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Abstract

Partitioned general linear methods possessing the G-symplecticity property are intro-

duced. These are intended for the numerical solution of separable Hamiltonian prob-

lems and, as for multivalue methods in general, there is a potential for loss of accuracy

because of parasitic solution growth. The solution of mechanical problems over ex-

tended time intervals often benefits from interchange symmetry as well as from sym-

plectic behaviour. A special type of symmetry, known as interchange symmetry, is

developed from a model Runge–Kutta case to a full multivalue case. Criteria are found

for eliminating parasitic behaviour and order conditions are explored.

Keywords: Separable Hamiltonian problems, multivalue numerical methods,

G-symplecticity, symmetric methods, parasitic components

1. Introduction

G-symplectic general linear methods [3, 4, 5, 7, 8, 11, 12, 13, 15] are a natural

generalization of symplectic Runge–Kutta methods. In this paper we extend these

ideas to Runge–Kutta pairs applied to separable problems. We are given a differential

equation system, partitioned in the form

ŷ′(x) = f̂ (ỹ(x)), ỹ′(x) = f̃ (ŷ(x)), ŷ(x0) = ŷ0 ∈ R
N , ỹ(x0) = ỹ0 ∈ R

N . (1.1)

The main example is the equations of motion based on a separable Hamiltonian prob-

lem

p′(t) =−∂H

∂q
, q′(t) =

∂H

∂ p
,

where H(p,q)= T (p)+V (q). We could express this in the form (1.1) by writing ỹ= p,

ŷ = q.

We will consider problems for which there exists a bilinear form [ŷ, ỹ], which is

known to be an invariant, and we will construct methods which attempt to respect this

invariant. These methods will be partitioned general linear (that is, multivalue and mul-

tistage) and we cannot expect true numerical invariance to be possible. However, we
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will at least look for invariance in the same sense as for non-partitioned G-symplectic

methods.

To achieve theoretical invariance for (1.1) we will assume that for η̂ , η̃ ∈ R
N , it

holds that

[η̂ , f̃ (η̂)] = [ f̂ (η̃), η̃ ] = 0, (1.2)

and it follows that

d
dx
[ŷ(x), ỹ(x)] = [ f̂ (ỹ(x)), ỹ(x)]+ [ŷ(x), f̃ (ŷ(x))] = 0.

In Section 2 we will present a formulation of partitioned general linear methods.

This will be followed by Section 3 in which we will state the G-symplectic conditions

and show why methods with this property preserve bi-linear invariants. Sections 4

and 5 will analyse the requirement of interchange symmetry and the phenomenon of

parasitic behaviour respectively. Order conditions for general linear method pairs are

introduced in Section 6. Section 7 is devoted to the construction of general linear

method pairs. Some numerical experiments presented in Section 8 will attest to the

potential role of these new methods. Some concluding remarks will be given in Section

9.

2. Partitioned general linear methods

A general linear method for the differential equation system

y′(x) = f (y(x)), y(x0) = y0 ∈R
M.

is characterized by four matrices (A,U,B,V ), which indicate the relationship between

the vector of r inputs to step number n, denoted by y[n−1], the corresponding outgoing

vector y[n] and the vector of s stage values denoted by Y . If the individual stages are

Y1, Y2, . . . , Ys, then the vector F of stage derivatives is made up from the subvectors

Fi = f (Yi), i = 1,2, . . . ,s. For simplicity here, and in similar instances throughout

the paper, we will write this as F = F1 ⊕F2 ⊕ ·· · ⊕Fs. The equations relating these

quantities are

Y = h(A⊗ IM)F +(U ⊗ IM)y[0], y[1] = h(B⊗ IM)F +(V ⊗ IM)y[0], (2.3)

where we have used n = 1 because this is a typical case. Throughout this paper, we

will for simplicity omit the Kronecker products and write (2.3) as

Y = hAF +Uy[0], y[1] = hBF +Vy[0].

To write the partitioned problem in this formulation, let M = 2N and define

y =

[
ŷ

ỹ

]
, f (y) =

[
f̂ (ỹ)

f̃ (ŷ)

]
.

Now introduce the tableaux
[

Â Û

B̂ V̂

]
,

[
Ã Ũ

B̃ Ṽ

]
.
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In this partitioned method, ŷ[n] carries information on the variable ŷ(x) and ỹ[n] carries

information on ỹ(x). Furthermore Ŷ and Ỹ contain values of the stages and F̂i = f̂ (Ỹi)

and F̃i = f̃ (Ŷi), the values of the stage derivatives. For the (typical) first step of a

computation using this method, the inputs, outputs and stage values are related by

Ŷ = hÂF̂ +Ûŷ[0], Ỹ = hÃF̃ +Ũỹ[0], (2.4)

ŷ[1] = hB̂F̂ + V̂ ŷ[0], ỹ[1] = hB̃F̃ + Ṽ ỹ[0]. (2.5)

The fundamental properties of stability, pre-consistency and consistency, can be gener-

alized for partitioned methods and we will only consider method pairs in which these

properties hold. The formal meanings are

Definition 2.1. A partitioned general method pair [(Â,Û , B̂,V̂ )),(Ã,Ũ , B̃,Ṽ )] is stable

if V̂ and Ṽ are each power-bounded.

Definition 2.2. A partitioned general method pair [(Â,Û , B̂,V̂ )),(Ã,Ũ , B̃,Ṽ )] is pre-

consistent if there exists a pre-consistency vector pair [q̂0, q̃0], such that

V̂ q̂0 = q̂0, Ṽ q̃0 = q̃0,

Û q̂0 = 1, Ũq̃0 = 1,

where 1 is the vector in R
s with each component equal to 1.

Definition 2.3. A partitioned general method pair [(Â,Û , B̂,V̂ )),(Ã,Ũ , B̃,Ṽ )] is con-

sistent if the method is preconsistent with pre-consistency vector pair [q̂0, q̃0], if there

exist consistency vectors [q̂1, q̃1] such that

B̂1+ V̂ q̂1 = q̂1 + q̂0, B̃1+ Ṽ q̃1 = q̃1 + q̃0

where 1 is the vector in R
s with each component equal to 1.

The property of convergence for a partitioned general linear method is given by the

following definition.

Definition 2.4. A partitioned general method pair [(Â,Û , B̂,V̂ ),(Ã,Ũ , B̃,Ṽ )] is conver-

gent if for any well-posed initial value problem (1.1), there exist two non-zero vectors

q̂0, q̃0 ∈ R
r and two starting procedures φ̂ , φ̃ : (0,∞)→R

r, such that

lim
h→0

φ̂i(h) = q̂0,iŷ(x0), lim
h→0

φ̃i(h) = q̃0,iỹ(x0),

for all i = 1,2, . . . ,r, and such that for any x̄ > x0, the sequences of vectors ŷ[n], ỹ[n],

computed by using n steps with stepsize h = (x̄− x0)/n, by employing ŷ[0] = φ̂(h) and

ỹ[0] = φ̃(h), respectively converge to q̂0ŷ(x) and q̃0ỹ(x).

It is possible to prove that the classical equivalence between convergence and con-

sistency plus stability also holds true in this case. The proof follows immediately from

the lines drawn in the non-partioned case [3].
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2.1. Transformations

Let T̂ and T̃ denote non-singular r × r matrices which, for full generality, could

have complex elements. The information passed from step to step which has been

denoted by ŷ[n] and ỹ[n] at the end of step number n, could be just as well be transformed

into the form T̂−1ŷ[n] and T̃−1ỹ[n]. The coefficients of the transformed methods can be

seen by rewriting (2.4), (2.5) as follows:

Ŷ = hÂF̂ +(ÛT̂ )(T̂−1ŷ[0]), Ỹ = hÃF̃ +(ŨT̃ )(T̃−1ỹ[0]),

(T̂−1ŷ[1]) = h(T̂−1B̂)F̂ +(T̂−1V̂ T̂ )(T̂−1ŷ[0]), (T̃−1ỹ[1]) = h(T̃−1B̃)F̃ +(T̃−1Ṽ T̃ )(T̃−1ỹ[0]).

Thus the method
(
(Â,Û , B̂,V̂ ),(Ã,Ũ , B̃,Ṽ )

)
has been transformed by the matrix

pair (T̂ , T̃ ) as follows
([

Â Û

B̂ V̂

]
,

[
Ã Ũ

B̃ Ṽ

])
(T̂ ,T̃ )−−−−→

([
Â ÛT̂

T̂−1B̂ T̂−1V̂ T̂

]
,

[
Ã ŨT̃

T̃−1B̃ T̃−1Ṽ T̃

])
.

(2.6)

We will regard the original and the transformed methods as equivalent, because

the choice of one representation rather than another is only a matter of convenience.

This means convenience in derivation and analysis of specific methods, and also in the

actual implementation of a method to solve numerical problems.

For the implementation it will never be convenient for the coefficient matrices to

have non-real elements; but it will often be convenient for derivation and analysis for

V̂ and Ṽ to be diagonal matrices, even if the eigenvalues are not real.

3. Symplectic conditions

Denote by [ŷ, ỹ] a bilinear form which is assumed to be invariant (1.1), that is

[ŷ, f̃ (y)] = [ f̂ (ỹ), ỹ] = 0.

Even if we cannot expect from an irreducible GLM with r > 1 to preserve this invari-

ant (compare [3, 6]), we aim to find sufficient conditions ensuring that, for the output

values provided by the partitioned GLM (2.4)-(2.5), an analogous conservation condi-

tion holds. To proceed in this way, we consider a symmetric r× r matrix G and two

diagonal s× s matrices D̂ = diag(d̂), D̃ = diag(d̃). Corresponding to these matrices,

we introduce the bilinear forms

[η ,ζ ]G =
r

∑
i, j=1

gi j[ηi,ζi], [Ŷ , F̃ ]
D̂
=

s

∑
i=1

d̂i[Ŷi, F̃i], [F̂ ,Ỹ ]
D̃
=

s

∑
i=1

d̃i[F̂i,Ỹi].

Consider η̂ ∈R
mN , made up from m sub vectors η̂1, η̂2, . . . , η̂m ∈R

N and similarly for

η̃ ∈ R
nN made up from n sub vectors η̃1, η̃2, . . . , η̃n ∈ R

N . If C is an m× n coefficient

matrix, we define an bilinear product on R
mN ×R

nN, by

[η̂ ,η̃ ]C =
m

∑
i=1

n

∑
j=1

ci j[η̂i, η̃ j]

It will be convenient to make extensive use of the following lemma, which is easy to

verify.
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Lemma 3.1. If Q̂ and Q̃ are k×m and l × n matrices respectively, then

[Q̂η̂ , Q̃η̃ ]C = [η̂ ,η̃ ]
Q̂⊤CQ̃

.

Recall that the notations Q̂η̂ , Q̃η̃ denote (Q̂⊗ IM)η̂ , (Q̃⊗ IM)η̃ respectively.

Our aim will be to investigate the possible existence of methods such that, for a

non-singular r× r matrix G,

[ŷ[n], ỹ[n]]G = [ŷ[n−1], ỹ[n−1]]G (3.7)

As a step towards the definition of G-symplectic partitioned methods, and a criterion

for (3.7) we introduce:

Lemma 3.2. Let G denote an r× r matrix and let D̂, D̃ denote s× s diagonal matrices.

Also let M be the partitioned (s+ r)× (s+ r) matrix

M =

[
M11 M12

M21 M22

]
=

[
D̂Ã+ Â⊤D̃− B̂⊤GB̃ D̂Ũ − B̂⊤GṼ

Û⊤D̃− V̂⊤GB̃ G− V̂⊤GṼ

]
. (3.8)

Then

[ŷ[n], ỹ[n]]G = [ŷ[n−1], ỹ[n−1]]G + h[Ŷ , F̃ ]
D̃
+ h[F̂,Ỹ ]

D̂
− [hF̂ ⊕ Ŷ ,hF̃ ⊕ Ỹ ]M. (3.9)

Proof: We will show that

[ŷ[n], ỹ[n]]G − [ŷ[n−1], ỹ[n−1]]G − h[Ŷ , F̃ ]
D̃
− h[F̂,Ỹ ]

D̂
+[hF̂ ⊕ ŷ[n−1],hF̃ ⊕ ỹ[n−1]]M = 0,

or that C11 = 0, C12 = 0, C21 = 0, C22 = 0 where

h2[F̂ , F̃ ]C11
+ h[F̂, ỹ[n−1]]C12

+ h[ŷ[n−1], F̃ ]C21
+[ŷ[n−1], ỹ[n−1]]C22

=

[hB̂F̂ + V̂ ŷ[n−1],hB̃F̃ + Ṽ ỹ[n−1]]G − [ŷ[n−1], ỹ[n−1]]G

− h[hÂF̂ +Ûŷ[n−1], F̃ ]
D̃
− h[F̂,hÃF̃ +Ũỹ[n−1]]

D̂

+ h2[F̂, F̃ ]M11
+ h[F̂, ỹ[n−1]]M12

+ h[ŷ[n−1], F̃ ]M21
+[ŷ[n−1], ỹ[n−1]]M22

.

Expand each term making use of Lemma 3.1, and we find

C11 = B̂⊤GB̃− Â⊤D̃− D̂Ã+M11= 0, (3.10)

C12 = B̂⊤GṼ − D̂Ũ +M12 = 0, (3.11)

C21 = V̂ ⊤GB̃−Û⊤D̃+M21 = 0, (3.12)

C22 = V̂ ⊤GṼ −G+M22 = 0. (3.13)

�

Making use of Lemma 3.2, we can now state the central definition and the main theo-

rem:
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Definition 3.1. A partitioned general linear method such that M = 0 in (3.8) is said to

be G-symplectic.

Theorem 3.1. Let [(Â,Û , B̂,V̂ )),(Ã,Ũ , B̃,Ṽ )] be a G-symplectic partitioned general

method pair and let ( f̂ , f̃ ) satisfy (1.2), then the solution to (1.1), computed using the

method pair, satisfies

[ŷ[n], ỹ[n]]G = [ŷ[0], ỹ[0]]G, n = 1,2,3, . . . .

Proof: From (3.9), we have

[ŷ[n], ỹ[n]]G − [ŷ[n−1], ỹ[n−1]]G = h[Ŷ , F̃ ]
D̃
+ h[F̂,Ỹ ]

D̂
− [hF̂ ⊕ Ŷ ,hF̃ ⊕ Ỹ ]M

= h
s

∑
i=1

d̃i[Ŷi, F̃i]+ h
s

∑
i=1

d̂i[F̂i,Ỹi] = 0.

�

4. Interchange symmetry

In addition to G-symplecticity, we also consider symmetry as an important property

of Hamiltonian systems which we might wish to preserve in simulations. In this paper,

we do not consider pure time-reversal symmetry, but introduce a notion of interchange

symmetry motived by the following consideration of classical symplectic Runge-Kutta

pairs.

4.1. A model Runge–Kutta method

As a guide to the construction of GLM pairs, Runge-Kutta pairs will be found

which automatically satisfy the symplectic condition

diag(b̃)Â+ ÃTdiag(b̂) = b̃b̂T.

Choose arbitrary vectors b̂ and b̃ and define

Â =




0 0 · · · 0 0

b̂1 0 · · · 0 0

b̂1 b̂2 · · · 0 0
...

...
...

...

b̂1 b̂2 · · · 0 0

b̂1 b̂2 · · · b̂s−1 0




Ã =




b̃1 0 · · · 0 0

b̃1 b̃2 · · · 0 0
...

...
...

...

b̃1 b̃2 · · · b̃s−1 0

b̃1 b̃2 · · · b̃s−1 b̃s




A convenient option is to define b̃i = b̂s+1−i, i = 1,2, . . . ,s because the two method

tableaux become mutually adjoints. Write the elements of b̂ in terms of the abscissae

of the second, third, etc stages so that

b̂T =
[

c2 c3 − c2 · · · cs − cs−1 1− cs

]

b̃T =
[

1− cs cs − cs−1 · · · c3 − c2 c2

]
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We will consider the example s = 4 so that the tableaux for the method pair become

0 0 0 0 0

c2 c2 0 0 0

c3 c2 c3 − c2 0 0

c4 c2 c3 − c2 c4 − c3 0

c2 c3 − c2 c4 − c3 1− c4

1− c4 1− c4 0 0 0

1− c3 1− c4 c4 − c3 0 0

1− c2 1− c4 c4 − c3 c3 − c2 0

1 1− c4 c4 − c3 c3 − c2 c2

1− c4 c4 − c3 c3 − c2 c2

From the method of construction, this design satisfies the symplectic condition for all

choices of the parameters and now we consider the order of the pair.

Automatically, the conditions for the tree with one vertex are satisfied. Now try the

condition b̃Tc = 1
2
. This gives

2c2(c4 − c3)+ c2
3 − 1

2
= 0.

The order condition bTc̃ = 1
2

gives the same equation and we therefore assume that

c2 =
1− 2c2

3

4(c4 − c3)
.

Each of the four conditions for order 3 now become the single equation

(
24c2

3 − 12
)

c2
4 −

(
48c2

3 − 16
)

c4 +
(

12c4
3 + 24c2

3 − 16c3− 3
)
.

A convenient choice is c3 = 1, leading to

c4 =
4
3
− 1

6

√
13.

We could also use its conjugate, which is regarded as less suitable because some of the

abscissae lie outside the interval [0,1].
The pair now becomes

0 0 0 0 0
2+

√
13

6
2+

√
13

6
0 0 0

1 2+
√

13
6

4−
√

13
6

0 0
8−

√
13

6
2+

√
13

6
4−

√
13

6
2−

√
13

6
0

2+
√

13
6

4−
√

13
6

2−
√

13
6

−2+
√

13
6

,

−2+
√

13
6

−2+
√

13
6

0 0 0

0 −2+
√

13
6

2−
√

13
6

0 0
4−

√
13

6
−2+

√
13

6
2−

√
13

6
4−

√
13

6
0

1 −2+
√

13
6

2−
√

13
6

4−
√

13
6

2+
√

13
6

−2+
√

13
6

2−
√

13
6

4−
√

13
6

2+
√

13
6

.

To test the quality of this method pair, and to set a standard for later tests with G-

symplectic GLM pairs, we present a plot of the drift in the value of the Hamiltonian for

the Heńon-Heiles problem on the interval [0,10] using a stepsize h = 10−4. The results

are shown in Figure 1.
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Figure 1: Numerical results for the Heńon-Heiles problem using an RK pair

4.2. Interchange symmetry of partioned GLMs

When we interpret a single step of a method in the reverse direction, we cannot

expect the stages to exactly correspond to the stages in the forward direction; there

might instead be a permutation of the stages involved. Denote P by this permutation

and assume that P2 = I, because a double reversal should give the original method.

A typical case is where P exactly reverses the order of the stages, i.e. Pi j = δi,s+1− j,

i, j,= 1,2, . . . ,s.

In this paper we will consider a limited type of time-reversal symmetry known as

“interchange symmetry”. This means that when the direction of time is changed, the

two methods making up the partitioned are interchanged, but with the stages renum-

bered according to the permutation matrix P. This gives the equations

Ŷ = hÂF̂ +Ûŷ[0], (4.14)

ŷ[1] = hB̂F̂ + V̂ ŷ[0], (4.15)

PỸ = h(PÃP)(PF̃)+PŨLỹ[0], (4.16)

Lỹ[1] = h(B̃P)(PF̃)+ ṼLỹ[0],

with L2 = I, leading to

ỹ[1] = h(LB̃P)(PF̃)+ (LṼL)ỹ[0]. (4.17)

From (4.14) and (4.15) we find

Ŷ =−h
(
ÛV̂−1B̂− Â

)
F̂ +ÛV̂−1ŷ[0], (4.18)

ŷ[0] =−hV̂−1B̂F̂ + V̂−1ŷ[1], (4.19)

By comparing (4.16) and (4.17) with (4.18) and (4.19) with h 7→ −h, we find the sym-

metry conditions:

Â+PÃP = ÛV̂−1B̂, ÛV̂−1 = PŨL, V̂−1B̂ = LB̃P, V̂−1 = LṼ L.

Thus, the following definition holds.
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Definition 4.1. A partitioned GLM (2.4)-(2.5) possesses interchange symmetry if

Â+PÃP = ÛV̂−1B̂, (4.20)

ÛV̂−1 = PŨL, (4.21)

V̂−1B̂ = LB̃P, (4.22)

V̂−1 = LṼ L. (4.23)

It can be verified that these four statements imply the corresponding statements with

the two methods interchanged.

4.3. Transformations of methods with interchange symmetry

In the transformation provided by (2.6) there is, in general, not reason to restrict the

values of the non-singular matrices T̂ and T̃ . However, if the untransformed method-

pair possesses interchange symmetry, and they are to be transformed into a pair which

retains this property, we can always assume that T̃ = T̂ . To verify this fact, apply the T̂

transformation to Û , B̂, V̂ in (4.21)–(4.23). It is found that Ũ , B̃, Ṽ transform according

to Ũ → ŨT , B̃ → T−1B̃, Ṽ → T−1ṼT .

4.4. Symmetric and G-symplectic methods depending on two input values

We now aim to determine the coefficient matrices of a G-symplectic partioned

GLM (2.4)-(2.5) satisfying time-reversal symmetry and depending on two input val-

ues. We first observe that, for these methods, we can always assume without loss of

generality that

V̂ = Ṽ =

[
1 0

0 −1

]
,

since, from (4.23), both V̂ and Ṽ have to be power bounded. As a consequence, (3.13)

leads to

G =

[
1 0

0 g

]
.

Then, by using the notation d =diag, the following result holds.

Proposition 4.1. A G-symplectic partitioned GLM (2.4)-(2.5) with r = 2 possesses in-

terchange symmetry if its coefficient matrices have the following form

[
Â Û

B̂ V̂

]
=




Â 1 −gx̃

b̂⊤x̂ 1 0

b̂Td(x̂) 0 −1


 ,

[
Ã Ũ

B̃ Ṽ

]
=




Ã 1 −gx̂

b̃ 1 0

b̃Td(x̃) 0 −1




(4.24)

and satisfy

Â = ÛV̂ B̂−PÃP, (4.25)

D̃PÃP = ÃTD̂, (4.26)
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with

G =

[
1 0

0 g

]
, D̂ = d(b̂), D̃ = d(b̃),

and b̂ = Pb̃, x̂ =−Px̃.

Proof: Once it is assumed that B̂ =

[
b̂T

b̂Td(x̂)

]
, we obtain

D̂ = B̂TG

[
1

0

]
= d(b̂),

and B̂ = X̂D̂, where

X̂ =

[
1T

x̂T

]
.

Under the previous assumptions, equation (3.13) is trivial, while (3.12) takes the form

D̂Ũ = D̂X̂ TGV̂ , and implies that

Ũ = X̂ TGV̂ =

[
1

−gx̂

]
.

Moreover, by exploiting the hypothesis of time-reversal symmetry (4.22), equation

(3.11) can be regarded as D̃Û = PB̂TG, and implies that D̃ = PD̂P = d(b̃), and

Û =

[
1

gx̃

]
.

Finally, equations (4.20) and (3.10) leads to (4.25) and (4.26).

�

5. Parasitic behaviour of partitioned general linear methods

Multivalue methods for which V has multiple eigenvalues on the unit circle suf-

fer from parasitic behaviour, which destroys overall accuracy. Our approach will be

to study the growth of perturbations in the output values. Consider the partitioned

method in (2.4)-(2.5) and add a perturbation (−1)n−1λ̂
[n−1]
j to the external approxima-

tions ŷ
[n−1]
j , j = 2, . . . ,r, and a perturbation (−1)n−1λ̃

[n−1]
j to the external approxima-

tion ỹ
[n−1]
j , j = 2, . . . ,r. This means that the inputs of these components in step number

n− 1 then become

ŷ
[n−1]
j +(−1)n−1λ̂

[n−1]
j , ỹ

[n−1]
j +(−1)n−1λ̃

[n−1]
j , j = 2, . . . ,r.

Denote the effects of these perturbations on internal stage number i by δ̂Yi and δỸi,

respectively. These are equal to

δ̂Yi = (−1)n−1
r

∑
j=2

ûi jλ̂
[n−1]
j +O(h) δỸi = (−1)n−1

r

∑
j=2

ũi jλ̃
[n−1]
j +O(h).
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As a consequence of the perturbation of the internal stages, the stage derivatives will

also be perturbed. Denote the deviations to f̂ (Ỹi) and f̃ (Ŷi) by δ f̂i and δ f̃i respectively.

Thus, we have

δ f̂i = (−1)n−1 ∂ f̂

∂ ỹ

r

∑
j=2

ûi jλ̂
[n−1]
j , δ f̃i = (−1)n−1 ∂ f̃

∂ ŷ

r

∑
j=2

ũi jλ̃
[n−1]
j

We are now in a position to calculate the perturbations λ̂
[n]
i and λ̃

[n]
i to ŷ

[n]
i and ỹ

[n]
i ,

respectively. These are

λ̂ [n] =− ˙̂
V λ̂ [n−1]+ h

˙̂
B

˙̃
U

∂ f̂

∂ ỹ
λ̃ [n−1],

λ̃ [n] = h
˙̃
B

˙̂
U

∂ f̃

∂ ŷ
λ [n−1]− ˙̃

V λ̃ [n−1],

or, equivalently, in matrix notation,

[
λ̂ [n]

λ̃ [n]

]
=


 − ˙̂

V hΓ̂ ∂ f̂

∂ ỹ

hΓ̃ ∂ f̃

∂ ŷ
−˜̇V



[

λ̂ [n−1]

λ̃ [n−1]

]
,

where Γ̂ = ˙̂
B

˙̃
U and Γ̃ = ˙̃

B
˙̂

U . The dotted matrix is obtained by removing the first col-

umn and the first row. Thus, the growth of parasitism is removed if
˙̂
V and

˙̃
V are power

bounded and Γ̂ = 0 or Γ̃= 0. We observe that in the special case of G-symplectic meth-

ods with interchange symmetry depending on two input values, which are described in

Proposition 4.1, we obtain

Γ̂ = Γ̃ =−
(
b̂1x̂2

1 + b̂2x̂2
2 + . . .+ b̂sx̂

2
s

)
.

Thus, the following result holds.

Theorem 5.1. A G-symplectic partitioned GLM (2.4)-(2.5) with r = 2 and possessing

interchange symmetry is free from parasitism if

s

∑
i=1

b̂ix̂
2
i = 0. (5.27)

6. Order conditions

6.1. Trees, elementary differentials and B-series

At the heart of the theory involving orders of Runge–Kutta and related methods is

the formula

y(x0 + h) = y0 + ∑
t∈T

h|t|

σ(t)t!
F(t)(y0) (6.28)

11



Although (6.28) is relevant to solutions of the initial value problem

y′(x) = f (y(x)), y(x0) = y0,

it applies equally to the system

ŷ′(x) = f̂ (ỹ), ŷ(x0) = ŷ0,

ỹ′(x) = f̃ (ŷ), ỹ(x0) = ỹ0,

and can be used alongside the expansions for ŷ(x0 + h) and ỹ(x0 + h) given by

ŷ(x0 + h) = ŷ0 + ∑
t∈T

h|t|

σ(t)t!
F̂(t)(ŷ0),

ỹ(x0 + h) = ỹ0 + ∑
t∈T

h|t|

σ(t)t!
F̃(t)(ỹ0),

(6.29)

assuming that the elementary differentials are defined using the following recursions

F̂(τ) = f̂,

F̃(τ) = f̃,

F̂([t1, t2, . . . , tm]) = f̂
(m)

(F̃(t1), F̃(t2), . . . , F̃(tm)),

F̃([t1, t2, . . . , tm]) = f̃
(m)

(F̂(t1), F̂(t2), . . . , F̂(tm)).

The Taylor expansions (6.28) and (6.29) can be generalized to give

h|u|

σ(u)
F̂(u)ŷ(x0 + h) = ∑

t∈T

C(u, t)
h|t|

σ(t)
F̂(t)(ŷ0),

h|u|

σ(u)
F̃(u)ỹ(x0 + h) = ∑

t∈T

C(u, t)
h|t|

σ(t)
F̃(t)(ỹ0).

The values of C(u, t) up to |u|, |t| ≤ 4 are shown in Table 1. The special case in which

y(x0 + h) is written in accordance with (6.28) is included using the well-known con-

vention that F( /0)(y0) = y0. Given a mapping α : { /0}∪T → R, a B-series B(α,y0) is

defined by

B(α,y0) = α( /0)y0 + ∑
t∈T

α(t)h|t|

σ(t)
F(t)(y0).

The particular choice of α corresponding to (6.28) will be denoted by E, so that

E( /0) = 1,

E(t) =
1

t!
.

In dealing with classical (first order) differential equation systems, the B-series defined

by /0 7→ 0, τ 7→ 1, t 7→ 0 for all other trees, plays a central role; but this cannot be

12



t
u /0

/0 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

1 1 1 1
2

1 1
2

1
3

1
6

1 2 1 3 3
2

1 1
2

1 0 3 1 0 0

1 0 1 2 1

1 0 0 0

1 0 0

1 0

1

Table 1: Values of C(u,t) for |u|, |t| ≤ 4

extended in a simple way to partitioned systems because the two series, for expansions

based on functions of ŷ0 and on ỹ0, are interrelated. The composition of a B-series

B(α,y0) = y0 + · · · with D, in the classical case, is equal to B(αD,y0), where αD is

given according to the formula

(αD)( /0) = 0,

(αD)(τ) = 1,

(αD)([t1, t2, . . . , tm]) =
m

∏
i=1

α(ti).

However, in applications to partitioned methods we will need to involve a pair of B-

series, B(α̂ , ŷ0) = α̂( /0)ŷ0 + · · · and B(α̃, ỹ0) = α̃( /0)ỹ0 + · · · . In this case
([

α̂
α̃

]
D

)
([t1, t2, . . . , tm]) =

[
∏m

i=1 α̃(ti)

∏m
i=1 α̂(ti).

]
. (6.30)

To avoid clumsiness, we will, throughout this section observe the convention that α̂
and α̃ always come in pairs and that α̂D and α̃D are the two components on the right

of (6.30).

It is customary to represent elementary differentials for separable problems using

bi-coloured trees. For example, consider the tree t = [τ[τ2]], for which, for the classical

(non-separable) problem, F(t) is represented by the tree, with operators attached to the

vertices,

f
′′

f f

f
′′

f
′′

In the case of separable methods, the two elementary differentials F̂(t) and F̃(t) are

represented by bi-coloured trees as follows:

13



F̂(t) =

f̂
′′

f̂ f̂

f̃

f̃
′′ F̃(t) =

f̃
′′

f̃ f̃

f̂

f̂
′′

6.2. Order of partitioned general linear methods

Given a pair of starting methods, represented by vectors of B-series coefficients ψ̂
and ψ̃ , we write the stage values, represented by η̂ , η̃ , and the output value order p

conditions as follows:

η̂ = Âη̂D+Ûψ̂ , (6.31)

η̃ = Ãη̃D+Ũψ̃ , (6.32)

B̂η̂D+ V̂ ψ̂ = Eψ̂ , (6.33)

B̃η̃D+ Ṽ ψ̃ = Eψ̃ (6.34)

where (6.33) and (6.34) each hold up to trees of order p. This extends the standard

definition of order to the partitioned case. For Runge–Kutta methods, classical oder

requires ψ̂ = ψ̃ = 1, the identity B-series and the definition which allows more general

ψ̂ , ψ̃ is known as “effective order”.

In this paper we will aim only to make a slight extension to what is standard for

Runge–Kutta methods. We will make several assumptions to achieve this aim; these

are

1. r = 2,

2. V̂ = Ṽ = diag(1,−1),

3. ψ̂e1 = ψ̃e1 = 1,

4. Ûe1 = Ũe1 = 1,

5. (B̂ψ̂D+ V̂ ψ̂ −Eψ̂)e2 = (B̃ψ̃D+ Ṽ ψ̃ −Eψ̃)e2 = 0.

We will also assume that the method-pair is G-symplectic with G = diag(1,g), D =

diag(b), D̃ = diag(b̃). According to Proposition 4.1, write the method pair in the form







Â 1 −gx̃

b̂T 1 0

b̂Td(x̂) 0 −1


 ,




Ã 1 −gx̂

b̃T 1 0

b̃Td(x̃) 0 −1





 ,

so that all the G-symplectic conditions are satisfied as long as

D̂Ã+ ÂTD̃ = B̂TGB̃.

Write the second components of the starting methods as

ψ̂e2 = ξ̂ , ψ̃e2 = ξ̃ .

14



With these choices, rewrite (6.31) – (6.34), where each of the components of (6.33)

and (6.34) are written out separately. It will always be required, that η̂( /0) = η̃( /0) = 1

and that ξ̂ ( /0) = ξ̃ ( /0) = 0:

η̂(t) = Â(η̂D)(t)− gx̃ξ̂ (t), (6.35)

η̃(t) = Ã(η̃D)(t)− gx̂ξ̃ (t), (6.36)

(b̂Tη̂D)(t) =
1

t!
, (6.37)

(b̃Tη̃D)(t) =
1

t!
, (6.38)

ξ̂ (t)+ (Eξ̂ )(t) = b̂Td(x̂)(η̂D)(t), (6.39)

ξ̃ (t)+ (Eξ̃ )(t) = b̃Td(x̃)(η̃D)(t) (6.40)

6.3. Conditions up to order 4

Now apply equations (6.35) – (6.40) to find the various B-series coefficients for ξ̂ ,

ξ̃ , η̂ , η̃ in the case of t = τ, [τ], [τ2], [[τ]]. Later we will use the results for η̂(t), η̃(t) to

write down the remaining conditions required for order 4. Throughout the calculations,

we will write

ĉ = Â1− 1
2
g(bTx̂)x̃,

c̃ = Ã1− 1
2
g(b̃Tx̃)x̂.

We are presenting only the formulae for ξ̂ (t) etc because the corresponding results

for ξ̃ (t) etc are identical subject to interchanging ĉ with c̃ etc. From (6.39), we find,

making use of Table 1,

2ξ̂ (τ) = b̂Td(x̂)(η̂D)(τ), (6.41)

2ξ̂ ([τ])+ ξ̂ (τ) = b̂Td(x̂)(η̂D)([τ]), (6.42)

2ξ̂ ([τ2])+ 2ξ̂([τ])+ ξ̂ (τ) = b̂Td(x̂)(η̂D)([τ2]), (6.43)

2ξ̂ ([[τ]])+ ξ̂ ([τ])+ 1
2
ξ̂ (τ) = b̂Td(x̂)(η̂D)([[τ]]). (6.44)
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From (6.41)–(6.44) and (6.37) we find in turn

ξ̂ (τ) = 1
2
b̂Tx̂, (6.45)

η̂(τ) = Â1− 1
2
g(b̂Tx̂)x̃ = ĉ, (6.46)

(η̂D)([τ]) = c̃, (6.47)

(η̂D)([τ2]) = c̃2, (6.48)

(η̂D)([τ3]) = c̃3, (6.49)

ξ̂ ([τ]) = 1
2
b̂Td(x̂)c̃− 1

4
b̂Tx̂, (6.50)

ξ̂ ([τ2]) = 1
2
b̂Td(x̂)c̃2 − 1

2
b̂Td(x̂)c̃, (6.51)

η̂([τ]) = Âc̃− g
(

1
2
b̂Td(x̂)c̃− 1

4
b̂Tx̂

)
x̃, (6.52)

η̂([τ2]) = Âc̃2 − g
(

1
2
b̂Td(x̂)c̃2 − 1

2
b̂Td(x̂)c̃

)
x̃, (6.53)

ξ̂ ([[τ]]) = 1
4
b̂Td(x̂)c̃2 − 1

4
b̂Td(x̂)c̃, (6.54)

η̂([[τ]]) = Â
(
Ãĉ− g

(
1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
x̂
)
− g

(
1
4
b̂Td(x̂)c̃2 − 1

4
b̂Td(x̂)c̃

)
x̃. (6.55)

We are now in a position to evaluate (η̂D)(t) for the trees of order up to 4. Trees will

be written in both algebraic form and pictorial form.

Tree t (η̂D)(t)
τ 1

[τ] c̃

[τ2] c̃2

[[τ]] Ãĉ− g
(

1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
x̂

[τ3] c̃3

[τ[τ]] d(c̃)Ãc− g
(

1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
d(c̃)x̂

[[τ2]] Ãĉ2 − g
(

1
2
b̃Td(x̃)ĉ2 − 1

2
b̃Td(x̃)ĉ

)
x̂

[[[τ]]] Ã
(
Âc̃− g

(
1
2
b̂Td(x̂)c̃− 1

4
b̂Tx̂

)
x̃
)
− g

(
1
4
b̃Td(x̃)ĉ2 − 1

4
b̃Td(x̃)ĉ

)
x̂
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Now write down the 16 order conditions, corresponding to the bi-coloured trees of

orders 1 to 4.

b̂T1 = 1 (6.56)

b̃T1 = 1 (6.57)

b̂Tc̃ = 1
2

(6.58)

b̃Tĉ = 1
2

(6.59)

b̂Tc̃2 = 1
3

(6.60)

b̃Tĉ2 = 1
3

(6.61)

b̂TÃĉ− g
(

1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
bTx = 1

6
(6.62)

b̃TÂc̃− g
(

1
2
b̂Td(x̂)c̃− 1

4
b̂Tx̂

)
b̃Tx̃ = 1

6
(6.63)

b̂Tc̃3 = 1
4

(6.64)

b̃Tĉ3 = 1
4

(6.65)

b̂Td(c̃)Ãĉ− g
(

1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
bTd(c̃)x̂ = 1

8
(6.66)

b̃Td(ĉ)Âc̃− g
(

1
2
b̂Td(x̂)c̃− 1

4
b̂Tx̂

)
b̃Td(ĉ)x̃ = 1

8
(6.67)

b̂TÃĉ2 − g
(

1
2
b̃Td(x̃)ĉ2 − 1

2
b̃Td(x̃)ĉ

)
b̂Tx̂ = 1

12
(6.68)

b̃TÂc̃2 − g
(

1
2
b̂Td(x̂)c̃2 − 1

2
b̂Td(x̂)c̃

)
b̃Tx̃ = 1

12
(6.69)

b̂TÃ
(
Âc̃− g

(
1
2
b̂Td(x̂)c̃− 1

4
b̂Tx

)
x̃
)
− g

(
1
4
b̃Td(x̃)ĉ2 − 1

4
b̃Td(x̃)ĉ

)
b̂Tx̂ = 1

24
(6.70)

b̃TÂ
(
Ãĉ− g

(
1
2
b̃Td(x̃)ĉ− 1

4
b̃Tx̃

)
x̂
)
− g

(
1
4
b̂Td(x̂)c̃2 − 1

4
b̂Td(x̂)c̃

)
b̃Tx̂ = 1

24
(6.71)

7. Construction of methods

We apply the results developed in the previous sections in order to derive G-symplectic

partitioned GLMs (2.4)-(2.5) with r = 2, satisfying interchange symmetry and free of

parasitism. We also require that the matrix A is strictly lower triangular and the matrix

Ã is lower triangular: in this way, the whole numerical scheme results to be fully ex-

plicit. In our construction, following the lines drawn for the RK model in the previous

section, we always assume that c̃ = 1− c.

We first focus our attention on the family of two-stage G-symplectic methods (2.4)-

(2.5) satisfying interchange symmetry. According to Proposition 4.1, such methods

satisfy (4.24) with

A =

[
0 0

b1(1− gx2
1) 0

]
, Ã =

[
b2(1− gx1x2) 0

b2(1− gx2
2) b1(1− gx1x2)

]
.

In order to eliminate the parasitic behaviour of the methods, we next solve Equation

(5.27) and finally impose as many order conditions as possible from the set of equations
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(6.56)-(6.71). Due to the number of degrees of freedom, we are able to derive a family

of methods of order 2. A member of this family is the partitioned GLM

M =




0 0 1 463
2232

33
217

0 1 463
2976

16
7

− 9
7

1 0

96
7

− 72
7

0 −1



, M̃ =




39
124

0 1 − 463
2976

184
217

− 52
93

1 − 463
2232

− 9
7

16
7

1 0

72
7

− 96
7

0 −1




(7.72)

with c = [ 463
1302

727
1736

]T, c̃ = [ 1009
1736

839
1302

]T, and

G =

[
1 0

0 463
17856

]
, D =

[
16
7

0

0 − 9
7

]
, D̃ =

[
− 9

7
0

0 16
7

]
.

Order 3 of convergence is achievable by involving three internal stages, thus we

consider G-symplectic methods (2.4)-(2.5) with s = 3 and satisfying interchange sym-

metry. From Proposition 4.1, it follows that such methods satisfy (4.24) with

A =




0 0 0 0

b1(1− gx1x3) 0 0 0

b1(1− gx1x2) b2(1− gx2
2) 0 0

b1(1− gx2
1) b2(1− gx1x2) b3(1− gx1x3) 0


 ,

Ã =




b4(1− gx1x4) 0 0 0

b4(1− gx2x4) b3(1− gx2x3) 0 0

b4(1− gx3x4) b3(1− gx2
3) b2(1− gx2x3) 0

b4(1− gx2
4) b3(1− gx3x4) b2(1− gx2x4) b1(1− gx1x4)


 .

Through symbolic manipulations, we solve Equation (5.27) and order conditions

(6.56)-(6.61) and obtain the method

M =




0 0 0 1 − 325
448

33
64

0 0 1 14625
14336

41
48

− 1
4

0 1 325
512

24
17

− 128
187

3
11

1 0

224
255

− 128
187

− 32
165

0 −1




, M̃ =




19
48

0 0 1 − 325
512

2319
4928

17
1232

0 1 − 14625
14336

61
462

− 1546
1309

209
102

1 325
448

3
11

− 128
187

24
17

1 0

32
165

128
187

− 224
255

0 −1




(7.73)

with c = [0 33
64

29
48
]T, c̃ = [ 19

48
31
64

1]T and

G =

[
1 0

0 14625
14336

]
.

It is worth observing that, according to the results in Section 4.1, a symplectic

partioned Runge-Kutta of order 3 necessarily requires four internal stages. Here we

only need to involve three stages, thus we save some function evaluations and gain the

same accuracy with a lower computational effort.
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7.1. Starting method

To obtain a starting method pair for the method (7.72), use the information in Table

1 and the values of the coefficients in the method, to find

ξ̂1 = b̂⊤1− ξ̂1 =
24
7
− ξ̂1,

ξ̂1 + ξ̂2 = b̂⊤c̃− ξ̂2 = 2040
1519

− ξ̂2,

ξ̃1 = b̃⊤1− ξ̃1 =− 24
7
− ξ̃1,

ξ̃1 + ξ̃2 = b̃⊤ĉ− ξ̃2 =− 3168
1519

− ξ̃2.

Solve these to give

ξ̂1 =−ξ̃1 =
12

7
, ξ̂2 = ξ̃2 =− 282

1519
.

Practical starting algorithms can now be found from

ŷ
[0]
1 = ŷ0,

ŷ
[0]
2 = 12

7
h f̂

(
ỹ0 − 47

434
h f̃ (ŷ0)

)
,

ỹ
[0]
1 = ỹ0,

ỹ
[0]
2 =− 12

7
h f̃

(
ŷ0 +

47
434

h f̂ (ỹ0)
)
.

Similarly, to make the method (7.73) available as a practical algorithm, we will

construct a starting method. The first step will be to find the B-series coefficients ξ̂ (t),

ξ̃ (t), for trees up to order 3. To simplify the notation we will write ξ̂1 = ξ̂ (τ), ξ̂2 =

ξ̂ ([τ]), ξ̂3 = ξ̂ ([τ2]), ξ̂4 = ξ̂ ([[τ]]).and similarly for ξ̃i, i = 1,2,3,4. Taking account of

the special properties of the method pair, b̂Tx̂= b̃Tx̃= 0, we can find a simple expression

for (η̂D)i and (η̃D)i, for i = 4, which we add to known expressions for i = 1,2,3:

(η̂D)1 = 1, (η̃D)1 = 1,

(η̂D)2 = c̃, (η̃D)2 = ĉ,

(η̂D)3 = c̃2, (η̃D)3 = ĉ2,

(η̂D)4 = Ãĉ− 1
2
g
(
b̃Td(x̂)ĉ

)
x̂, (η̃D)4 = Âc̃− 1

2
g
(
b̂Td(x̃)c̃

)
x̃.

Substitute into (6.41)–(6.44), and the corresponding equations for the ξ̃ (t), and we find

for the method (7.73), the values

ξ̂1 = ξ̃1 = 0,

ξ̂2 = ξ̃2 =− 4
45
,

−ξ̂3 = ξ̃3 =
169
8640

,

−ξ̂4 = ξ̃4 =
41

2160
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For the remainder of this subsection, the notations (Â, b̂, ĉ) and (Ã, b̃, c̃) will refer to

tableaux for a Runge–Kutta pair used to compute starting approximations for the sec-

ond inputs to the general linear method under consideration. That is, the inputs are

found from

ŷ
[0]
1 = ŷ0, ỹ

[0]
1 = ỹ0,

Ŷ = ŷ0 + hÂF̂ , Ỹ = ỹ0 + hÃF̃,

ŷ
[0]
2 = hb̂TF̂ , ỹ

[0]
2 = hb̃TF̃ ,

where F̂i = f̂ (Ỹi), F̃i = f̃ (Ŷi), i = 1,2, . . . ,s.

To ensure that the general linear method pair has order 3 relative to the proposed

starting procedure, we need to choose the starting Runge–Kutta pair to satisfy

b̂1 = ξ̂1, b̃1 = ξ̃1,

b̂c̃ = ξ̂2, b̃ĉ = ξ̃2,

b̂c̃2 = ξ̂3, b̃ĉ2 = ξ̃3,

b̂Ãĉ = ξ̂4, b̃Âc̃ = ξ̃4.

A possible solution to these equations with s = 3 is the method pair

0
53
256

53
256

− 53
256

0 − 53
256

173056
379215

− 1024
75843

− 167936
379215

,

0

− 53
256

− 53
256

53
256

0 53
256

− 173056
379215

1024
75843

167936
379215

and simulations presented in the next section will use this starting procedure.

8. Numerical experiments

We present in this section some numerical results obtained by applying the order 3

partitioned GLM (7.73). We first apply this method to the simple pendulum problem

ṗ(t) =−sin(q(t)),

q̇(t) = p(t),

p(0) = 0,

q(0) = 2.3,

(8.74)

with t ∈ [0,T ]. It is known that the Hamiltonian of this dynamical system, that is

H (p(t),q(t)) =
p(t)2

2
− cos(q(t)),

is separable and preserved along the time. In this particular example, the Hamiltonian

is the total energy associated to the dynamical system and we aim to preserve it over
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a long time interval of integration. This would not be possible in general by using

G-symplectic partitioned GLMs because, when they are applied to this problem, they

suffer from parasitic behaviour. However, the methods presented in Section 7 are free

of parasitism, since they satisfy condition (5.27). The absence of parasitism is also

advisable from the numerical evidence: in fact, the implemented methods are able to

realize a very accurate conservation of the total energy of the system, within round-off

error. In our implementation, in order to control the propagation of the round-off error,

we have always used compensated summations. Figures 2 and 3 show the patterns of

the Hamiltonian deviations in each step of the integration carried out by applying one

million steps of methods (7.72) and (7.73), respectively.

0

1.4×10−9

1 10 100 103 105 106

Figure 2: Hamiltonian deviation associated to 106 steps of (7.72) to problem (8.74), with h = 10−4

0

10−13

1 10 100 103 105 106

Figure 3: Hamiltonian deviation associated to 106 steps of (7.73) to problem (8.74), with h = 10−4

We next consider the Heńon-Heiles problem

ṗ1(t) =−q1(t)(1+ 2q2(t)),

ṗ2(t) =−(q2(t)+ q2
1(t)− q2

2(t)),

q̇i(t) = pi(t), i = 1,2,

(8.75)
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with q1(0) = q2(0) = p2(0) = 0, p1(0) =
√

0.3185. whose Hamiltonian is

H (p(t),q(t)) =
1

2
(p2

1 + p2
2 + q2

1 + q2
2)+ q2

1q2 −
1

3
q3

2.

The behavoiur of the methods object of investigation is described in Figures 4 and 5,

where the observed Hamiltonian deviations are plotted at each time step.

0

5×10−9

1 10 100 103 105 106

Figure 4: Hamiltonian deviation associated to 106 steps of (7.72) to problem (8.75), with h = 10−4

0

2.5×10−14

1 10 100 103 105 106

Figure 5: Hamiltonian deviation associated to 106 steps of (7.73) to problem (8.75), with h = 10−4

We finally focus our attention on the Kepler problem

ṗi(t) =− qi(t)

(q1(t)2 + q2(t)2)3/2
,

q̇i(t) = pi(t), i = 1,2,

(8.76)

with q1(0) = 1−e, q2(0) = p1(0) = 0, p2(0) =
√

1+e
1−e

, being 0≤ e< 1 the eccentricity

of the elliptic orbits described by the motion of a planet revolving around sun. The

Hamiltonian of this problem is

H (p(t),q(t)) =
1

2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

.
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The observed Hamiltonian deviations when methods (7.72) and (7.73) are applied to

this problem are reported in Figures 6 and 7. As the angular momentum is preserved

by the continous problem, our method is also able to accurately preserve it, as shown

in Figures 8 and 9.

0

−2×10−8

1 10 100 103 105 106

Figure 6: Hamiltonian deviation associated to 106 steps of (7.72) to problem (8.76), with e= 1/2 and stepsize

h = 10−4

0

10−14

1 10 100 103 105 106

Figure 7: Hamiltonian deviation associated to 106 steps of (7.73) to problem (8.76), with h = 10−4

9. Conclusions

In the numerical integration of separable Hamiltonian problems, partitioned Runge–

Kutta methods play an important role. In this paper we have considered the more gen-

eral class of partitioned G-symplectic general linear methods.

It is typical of multivalue methods that parasitism can destroy the quality of long-

term integrations. We will attempt to overcome this difficulty by requiring parasitism

growth rates to be zero. For efficient implementation we will also impose the constraint

that the coefficient matrices relating stages and stage derivatives have a triangular struc-

ture designed to make the methods effectively explicit.

Using a special structure interrelating the two components of a method pair, we

have found order conditions up to p = 4. From these, practical methods can be con-
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0

−2×10−9

2×10−9

1 10 100 103 105 106

Figure 8: Deviation of the angular momentum associated to 106 steps of (7.72) to problem (8.76), with e = 0

and stepsize h = 10−4

0

−10−13

10−13

1 10 100 103 105 106

Figure 9: Deviation of the angular momentum associated to 106 steps of (7.73) to problem (8.76), with

h = 10−4

structed. As a consequence we have constructed a family of partitioned pairs with

p = 3 and these are presented in the paper.

Although these are 2-value methods, they apparently preserve invariance properties

just as well as for Runge-Kutta methods, and they have cost advantages. Simulations

on selected problems verify the ability of these methods to closely conserve invariants

and symplectic behaviour over an extended number of steps.

The concepts of conformability and weak conformability, introduced in [7], pro-

vide simplifications and insights into the order conditions for non-partitioned methods.

An early application [8] has enabled a method of order eight to be constructed. It is

anticipated that conformability can also be applied to partitioned methods and this will

be the subject of future research.

References

[1] L. ABIA AND J. M. SANZ-SERNA, Partitioned Runge-Kutta Methods for Sepa-

rable Hamiltonian Problems, Math. Comp. 60 (1993), no. 202, 617–634.

[2] J. C. BUTCHER, General Linear Methods, Acta Numer. 15 (2006), 157–256.

24



[3] J. C. BUTCHER, Numerical methods for Ordinary Differential Equations, Third

Edition, Wiley, Chichester, 2016.

[4] J. C. BUTCHER, The cohesiveness of G-symplectic methods, Numer. Algorithms

70(3) (2015), 607–624.

[5] J. C. BUTCHER, Y. HABIB, A. T. HILL AND T. J. T. NORTON, The control of

parasitism in G-symplectic methods, SIAM J. Numer. Anal. 52 (5) (2014), pp.

2440-2465 (2014).

[6] J. C. BUTCHER AND L. L. HEWITT, The existence of symplectic general linear

methods, Numer. Algorithms 51 (2009), 77–84.

[7] J. C. BUTCHER AND G. IMRAN Order conditions for G-symplectic methods, BIT

Numer. Math. 55 (4) (2015), 927–948.

[8] J. C. BUTCHER, G. IMRAN AND H. PODHAISKY A G-symplectic method with

order 6, BIT Numer. Math., doi: 10.1007/s10543-016-0630-0 (2016).

[9] M. P. CALVO AND E. HAIRER, Further reduction in the number of indepen-

dent order conditions for symplectic, explicit Partitioned Runge-Kutta and Runge-

Kutta-Nyström methods, Appl. Numer. Math. 18 (1995), pp. 107–114.

[10] P. CHARTIER, E. FAOU AND A. MURUA, An algebraic approach to invariant

preserving integators: The case of quadratic and Hamiltonian invariants, Numer.

Math. 103 (20006), 575–590.

[11] R. D’AMBROSIO AND E. HAIRER, Long-term stability of multi-value methods

for ordinary differential equations, J. Sci. Comput. 60(3), 627–640 (2014).

[12] R. D’AMBROSIO, G. DE MARTINO AND B. PATERNOSTER, Numerical inte-

gration of Hamiltonian problems by G-symplectic methods, Adv. Comput. Math.

40(2), 553–575 (2014).

[13] R. D’AMBROSIO, E. HAIRER AND C. J. ZBINDEN, G-symplecticity implies

conjugate-symplecticity of the underlying one-step method, BIT Numer. Math.

53, 867–872 (2013).

[14] E. HAIRER, Order Conditions for Numerical Methods for Partitioned Ordinary

Differential Equations, Numer. Math. 36 (1981), pp. 431-445.

[15] E. HAIRER, C. LUBICH AND G. WANNER, Geometric numerical integration.

Structure-preserving algorithms for ordinary differential equations, Second edi-

tion, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin,

2006.

[16] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, Second Edition,

SIAM, Philadelphia, 2002.

[17] L. JAY, Symplectic partitioned Runge-Kutta methods for constrained Hamilto-

nian systems, SIAM J. Numer. Anal. 33 (1996), no. 1, 368–387.

25



[18] F. M. LASAGNI, Canonical Runge-Kutta methods, Z. Angew. Math. Phys., 39

(1988), pp. 952-953.

[19] R. I. MCLACHLAN AND G. R. W. QUISPEL, Geometric Integrators for ODEs,

J. Phys. A: Math. Gen. 39 (2006), no. 19, pp. 5251-5285.

[20] A. MURUA, On order conditions for partitioned symplectic methods, SIAM J.

Numer. Anal. 34 (1997), no. 6, 2204-2211.

[21] J. M. SANZ-SERNA AND M. P CALVO, Numerical Hamiltonian Problems,

Chapman & Hall, London, England, 1994.

[22] J. M. SANZ-SERNA AND L. ABIA, Order conditions for canonical Runge-Kutta

schemes, SIAM J. Numer. Anal. 28, no. 4, 1081-1096 (1991).

[23] Y. B. SURIS, Partitioned Runge-Kutta methods as phase volume preserving inte-

grators, Phys. Lett. A 220 (1996), no. 1-3, 63–69.

26


