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Abstract. The employ of an adapted numerical scheme within the in-
tegration of differential equations shows benefits in terms of accuracy
and stability. In particular, we focus on differential equations model-
ing chemical phenomena with an oscillatory dynamics. In this work, the
adaptation can be performed thanks to the information arising from ex-
isting theoretical studies and especially the observation of time series.
Such information are properly merged into the exponential fitting tech-
nique, which is specially suitable to follow the a-priori known qualitative
behavior of the solution. Some numerical experiments will be provided
to exhibit the effectiveness of this approach.
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1 Introduction

This work aims to solve systems of differential equations modeling oscillatory
chemical phenomena. In particular, it highlights how useful can be time series
of experimental data when they are properly merged into a numerical scheme.
Classic numerical methods could determine a strong reduction in stepsize in or-
der to accurately follow the prescribed oscillations of the exact solution because
they are developed in order to be exact (within round-off error) on polynomials
up to a certain degree. When the qualitative behavior of the exact solution is
a-priori known, it may be worthwhile to employ adapted methods which are con-
structed in order to be exact on functions other than polynomials, following the
well-known strategy of exponential fitting [1–4]. Such functions are assumed to
belong to a finite-dimensional space (the so-called fitting space) and are chosen
according to the character of the exact solution. As a consequence, the coeffi-
cients of the resulting numerical method are no longer constant as in the classic
case, but depend on a parameter characterizing the exact solution, whose value
is evidently unknown. Therefore, the advantages of this technique can be reached
only if the fitting space is suitably chosen and the parameter is properly com-
puted.
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We deal with these two challenges by taking into account the existing theoretical
studies on the problem and observing the time series of experimental data. The
oscillatory dynamics emerging from both these approaches suggests the employ
of a trigonometrical fitting space. In this case, the basis functions rely on a pa-
rameter which is the time frequency of oscillations of the exact solution. When
the time series of experimental data are available, we can estimate the parame-
ter by means of the frequency of observed oscillations, thus avoiding expensive
procedures based on solving non-linear systems as in [5, 6].
As an experimental case study, we focus on the Belousov-Zhabotinsky (BZ) re-
action, a prototypical oscillatory chemical system whose kinetics is essentially
described in the well-known Oregonator model developed by Field, Körös and
Noyes [7–9]. It consists in a system of ordinary differential equations which we
integrate by means of the above-mentioned adapted strategy.
In summary, we describe the main aspects of the Belousov-Zhabotinsky reaction
in Section 2, Section 3 is devoted to the development of the numerical scheme
used to integrate the Oregonator, while Section 4 shows some numerical experi-
ments and Section 5 exhibits the conclusions.

2 The Belousov Zhabotinsky reaction

The BZ reaction was discovered in 1951 by Boris P. Belousov who observed
oscillations in the color of a solution while he was trying to develop a simple
chemical model for the oxidation of organic molecules in living cells [10, 11]. His
study was confirmed and extended by Zhabotinsky 10 years later [12–14] and
now BZ is probably one of the most studied oscillating reaction; the popularity
of the BZ is mainly due to the fact that it is the simplest closed macroscopic
system that can be maintained far from equilibrium by an internal source of free
energy homogeneously distributed in space. Being outside of thermodynamical
equilibrium, BZ displays several exotic dynamical regimes: periodic, aperiodic
and chaotic oscillations [15, 16], autocatalysis and bistability [17], Turing struc-
tures and pattern formation [18, 19].
The BZ reaction consists in the oxidation of an organic substrate (generally mal-
onic acid) by bromate ions in an acidic medium, catalyzed by a metal complex
(iron, cerium or ruthenium, see [8, 9] and references therein). The oscillations
especially occur in the concentrations of the metal ions and become evident
through a change in the color of the solution, which is more drastic for the iron.
According to Fields, Körös and Noyes, the oscillations are due to the competi-
tion between two processes: firstly, the metal ion is mainly in its reduced state
and the concentration of bromide ions ([Br−]) is high (Process I); then the bro-
mide ion is consumed up to a certain critical value and the metal ion reverts to
the oxidized state (Process II); finally the metal ion reacts to produce bromide
ions and changes to its reduced state again. However, from the kinetics point
of view, oscillations are due to an Hopf instability arising from the nonlinear
chemical mechanism (autocatalysis + inhibition), involved in the reaction. The
whole chemical kinetics has been described by Field, Körös and Noyes by means
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of the following key reactions

A+ Y
k1−→ X + P,

X + Y
k2−→ 2P,

A+X
k3−→ 2X + 2Z,

2X
k4−→ A+ P,

B + Z
k5−→ 1

2
f Y,

where

X = HBrO2 (bromous acid), P = HOBr (hypobromous acid),
Y = Br− (bromide ion), A = BrO−3 (bromate ion),
Z = Me(n+1)+ (metal ion in oxidized state), B = MA (malonic acid).

Applying the law of mass action, the Field-Körös-Noyes model can be converted
into the following third order system of kinetic equations [8]:

dx∗

dt∗
= k1 a y

∗ − k2 x∗y∗ + k3 a x
∗ − 2k4(x∗)2, (1a)

dy∗

dt∗
= −k1 a y∗ − k2 x∗y∗ +

f

2
k5 b z

∗, (1b)

dz∗

dt∗
= 2k3 a x

∗ − k5 b z∗, (1c)

which is known as Oregonator and involve the concentrations of the aforemen-
tioned chemical elements. Such concentrations are indicated by letters in lower
case henceforth. The occurrence of oscillations in the exact solution depends
strongly on the values of the involved parameters, especially k5 and f . Indeed,
if k5 = 0, the bromide ion (Br−) concentration decays to zero according to the
equation (1b), so the system cannot oscillate. With regards to f , oscillations
arise only if 0.5 < f < 2.414, whereas for f < 0.5 and f > 2.414 the reaction
is in a stable steady state, being Process II or Process I dominant, respectively
(see [9] and references therein).
It is more convenient to study the Oregonator (1) in its dimensionless form, as
follows:

ε
dx

dt
= q y − x y + x (1− x), (2a)

ε′
dy

dt
= −q y − x y + f z, (2b)

dz

dt
= x− z, (2c)
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where

x =
2k4
k3a

x∗, y =
k2
k3a

y∗, z =
k4k5b

(k3a)2
z∗, t =

t∗

k5b
,

ε =
k5b

k3a
, ε′ =

2k4k5b

k2k3a
, q =

2k1k4
k2k3

,

(3)

or, in a more compact form,

dr

dt
= F (r; q, f, ε, ε′), (4)

where r = [x, y, z]T and F (r; q, f, ε, ε′) =

 1
ε (q y − x y + x (1− x))

1
ε′ (−q y − x y + f z)

x− z

.

3 An adapted numerical scheme

We aim to integrate the system (4) in a certain interval [t0, T ] provided with the
following initial condition

r(t0) = r0 , (5)

in a region of the plane k5 − f where the solution is known to oscillate. For this
purpose, we discretize the interval [t0, T ] and we employ an adapted Runge Kutta
method, developed in order to be exact (within round-off error) on functions
belonging to a particular fitting space. The general expression of a s-stage Runge-
Kutta method applied to the system (4) is

Ri = rn + k

s∑
j=1

ai,j F (tn + cjk,Rj), i = 1, . . . , s,

rn+1 = rn + k

s∑
i=1

bi F (tn + cik,Ri),

(6)

where k is the stepsize. We remark that the system (4) is autonomous, so F (tn+
cjk,Rj) = F (Rj). The scheme (6) is a one-step procedure and each of its stages
can be seen as a linear multistep formula on a non-equidistant grid [20]. Following
this approach, it can be reformulated by means of the following s+1 linear stage
representation

rn+ci = rn + k

s∑
j=1

ai,j F (rn+cj ), i = 1, . . . , s, (7a)

rn+1 = rn + k

s∑
i=1

bi F (rn+ci), (7b)
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being (7a) the internal stages and (7b) the final one. In this way, it is possible
to associate a linear difference operator with each stage

Li[φ(t); k] = φ(t+ cik)− φ(t)− k
s∑
j=1

ai,j φ
′(t+ cjk), i = 1, . . . , s, (8a)

L[φ(t); k] = φ(t+ k)− φ(t)− k
s∑
i=1

bi φ
′(t+ k). (8b)

Annhilating it on a proper fitting space, we can obtain the required adapted
Runge Kutta.
The prescribed oscillatory behavior of the exact solution of (4) suggests the
employ of a trigonometrical fitting space

Ftrig = {1, sin(µ t), cos(µ t)} , (9)

and the above procedure leads to a trigonometrically fitted 2-stage Runge Kutta
method having the following coefficients [21]:

ai1(z) =
1

zD(z)
( sin(ciz) sin(c2z)− cos(c2z)(1− cos(ciz)) ) , i = 1, 2,

ai2(z) =
1

zD(z)
( − sin(ciz) sin(c1z) + cos(c1z)(1− cos(ciz)) ) , i = 1, 2,

b1(z) =
1

zD(z)
( sin(z) sin(c2z)− cos(c2z)(1− cos(z)) ) ,

b2(z) =
1

zD(z)
( − sin(z) sin(c1z) + cos(c1z)(1− cos(z)) ) ,

(10)

where z = µk and

D(z) = cos(c1z) sin(c2z)− sin(c1z) cos(c2z).

We remark that the coefficients (10) rely on the parameter µ, which needs to be
properly estimated. For this purpose, we consider the experiment in [22] carried
out on an unstirred ferroin catalyzed BZ system and we observe the correspond-
ing time series reported in Figure 1. We focus on the oscillations occurring in the
concentration of ferriin, i.e. the oxidized form of the catalyst, Fe(phen)3+3 , which
corresponds to z in the Oregonator model (4). The time series exhibits an initial
exponential decay trend corresponding to the start of the reaction. We extract
the frequency of the oscillations from the time series as the inverse of the period
and we use the obtained value (0.0349) as an estimate of the parameter µ. In
this way, we can reach the benefits of the exponential fitting strategy without
increasing the computational cost to compute an accurate estimate of µ.
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Fig. 1: Time series of concentration of ferriin related to the experiment carried out in
[22] on an unstirred ferroin catalyzed BZ system.

4 Numerical experiments

We now show some numerical results arising from the integration of (4) in [0, 185]
provided by the initial conditions

x(0) = 0.0013, y(0) = 0.2834, z(0) = 0.1984, (11)

and with the following values for the parameters

f = 1, q = 3.52 · 10−5, ε = 0.3779, ε′ = 7.56 · 10−4. (12)

We remark that the concentrations in (11) are in their dimensionless form. We
employ the trigonometrically fitted Runge Kutta method (10) described in Sec-
tion 3 with the vector of nodes of the implicit trapezoidal rule (c = [0, 1])
and compare it with the corresponding classic Runge Kutta, the Lobatto-IIIA
method and the well-known Gauss’ Runge Kutta of order 4, which have the
following Butcher’s arrays [23]

0
1 1/2 1/2

1/2 1/2

0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

respectively. Table 1 shows that the trigonometrically fitted Runge Kutta method
(10) is more accurate and even stabler than the classic methods. In this table, we
consider the relative error with respect to a reference solution, computed by the
Matlab routine ode15s with an accuracy equal to 10−13. As reported in Figure
2, the trigonometrically fitted Runge Kutta method (10) follows the oscillations
of the solution expected both from theoretical studies [9] and from the observa-
tion of time series related to the experiment in [22]. Moreover, Figure 2 shows
that the numerical solution obtained by this method and the reference solution
computed by the Matlab solver ode15s exhibit totally similar oscillatory profiles.
We remark that the variables concentration of ferriin (z) and time (t) have been
recasted according to the positions (3).
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Table 1: Comparison among some classic Runge Kutta methods and the trigonomet-
rically fitted Runge Kutta (10) with nodes c = [0, 1] for the the integration of system
(4) with initial condition (5) and parameters chosen as in (12).

Error

k = 0.25 k = 1 k = 1.5

Trapezoidal rule 0.000109 0.750955 0.978572

LobattoIIIA Runge Kutta 0.003356 it blows up it blows up

Gauss’ Runge Kutta 0.002093 1.000013 0.995994

Trigonometrically fitted Runge Kutta 0.000070 0.577778 0.588392
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Fig. 2: Numerical solution of (4) obtained by the trigonometrically fitted Runge Kutta
method (10) with nodes c = [0, 1] and stepsize k = 0.25 (on the left) and numerical
solution computed by the Matlab routine ode15s with an accuracy equal to 10−13 (on
the right). The variables concentration of ferriin (z) and time (t) have been recasted
according to the positions (3).

5 Conclusions

In this work, we have presented an adapted numerical scheme to integrate sys-
tems of ordinary differential equations modeling oscillatory chemical phenomena.
In particular, we have employed a trigonometrically fitted Runge Kutta method
in order to accurately follow the prescribed oscillations of the exact solution.
Indeed, such methods are constructed in order to be exact (within round-off er-
ror) on trigonometric functions. However, this strategy usually requires a further
computational effort to estimate the parameter which the basis functions depend
on. For this reason, we have considered the time series coming from an exper-
iment which can be reasonably modelled by the system we want to integrate.
Therefore, we have chosen the frequency of the oscillations observed in time se-
ries as an estimate of the parameter, thus avoiding an increase of computational
cost. Numerical experiments show the effectiveness of this approach.
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