the methods, we
will also aim to treat constructive issues, even by means of optimization techniques, in
order to derive new examples of methods which improve existing ones. Up to now, the
author have derived a first example in [9] of methods which results more accurate and
efficient than the analog Runge-Kutta-Nyström.
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