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Abstract. We describe search fér-stable and algebraically stable general linear methodsdsr p and stage ordey = p

or q= p— 1. The search foA-stable methods is based on the Schur criterion appliedpfeciic methods with stability
polynomial of reduced degree. The search for algebraicatiple methods is based on the sufficient conditions prapose
recently by Hill.
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1. INTRODUCTION

We describe the search for highly stable general linear otstiGLMSs) for ordinary differential equations (ODES)
{ y(t)=f(y(t), telo,T), 1.1)
y(to) = Yo,

where the functiorf : R™ — R™ is assumed to be sufficiently smooth apd= R™ is a given initial value. LeN be a
positive integer and define the gtid=tp+nh,n=20,1,...,N, Nh=T —tg. GLMs for the numerical solution of (1.1)
are defined by

S r
YW =n Zaij f(Yj[n]) +> uijZE”’“, i=12..5

i = (1.2)
3" =hy bty vz =12

=1 =1

n=12...,N. Here, the internal stageén] are approximations of stage ordgto y(t,_1 + cih) and the external

stageszi[”] are approximations of ordgrto the linear combinations of scaled derivativey(@f), compare [4], [12].
These methods are specified by the abscissa veetdc,...,cs]" and four coeffcient matrice& = [a;], U = [uij],
B= [bij], andV = [Vij].

In Section 2 we review the concepts Af and algebraic stability and in Section 3 we describe tomlsdarch
for methods with appropriate stability properties. Thegragpncludes with examples 8f and algebraically stable
methods given in Section 4.

2. STABILITY CONCEPTS
Applying the GLM (1.2) to the linear test equatigh= £y, t > 0, & € C, we obtain the recurrence relatiafl =
S(z2" Y, n=1,2 ..., z=hé&. Here,S(2) is the stability matrix defined b§(z) = V + zB(l —zA)~1U. We also define
the stability functionp(n,z) = detnl — S(z)). Denote byni(z),n2(2),...,nr(z) the roots of the stability function
p(n,z). Then the region of absolute stability of GLM (1.2) is given b
o = {ze C: n@| <1 i= 1,2,...,r}.

The GLM (1.2) is said to bé-stable if its region of absolute stability includes the aidge complex plan€~ = {z€
C: Re(z) < 0},ie.,C” C .



We are also interested in algebraic stability. The GLM (1sXaid to be algebraically stable, if there exist a real,
symmetric and positive definite mati®& e R"*" and a real, diagonal and positive definite maBix RS such that
the matrixM e R(St1)*(5+1) defined by

DA+ATD-B'GB | DU-B'GV

2.1
U'D-V'GB | G-VTGV 1)
is nonnegative definite. The significance of this definitioliofvs from the result proved by Butcher [2], [3] (see also
[1], [9]), that for a preconsistent and non-confluent GLM2Jli.e., methods with distinct abscissas = 1,2,...,s,
algebraic stability is equivalent -stability. This last concept is related to the test equmtio

y(t)=g(ty(t), t>0, 2.2)

whereg satisfies the one-sided Lipschitz condition of the fofwt,y1) — g(t,yz))T(yl —yy) <Oforallt >0 and
y1,¥2 € R™. Denote byy(t) andy(t) two solutions to (2.2) with initial conditiong andyp, respectively. Then it is
known that

[|y(tz) = ¥(t2)|| < [|y(tr) — ¥ta) | (2.3)

for 0 <t; <tp, compare [8], [5]. Here|| - || is any norm inR™. The method (1.2) is said to lé& stable if it inherits the
property (2.3), i.e.,

L e N [ 2.4)
for all step sized > 0 and for all differential systems (2.2) with the functigrsatisfying the one-sided Lipschitz

condition. HereZ" andZ" are solutions to (1.2) obtained with initial vecta#® andZ?, and|| - || is the norm
generated by the matri@. For the vectoy € R™ composed of the subvectoyse R™, i = 1,2,....r, this norm is

defined by
r r
IylI& = gy yj.
G ;J; iiYi Vi

3. TOOLSTO INVESTIGATE STABILITY
It can be verified that the stability functige{n,z) of the method (1.2) takes the form

p(n.2 =n""—Ri(@N"+ RN+ + (-1)'R (DN + (1) R11(2), (3.1)

whereR;(z) are rational functions

with
Po(2) = 14 po1z+---+ posZ,  P1(2) = 1+ praz+--- + pisZ,
P2(2) = P21Z+ -+ Pos?®, ..., Ps(2) = Pss- 12 1+ PsZ®,  Psi1(2) = Psi1,s2.

To investigate stability properties of GLMs (1.2) it is ma@nvenient to work with the polynomial

ﬁ(nvz) = pO(Z> p(nvz) (32)

instead of the rational functiop(n,z) and we will always adopt this approach. The GLM (1.2\istable ifp(n, 2)
is a Schur polynomial, i.e., if the rootg(2), i = 1,2,...,s+ 1, of p(n,z) are in the unit circle for alk such that
Rez) < 0. It follows from the maximum principle that this is the céfs#he roots ofpy(z) are in the positive half plane
C* ={z: Re(z) >0} andp(n,iy) is a Schur polynomial foy € R. This last condition can be investigated using Schur
criterion [15] as explained in [12].

Search for algebraically stable methods can be done nuatigrigsing the criterion for algebraic stability which is
based on the Nyquist stability function defined by

N(E)=A+UEI-V)™B, &ecC—a(V). (3.3)



Here,o (V) stands for the spectrum of the matkix This terminology of the Nyquist stability function was gégted
by Hill [11], although this function in the context of GLMs wdirst introduced by Butcher [3], who did not assign to
it any specific name. Denote by a principal left eigenvector d¥, i.e., the vector such tha’itjv :~v~vT, Wigo=1,
whereq is the preconsistency vector of GLM (2.2). Following [11fide the diagonal matri® by D = diag BT W),
and following [3], define by HEQ) the Hermitian part of a complex square mat@x i.e., HEQ) = (Q + Q*)/2,
whereQ* stands for the conjugate transpose®fThen it was demonstrated in [3] and [11] that a consistenIGL
(2.2) is algebraically stable if the following condition®aatisfied:

1. The coefficient matri¥ is power-bounded.

2. Ux # O for all right eigenvectors of andBT x 0 for all left eigenvectors o¥/.
3. D> 0and HéDA) > 0.

4. He(DN(&)) > O for all £ such thaté| = 1 andé € C — a(V).

4. EXAMPLES OF A- AND ALGEBRAICALLY STABLE METHODS

In this section we will illustrate the search f&r and algebraically stable methods for the class of two-Repge-
Kutta methods defined by

S 1]
Ty ith Z(an )byt ), =128
=1
s . @.1)
=Yo1+h z(vjf )+ wi ("),

n=1,2,...,N. Herey, is an approximation tg(tn) anin[”] are approximations te(t,_1+cih),i=1,2,...,s, where
y(t) is the solution to (1.1). These methods were introduced biidaicz and Tracogna [13] and further investigated
in [14], [6], [10], [7]. We also refer to a recent monographgemeral linear methods [12] where these formulas are
discussed in chapters 5 and 6.

PuttingZ" = [yT,hf(Y")T]T the TSRK method (4.1) can be represented as GLM (1.2) witkicisat matrices

A, U, B andV defined by
AU Ale B
Vi w | (4.2)

B|V

I 10 O

Solving the appropriate stage order and order conditionshtain an eleven-parameter family of methods of order
p =4 and stage order= 4 depending oly, Cp, C3, &j, i =1,2,3, j = 1,2, v3, andws. Searching foA-stable methods
we assume that the abscissa vecter[0,1/2,1]". The stability polynomial (3.2) for this family of methodskees the
form

p(n,2) = n(po(2n* - p1(2)n°+ P2(2n? — pa(2)n + pa(2)).

wherep;(z) are polynomials of degree 3 with respecttiVe compute next the parametagsg a; 2, anda; 3 to annihilate
polynomialsps(z) andps(z). This leads to a five-parameter family of methods dependirepg as1, asz, va, andws
whose stability properties are determined by quadratigmmhial po(z)n? — p1(2)n + po(2). The results of computer
search based on the Schur criterion are presented in Figthk iparameter spades, ws) for selected values of the
parametersyy, azy, az.

We also searched for methods which are algebraically statiegeneral abscissa vectmiWe have found formulas
for which _

He(DN(E))’ >-350.10°%% (4.3)

t € [0,271]. This bound was obtained by dividing the inter{@I27] into n = 10000 subintervals. Dividin{, 271 into
n = 1000 anch = 100 subintervals, these bounds are equal to 0. The coeffaéna method satisfying (4.3) are

= [ 0.748023646320140—-0.088623514454709 .35651569620125?7



ap=-1a3=1 az=0 ap=0,a31=-1 a3=0
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FIGURE 1. Regions ofA-stability in the(vs, w3)-plane, for TSRK methods with= 3 andp = q = 4, for specific values of the
parametersyo, azi, azz.
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0.421393024773032 .B63279074448260—0.04860164822913
A= | —0.136821530809582 .852101387625363 .03347085786682
0.730130053789655 .P54440972752177 .R1327575178599

—0.061994904923431—-0.014321664726926 .08826976497834
B=| —0.413117314149065 .027004921378105 .04873816363364
—0.090220513163391 .002986566608366 .R4590286442845

v=[ 0.622394316996030 .313242750536090—0.01178450314207@T

)

W:[ —0.062831671181596 —0.008857653267082 .ID47836760058632].T.
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