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Abstract

The paper is concerned with the analysis of the error agsakcta a family of multi-
value numerical methods for the solution of initial valueldems based on special sec-
ond order ordinary dierential equations. Such methods, denoted as GeneraldRystr
methods, provide at each step point an approximation to tivdsieck vector associ-
ated to the solution of the problem. Order issues for sucthaastbased on the theory
of rooted trees are here provided, as well as an accuracysisa carried out, leading
to a representation of the local truncation error.
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1. Introduction

We focus our attention on the numerical solution of spe@abad order Ordinary
Differential Equations (ODES)

y'(x) = f(y(x), Xxe€[x.X],
y(Xo) = Yo € RY, (1.1)
Y (%) = Yy € RY,

with f : RY - RY smooth enough to ensure the well-posedness of the problam. T
specific purpose is that of analyzing the accuracy propedi¢he family of General
Linear Nystbm (GLN) methods

S r
Y=k Y A (™ ) uym Y i=1s
j=1 j=1
J ’ (1.2)

s r
FT Y B+ Y =
j=1 =1

introduced in [8] and furtherly investigated in [9, 10, 14% extension of the family of
General Linear Methods for first order ODEs [1, 5, 6, 18]. Thecpdures involved in
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(1.2) essentially updates the vector of approximations

y[ln—l]
y[n_l] _ y[Zn—l]

yEn'—l]

from the pointx,_1 to x, of the discretization. The supervecidt- is usually denoted
as vector of theexternalstages. It is worth observing that every subveg{B‘rl] €
RY approximates some solution related quantities (such asdhgion itself, linear
combinations of its derivatives, past evaluations of thiinction and so on). The
supervector

c er

{n]
Yl
yin

yinl — 2

e RS9, (1.3)
v

whose components appear in (1.2), is the so-called veciatarhal stages, providing

approximations to the solution in a set of internal poiris, + cjh, j = 1,2,...,5,

wherec = [cy, Cy, . .., Cg]" is the vector of thabscissa®f the method.

We observe that a more specialized formulation of (1.2) carmgilsen (see [8])
by splitting the vectory™ in two complementary parts, one of which containing
all the approximations related to the first derivative of Swdution. Such a splitted
formulation, widely employed in [8], is not considered instimanuscript, which is
mainly focused on the more general formulation (1.2).

A more compact representation of (1.2) is obtained by reggndlin tensor form,
ie.

Y = (A @ FMT + (U y™ 1,
Y = k2B o FM + (V @ hyl" 1,

where® denotes the usual Kronecker tensor product of matricess rEpresentation
involves the cofficient matriceA € RS, U € R¥", B € R™S, V € R™, which can
be collected in the following partitioned ¢ r) x (s+ r) matrix

AlU
44

denoted as the Butcher tableau of the method.
The treatise is focused on the family of GLN methods (1.4) andsieck form, i.e.
such that the vector of external approximations satisfies

(1.4)

Y(Xn)
hy (Xa)
Y~ | P O) | (1.6)

YO (x)



that is an approximation to the Nordsieck vector [2, 17, 18, th particular, we aim
to carry out an error analysis, which allows to introduceiahibuilding blocks for
implementation issues, such as the development of errionagsis.

More specifically, the paper is organized as follows: Secflosummarizes the
main tool needed along the treatise, i.e. the theory of tbtwaes for (1.4), introduced
in [11]; Section 3 provides a theory of order conditions fartisieck methods which
exploits the special structure of the method; Section 4ainatan error analysis for
Nordsieck methods, while issues for error estimation aesgmted in Section 5; some
conclusions are given in Section 6.

2. Order Conditions for GLNs

In [11], the authors have introduced a theory of rooted tfeegl.2), generalizing
the results in [7, 16, 17]. In particular, the set of Specigbtidm-trees (SNT)

SNT={e, o I, V, §,}

is the domain where the basic operators involved in the ftatimn of order conditions
are defined. Such operators are now recalled.

Let us considety,...,tx € SNTand the tred = [t,...,t] obtained according
to the composition rules described in [11]. Correspongingle define elementary
differentials by recursion, as follows

Fo)y.Y) =Y.
Fl)Y.Y) =Yy’ =f,
FOW.Y) = f¥ F).Y), ... FEWy))-

Moreover, for a given treé = [t;*,t)?,..., "], we recursively define the following
useful functiong anda (compare [7, 16])

k
p@) =1 p(e)=2 p(t)=2+ ) up(t),
= 2.1)

k "
1 a(ti))”'
a(e) =ao) =1 «aft)= t) = 2)! — =] .
@ =0)=1 o) =00 -21[ | 50
In correspondence to the introduced theory of rooted teggneral set of order
conditions for (1.2) has been derived in [11]. To this pugdke main tool is given by
S N-series

he®
SNay.y) = tesz,;”m

related to the problem (1.1). By denotimgand¢ the codficients of theS N-series
expansions of the internal and external stages respactivelobtain by (1.2) that

{ n(t) = An(t) + UE(D),

a(ta()FOy.Y) (2.2)

(1) = BA(t) + V(). (2.3)



wherer(t) = p(t) (o(t) — 1) " (t), being
0, ift=0,e
)= 1, ift=0
n(t) - n(t), ift=[t,... .
The following result holds, compare [11].

Theorem 2.1. If the operatofZ in (2.3)of a given GLN(1.2)is such that; (t) coincide
with the corresponding cgfcients E;(t) in the Taylor series expansions of the exact
values approximated bﬂ/for any te SNT of ordep(t) < p, then the method has
order p, i.e.

E£(t) = Bi(t) + V), te SNT p(t) <p. (2.4)
Moreover, the method has stage order q if the operatpfg, i = 1,...,s, in(2.3)
coincide with the cggcients By, of the Taylor series expansion dfy + c;h), for any
t € SNT of order less or equal to g.

3. Nordsieck methods

For GLN methods (1.2) depending on input vectors of the fdtr@)( the values of
the entries of(t) can be easily computed as follows

&) =pM)6pwi-1, T=1,....1, (3.1)

beingt € SNTandg;; the usual Kronecker delta. This formula can be obtained by
S N-series arguments: indeed, looking fo &trepresentation of the input vector

Yy = SNEL YY),

and taking into account thgt"* ~ h-1y(-1(x, _;), we have
Hy D (x-1) = SNELY.Y)
hi—l
=0-Y(Xn-1) + 0-hy (Xp-1) + ... + i-D
Thus, by comparison of the left and right-hand sides, we @) (
The corresponding values &%(t) can be again computed by means of Taylor se-

ries expansion and are reported in Table 1. We are able taderarder conditions
specialized to the Nordsieck case [2, 17, 18, 20], i.e.

&Y V(o) + -

e + 3e; + 6e3 + 664 = 6(BC + Vey)

for order 2,
€1 + 4, + 12e3 + 24e4 + 24es = 12(Bn(o) + 2Ves)

for order 3,

€1 + 56 + 20e; + 608y + 12085 + 12085 = 20B7(]) + 6Ves)
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EL0) EL(®) E&°) ... E£(Y)

1 1 1 1
0 1 2 o(t)

0 0 2 PO - 1)

0 0 0 pM((t) - L)((t) - 2)
0 0 o .. (1)

Table 1: Values oE£(t) in (2.4) for Nordsieck methods

for order 4, with

n(e) = 2(Ae + Uey),
n(1) = 6(Ac + Uey),

beinge the vector of ones ifR® andg thei — th vector of the canonical basis Bf if
i <=r and the zero-vector otwerwise.

3.1. Aremark on convergence analysis

The results reported in Section 2 are now employed to prasidalternative proof
of convergence for GLN methods (1.4) in Nordsieck form. Tis fhurpose, we recall
the following classical results, adapted to GLN methodsSin [

Theorem 3.1. A GLN method1.4) is convergent if and only if it is consistent and
zero-stable.

The notions of consistency for GLN methods (1.4) is now giveterms of opera-
tors of rooted trees.

Definition 3.1. A GLN method (1.2) is consistent if
Us(0) = e V&) = ES(0),

Ué(®) =c, VE(®) = E£(®), (3-2)
2Be + V£(°) = E£(0).

We also recall the definition of zero-stability given in [8].

Definition 3.2. A GLN method (1.2) is zero-stable if the roots of the mininadypo-
mial of theV matrix lie on or within the unit circle and the multiplicityf the zeros on
the unit circle is at most two.

Thus, the following convergence result holds.



Theorem 3.2. A GLN method1.2) with input vector {! defined as if{1.6)is conver-
gent if its Butcher tablea(d.5) has the form

A\e c %—Ae

B‘el e+e 3+e+e3-Be

J (3-3)
5 :

with U € RS9,V € R™(3 and all the eigenvalues & have modulus strictly less
than 1, whereV is obtained by the matriY removing its first two rows and columns.

Proof. In force of the criterion provided by Theorem 3.1, we arew#d to study the
convergence of GLN methods (1.4) by consistency and zatalsy analysis. Due to
the nature (1.6) of the input vectors, we have

§0)=e, &(®)=e, &(°)=2es

The vectorE£(0), E£(®) andE£(°) respectively assume the forep e + €, €1 + 26, +
2e; (see Table 1). Taking into account these expressions of #miomed vectors,
conditions (3.2) give the expression (3.3) of the Butchble@u. Correspondingly, the
matrix V assumes the form

1 S ]
1 1 é‘zbli i
i;l
0 1 1—Zb2i A
V= i=1 ’
00
Co Y
[0 0

whereV; andV, are the first two rows of the matriX. Hence, the matri¥ is block
upper triangular, with a & 2 block having eigenvalues 1 with multiplicity 2. As a
consequence, the method is zero-stable if the eigenvaliébave moduli strictly less
than 1, which completes the proafl

4. Error analysis

Following the lines drawn in [3, 4, 6, 18] for the first ordeiseawe now analyze
the local discretization error associated to GLN method®){Wvhose vector of external
stages is given by the Nordsieck vector (1.6). Since we gpeoapnating the Nord-
sieck vector at each step, we define the vegiBrd!l;§i"l € R™ of the local solutions
by

F7U = Sioy(%n-1) + ity (Xn-1) + . . . + GiphPyP (xo_1),

7 = Si0y(Xn) + Sithy (Xa) + ... + SiphPy P (xy).



whered;; is again the usual Kronecker delta. Thus, the local distatitin error asso-
ciated to the — th external stage of (1.2) is given by

S r
lei() = 9 =02 > oy VM) - Y v i=12, (4.1)
=1 =1

being

S r
VAL hZZ ay; (V") - Z uf =12 s (4.2)
j=1 j=1

The following result holds.

Theorem 4.1. For the numerical solution of thél.1), with f globally Lipschitz, con-
sider a GLN methogil.2)of order p and stage order q. Denotedlbhe identity matrix
in R™", the local truncation error associated to the grid pointi given by

le(xn) = (¢p ® NP yP*D(xq 1) + O(hP*), 4.3)
ifg=porqg=p-1, where
$p = pif % - Bc_p‘1_
K (p-21)
Proof We observe that, due to the fact that the method (1.2) hge stalerq,
(X1 + Gih) = h? ZS: aj f(y(%a-1 + cjh)) + Zr: u B+ G(h), (4.4)
=1

j=1

where .
O(h**), ifg=p,
Zi(h) = 0 Lo (4.5)
O(hP), ifqg=p-1
Subtracting (4.4) from (4.2), we obtain
S
VI —yOea + aih) = 02 3 a (F (V) = £ s +al))) - Gih). T=1..s

j=1
Supposing that > 0 is the Lipschitz constant df, we have

[V — y(xo-1 + ch)|| < R2L AT [V = y(xo-1 + ch)|| + liZ(O)I,

(L~ h2L Al [ = y(xq-1 + ch)]| < iZ(hl,

wherey(xn-1 + ch) = [y(X,-1 + Gih)]®_,. We assume thdl, is a real number such that

hoLJIA]l < 1.



Hence, for anyn? < hy,

Ichy)
77~ (x4 +ch)||_+l_)”A”.

Consequently, for (4.5),
. oY), ifq=p,
Y — y(%-1 + ch)|| =
” Y(Xh-1 +C )H {O(hp), ifq=p-1
In the casey = p, insertingY!" = y(x,_1 + cih) + O(hP*1) into (4.1), we obtain
P s rp
D sk yM06) = 0 > by (o + i) + > > Wiy x) - lei(xo).
k=0 =1 =1 k=0

Expandingy®(x,) andy”(x-1 + cjh) in Taylor series around,_; and collecting in
powers ofh, we get

p
5| k-1 — (k(k 1))blj k|V|]61k ky(k)(xn—l)“'
I! k!

k=0 \ 1=0 =1

Gi,p+1-1 bij j PHL (D) e o2
[ZJ Z(p 1)|] y( (Xn—l) |el(xn)+0(h )

If g= porq= p-1, all the terms up to orde®(hP) vanish (compare [9]), and the
local truncation error takes the form
p—l

le (Xn) _ [Z di, p+i-1 Z (p 1)|] p+ly(p+l)(x 1) + O(hp+2)

1=1

that is equivalent to (4.3)]
An alternative proof of Theorem 4.1 can be given using SNesd@.2), as follows.
The expression d&(x,) given in (4.1) is equivalent to (compare Theorem 2.1)

le(xn) = §(x) - Y™™ = SNE£,y,Y) - SNBy + V£,y,Y) = SNEZ - By - V&, y.Y),
i.e.

le(xq) = Z (t), a(t) (E&(H) - Bn(t) — V) FOY.Y)
teS NT
and, since the method has orggll the terms corresponding to the trees of order less

or equal top disappear providing

le(xq) = Z Wa(t)(Ef(t) B(t) - VE®) FR)(Y.Y) + O(hP*?). (4.6)
p(t):p+l

The codficientsE(£)(t) andé&(t) depend only om(t) = p + 1 and not on the specific
considered tree (compare (3.1) and Table 1). We observgfthat [ti,to, ..., t], we
have (see [11])

) = p(p(t) - Dnt)n(tz) . ... n(t) = p(p + 1)c” .
Substituting this expression in (4.6) gives the thesis.



5. A remark on error estimation

As an application of the result proved in Section 4, we deaivamputable error
estimate for given a GLN method (1.4) of ordeand stage-ordeg = p — 1. In order
to achieve this purpose, we propose a formula to approxithaté + 1)-st derivative
appearing in (4.3), of the form

hPryP (%, 1) = (@ ®@ DFM + (8@ yI™ 1 + O(hP+?), (5.7)

with @ € RS andp € R". Such a choice, similarly as in [18], is carried out in order t
provide a formula only depending on quantities already aatenbin a prescribed step,
i.e. the vector of stage derivativéd’ and the vector of the external stagés?, thus
avoiding to increase the computational cost of the numksidzeme.

First, we replace in (5.7) th® N-series expansion ¢l andy"4

PPt 1) = (@ @ DS NI Y. Y) + (B® 1)SNE,Y,Y)

and we determine andg by comparing the corresponding powershadippearing in
the left and right-hand sides. We compute these values éoorle-stage GLN method
of order 4 and stage order 3 introduced in [9], with= [,

_ 14222 c(-3+c®
U—[l c X L(%2+0) 1—2]

[ 42-64c+37c2-10c3+¢* 1
24

67-76c+30c2—4c3
24

B = (=3+c)(—2+c)
2
5
5= C
1
[ 1 1 —30+64c-37c2+10c3—c* 4-42c+64c2-37c3+10c*—c® 2-42c2+64c3-37c*+10c—c® ]
24 24 48
0 1 —43+76c-30c2+4c3 12-67c+76c2—30c3+4¢* 16-67c2+76c3-30c* +4c®
24 24 18
_ —4+5c-c2 2-6¢+5c2—c3 2-6c2+5¢3-c*
V=0 0 — = = s
5 5c 2 4-5¢2+2¢3
0O c—-3 1- S +cC _=
[0 0 -1 —c 1-¢

wherec ~ 0.3754243604533405 is the only root in {) of the polynomial

a(x) = 6 - 210 + 320x* — 185¢° + 50x° — 5x’.



As regards the cdcientsae € R andg € R in (5.7) for this method, they result as
solution of the linear system

per=0
pe;=0
2a0e+2Be3=0
6aCc+ 68e, =0
120C? + 24Be5 = 0
200c® = 120
providing
0
0
6
azg, B = _g
6
i
_3
C 3

We test the ffectiveness of the approach on the periodiff gtioblem introduced
by Kramarz in [19]

vo=472 #572 w. teo20)

with initial conditions
y(0)=[2,-1]", y(0)=[0,0]".

The exact solution ig(t) = [2 cos), — cos)]” and does not depend @n(the depen-
dence on this particular solution is eliminated by the @hitionditions). Assuming that
u = 2500, Fig. 1 depicts the error

n] 2
[yﬁ"] ]—[ _ggz% ] n>1 (5.8)

and the principal error term in (4.3), where the vector obecostants,, is equal to

[ 3-C3(42-64c+377-1063+¢Y)
72

12-67c3+76c*—30c5+4c8
72
1 _ (=3+9)(-2+0)c?
2 6

6-5c3+2¢*
6

10



O Error estimate
e Eror

Figure 1: Pointwise comparison of the error (5.8) and theqipad error term in (4.3)

6. Conclusions

We have analyzed some accuracy issues related to the nahsmfigtion of second
order ODEs (1.1) by means of GLN methods (1.2). In particwarhave assumed that
the methods provide approximations to the Nordsieck vedi@) at each step point.
For such methods, some issues regarding order conditi@hsaavergence have been
given by employing the theory of rooted trees, leading toegainorder conditions up
to order 4 that are satisfied in a more general setting tham#saribed in [9]: indeed,
the order conditions provided in [9] hold true only for higlage order methods; this
hypothesis is here neglected. In addition, an accuracysisdhas been provided, in
order to obtain a possible representation of the local aitioe error associated to (1.2)
and its estimate, as discussed in Section 5.

Future developments of this research will be devoted tocegplwvithin the family
of GLN methods, near-conservation properties arising feyyimmetry or a general-
ization of G-symplecticity, defined for multi-value mettwsolving first order ODEs
(compare [12, 14, 15] and references therein), in order pmagh conservative prob-
lems such as second order Hamiltonian systems, and thesanalfytheir long-term
properties [13, 15]. In addition, in order to exploit the geality of the approach and
the large number of degrees of freedom involved in the foatmh of the methods, we
will also aim to treat constructive issues, even by meangtifrization techniques, in
order to derive new examples of methods which improve egstnes. Up to now, the
author have derived a first example in [9] of methods whichltesnore accurate and
efficient than the analog Runge-Kutta-Nystr.
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