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Abstract. The paper aims to explore the long-term behaviour of stochastic

two-step methods applied to a class of second order stochastic differential equa-
tions. In particular, the treatment focuses on preserving long-term statistics

related to the dynamics of a linear stochastic damped oscillator whose velocity,

in the stationary regime, is distributed as a Gaussian variable and uncorrelated
with the position. By computing the solution of a very simple matrix equal-

ity, we a-priori determine the long-term statistics characterizing the numerical

dynamics and analyze the behaviour of a selection of methods.

1. Long-term dynamics of a damped stochastic oscillator. Let us consider
a damped stochastic oscillator related to the motion of a particle subject to both a
deterministic and a stochastic forcing term described by the following second order
differential equation

ẍ = f(x)− ηẋ+ εξ(t), (1)

where f(x) is a deterministic forcing term related to a potential V(x) by the relation
f(x) = −V ′(x), η is the damping parameter, ξ(t) is the stochastic forcing term of
amplitude ε. As highlighted by [5, 6], such a differential problem can be recast in
terms of position and velocity of the particle by the following system of coupled
differential equations

dX(t) = V (t)dt,

dV (t) = − (ηV (t)− f(X(t)) dt+ εdW (t),
(2)

where X(t) is a stochastic process describing the position of the particle at time t,
whose time dynamics is described by a deterministic differential equation, V (t) is a
stochastic process describing the velocity of the particle at time t and varies in time
according to an Itô stochastic differential equation (SDE), being W (t) a Wiener
process. More details on Itô SDEs and their numerical treatment can be found, for
instance, in [9, 10] and references therein.
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We are now interested in underlining some long-term properties of this dynamical
system. Therefore, we remind that the probability density at time t is given by

Π(x, v; t) =
d

dx

d

dv
P(X(t) < x, V (t) < v),

and analyze the stationary density

Π∞(x, v) = lim
t→∞

Π(x, v; t)

that, related to the solution of (2), has the following analytical form [5, 6]

Π∞(x, v) = N0 exp
(
− η

ε2
(v2 + 2V(x))

)
, (3)

where the constant N0 can be computed by the condition∫ ∞
−∞

∫ ∞
−∞

Π∞(x, v)dxdv = 1.

Thus, the long-time behaviour of the stochastic dynamical system described by (2)
has a Gaussian distributed velocity, which is totally uncorrelated with the position
of the particle.

If the forcing term is linear, problem (2) assumes the form

dX(t) = V (t)dt,

dV (t) = − (ηV (t) + gX(t)) dt+ εdW (t),
(4)

with g > 0 constant value, and the stationary density (3) becomes

Π∞(x, v) = N0 exp
(
− η

ε2
(gx2 + v2)

)
. (5)

Therefore, the following long-term statistics characterize the dynamical system (4)

σ2
X = lim

t→∞
E|X(t)|2 =

ε2

2gη
,

σ2
V = lim

t→∞
E|V (t)|2 =

ε2

2η
,

µ = lim
t→∞

E|X(t)V (t)| = 0.

We collect these values in the following correlation matrix

Σ =

[
σ2
X µ

µ σ2
V

]
=
ε2

2η


1

g
0

0 1

 , (6)

which highlights the main features of the long-term behaviour of (4).
This paper, following the path of structure-preservation in stochastic dynamical

systems along numerical solutions (see [1, 3, 4, 11, 12] and references therein), aims
to give answer to the following question: how accurately is the correlation matrix
(6) reproduced by time-stepping methods for SDEs? In other terms, the goal of
the paper is to analyze the conservation of the structure of the stochastic damped
oscillator (4) along the numerical dynamics carried out by selected stochastic meth-
ods, extending the analysis provided by [5, 6] for one-step methods. The considered
family of methods, i.e. the family of indirect stochastic two-step methods, is intro-
duced in Section 2; the long-term behaviour of these methods when applied to (4)
is then discussed in Section 3; some conclusions are provided in Section 4.
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2. Indirect stochastic linear two-step methods. The starting point of our
treatise, for a general system of Itô SDEs [9, 10]

dX(t) = f(X(t))dt+ g(X(t))dW (t)

is given by the family of two-step stochastic methods

α2Xi+1 + α1Xi + α0Xi−1 = h (β2f(Xi+1) + β1f(Xi) + β0f(Xi−1))

+ γ1 g(Xi) ∆Wi + γ0 g(Xi−1) ∆Wi−1,
(7)

investigated in [2] and references therein. The Wiener increments ∆Wi and ∆Wi−1
in (7) are normally distributed with expected value 0 and variance h.

Two-step methods (7), specialized to (4), give rise to the family of methods

α2Xi+1 + α1Xi + α0Xi−1 = h (β2Vi+1 + β1Vi + β0Vi−1) ,

α2Vi+1 + α1Vi + α0Vi−1 = −h (β2(ηVi+1 + gXi+1) + β1(ηVi + gXi)

+β0(ηVi−1 + gXi−1)) + ε(γ1∆Wi + γ0∆Wi−1),

(8)

which, following the notation introduced by Henrici [8], will be denoted as indirect
two-step methods (ITS methods) in the remainder of the treatise. Their indirect
nature is due to the fact that ITS methods (8) are applied to the first order version
(4) of the second order problem (1).

Let us compute Xi+1 from the first equation in (8), obtaining

Xi+1 =
h

α2
(β2Vi+1 + β1Vi + β0Vi−1)− α1

α2
Xi −

α0

α2
Xi−1. (9)

We replace above expression for Xi+1 in the second equation in (8), leading to

Vi+1 =
κ1
κ2
Vi +

κ0
κ2
Vi−1 +

ξ1
κ2
Xi +

ξ0
κ2
Xi−1 + ε

γ1
κ2

∆Wi + ε
γ0
κ2

∆Wi−1, (10)

where

κ2 = α2 + hβ2η +
h2β2

2g

α2
, κ1 = −α1 − hβ1η −

h2β2β1g

α2
,

κ0 = −α0 − hβ0η −
h2β2β0g

α2
,

ξ1 =
hβ2α1g

α2
− hβ1g, ξ0 =

hβ2α0g

α2
− hβ0g.

We finally replace (10) in (9), obtaining

Xi+1 =

(
hβ2κ1
α2κ2

+
hβ1
α2

)
Vi +

(
hβ2κ0
α2κ2

+
hβ0
α2

)
Vi−1 +

(
hβ2ξ1
α2κ2

− α1

α2

)
Xi

+

(
hβ2ξ0
α2κ2

− α0

α2

)
Xi−1 +

hβ2εγ1
α2κ2

∆Wi +
hβ2εγ0
α2κ2

∆Wi−1.

(11)

Finally, in compact notation we get[
Xi+1

Vi+1

]
= R1(h)

[
Xi

Vi

]
+R0(h)

[
Xi−1
Vi−1

]
+ r1(h)∆Wi + r0(h)∆Wi−1, (12)



4 RAFFAELE D’AMBROSIO, MARTINA MOCCALDI AND BEATRICE PATERNOSTER

with

R1(h) =


1

α2

(
hβ2

ξ1
κ2
− α1

)
h

α2

(
β2
κ1
κ2

+ β1

)
ξ1
κ2

κ1
κ2

 ,

R0(h) =


1

α2

(
hβ2

ξ0
κ2
− α0

)
h

α2

(
β2
κ0
κ2

+ β0

)
ξ0
κ2

κ0
κ2


and

ri(h) =
γiε

κ2


hβ2
α2

1

 , i = 0, 1.

The coefficients of the method (12), given by the matrices R0(h), R1(h) and the
vectors r0(h), r1(h), are then collected into the Butcher tableau

M =

[
R1(h) R0(h)
r1(h) r0(h)

]
, (13)

which will be used in the remainder of the treatise to denote any specific method
(12).

3. Preservation of the correlation matrix. We now aim to analyze the prop-
erties of the numerical correlation matrix

Σ̃ =

[
σ̃2
X µ̃

µ̃ σ̃2
V

]
, (14)

with

σ̃2
X = lim

tn→∞
E|Xn|2, σ̃2

V = lim
tn→∞

E|Vn|2, µ̃ = lim
tn→∞

E|XnVn|,

being Xn and Vn numerical solutions of (4) generated by the ITS method (12). The
following result holds.

Theorem 3.1. The correlation matrix Σ̃ that results from ITS method (12) satisfies
the matrix equation

Σ̃ = R1(h)Σ̃R1(h)T +R0(h)Σ̃R0(h)T + r1(h)r1(h)Th+ r0(h)r0(h)Th. (15)

Proof. We know that problem (4) has a stationary density, given by (5), which is
Gaussian with expected value 0 and correlation matrix Σ given by (6). Since the
advancing rule given by the ITS method (12) is a linear transformation, certainly
also the corresponding numerical solution has a stationary density which is Gauss-

ian with expected value 0 and correlation matrix Σ̃ given by (14). Then, in the
stationary regime,

R1(h)

[
Xi

Vi

]
is still Gaussian with expected value 0 and correlation matrix R1(h)Σ̃R1(h)T, while

R0(h)

[
Xi−1
Vi−1

]
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is Gaussian with expected value 0 and correlation matrix R0(h)Σ̃R0(h)T. Moreover,
proceeding similarly for the Wiener increments in (12), in the stationary regime
we have that r1(h)∆Wi has correlation matrix r1(h)r1(h)Th and r0(h)∆Wi−1 has
correlation matrix r0(h)r0(h)Th. Then, regarding (12) in terms of the correlations
in the stationary regime here computed gives the thesis.

We observe that the matrix equality (15) is the two-step extension of the analo-
gous one-step version, derived in [5, 6]. It can be treated in a twofold way:

• as a matrix equality whose unknown is Σ̃. In this way, we can a priori compute

the entries of the numerical correlation matrix Σ̃ and analyze the long-term
properties of a given method;

• by imposing Σ = Σ̃ in (15), we can employ it as a matrix equality whose
unknowns are some of the coefficients of the method. This provides a con-
structive tool for methods (12) that would exactly preserve, within round-off

error, the matrix Σ̃ along the numerical dynamics.

However, constructing new methods is out of the scope of this paper and, there-
fore, we will only use (15) to a priori analyze the long-term properties of a selection
of ITS methods (12), as highlighted in the following subsection.

3.1. Analysis of selected methods. We now aim to analyze the long-term prop-
erties of some known methods within the family of ITS methods (12), by a priori
computing the statistics contained in the numerical correlation matrix (14). Such
analysis strongly relies on Theorem (3.1) and, in particular, on solving the matrix
equation (15).

Euler-Maruyama method

We first analyze long-term properties of the Euler-Maruyama method [9] that,
specialized to problem (4), assumes the form

Xi+1 −Xi = hVi,

Vi+1 − Vi = −h(ηVi + gXi) + ε∆Wi.
(16)

Recast in the compact notation (12), the corresponding Butcher tableau (13)
assumes the form

M =

 1 h 0 0
−gh 1− ηh 0 0

0 ε 0 0

 .
We solve the matrix equation (15) with respect to the matrix Σ̃ defined by (14),

whose entries are given by

σ̃2
x,EM = − ε2(2− hη + gh2)

g(2η2h+ gh(4 + gh2)− η(4 + 3gh2))
,

σ̃2
v,EM = − 2 ε2

2η2h+ gh(4 + gh2)− η(4 + 3gh2)
,

µ̃EM =
ε2h

2η2h+ gh(4 + gh2)− η(4 + 3gh2)
.
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We observe that above values are coherent with those derived in [5, 6]. Moreover,
thought as functions of the stepsize h, they satisfy the following properties

lim
h→0

σ̃2
x,EM =

ε2

2gη
, lim

h→0
σ̃2
v,EM =

ε2

2η
, lim

h→0
µ̃EM = 0,

since

σ̃2
x,EM =

ε2

2gη
+

ε2

2η2
h+O(h2),

σ̃2
v,EM =

ε2

2η
+
ε2(η2 + 2g)

4η2
h+O(h2),

µ̃EM = − ε
2

4η
h+O(h2).

Figure 1 shows the patterns of the errors |σ̃2
x,EM −σ2

x|, |σ̃2
v,EM −σ2

v | and |µ̃EM −
µ| over the damping coefficient η. It is visible from the figure that, the more
the problem is damped, the more the error in the long term mean-square of the
velocity remains constant. The error associated to µ̃EM decreases when the problem
becomes more damped. As a consequence, in the long-term, numerical position and
velocity of the particle computed by the Euler-Maruyama method tend to become
less correlated, in accordance with the corresponding property of the continuous
problem. Moreover, also the error on σ̃2

x,EM decreases for increasing values of η.

1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

η

Figure 1. Patterns over η of |σ̃2
x,EM − σ2

x| (continuous line),

|σ̃2
v,EM − σ2

v | (dashed line) and |µ̃EM − µ| (dashed-dotted line),

for g = 1, ∆t = 10−2, ε = 1 for the Eulero-Maruyama method (16)
applied to the stochastic problem (4).

Trapezoidal method

Let us analyze the properties of the trapezoidal method applied to (4)

Xi+1 −Xi =
h

2
(Vi + Vi+1),
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Vi+1 − Vi = −h
2

(η(Vi+1 + Vi) + g(Xi+1 +Xi)) + ε
√
h∆Wi. (17)

Regarded in the compact notation (12), the corresponding Butcher tableau (13)
assumes the form

M =
1

4 + 2ηh+ gh2


4 + 2ηh− gh2 4h 0 0

−4gh 4− 2ηh− gh2 0 0

2εh3/2 4ε
√
h 0 0

 .
Through the matrix equation (15), solved with respect to Σ̃ defined by (14), we

obtain the following long-term statistics

σ̃2
x,TRAP =

ε2h2

4g + 2ηgh
,

σ̃2
v,TRAP =

ε2h

2η + gh
,

µ̃TRAP =
8ε2h3

g2h4 + 4(2 + hη)2 + 4gh2(6 + hη)
.

Figure 2 shows the patterns of the errors |σ̃2
x,TRAP − σ2

x|, |σ̃2
v,TRAP − σ2

v | and

|µ̃TRAP − µ| over the damping coefficient η. One can recognize that, the more
the problem is damped, the more the long term mean-square of the velocity and
the position are approximated with low accuracy. The error associated to µ̃TRAP

remains essentially constant when the problem becomes more damped. Hence, in
the long-term, numerical position and velocity of the particle computed by the
trapezoidal method mostly remain uncorrelated, as desired.

1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

η

Figure 2. Patterns over η of |σ̃2
x,TRAP − σ2

x| (continuous line),

|σ̃2
v,TRAP − σ2

v | (dashed line, almost overlapping the continuous

line) and |µ̃TRAP − µ| (dashed-dotted line), for g = 1, ∆t = 10−2,
ε = 1 for the trapezoidal method (17) applied to the stochastic
problem (4).
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An Adams-Moulton method

We now consider the following Adams-Moulton method [2] applied to (4)

Xi+1 −Xi =
1

12
h (5Vi+1 + 8Vi − Vi−1) ,

Vi+1 − Vi = − 1

12
h (5(ηVi+1 + gXi+1) + 8(ηVi + gXi)− (ηVi−1 + gXi−1))

+ ε∆Wi,

(18)

corresponding to the following Butcher tableau

M =
1

144 + 60ηh+ 25gh2
M̃, (19)

where

M̃ =


144 + 60ηh− 40gh2 156h 5gh2 −12h

−156gh −8(−18 + 12ηh+ 5gh2) 12gh h(12η + 5gh)

60εh 144ε 0 0

 .

Through the matrix equation (15), solved with respect to Σ̃ defined by (14), we
obtain the following long-term statistics

σ̃2
x,AM =

90ε2h

g(468 + 195ηh− 25gh2)
,

σ̃2
v,AM = − 2592ε2

125g2h3 + 144η(−39 + 5hη) + 60gh(−39 + 10hη)
,

µ̃AM =
8640ε2h2

625g2h4 + 144(12 + 5hη)2 + 120gh2(264 + 25hη)
.

Figure 3 shows the patterns of the errors |σ̃2
x,AM−σ2

x|, |σ̃2
v,AM−σ2

v | and |µ̃AM−µ|
over the damping coefficient η. One can recognize that, the more the problem is
damped, the more the long term mean-square of the velocity and the position are
approximated with low accuracy, with slowly decreasing errors. The error associated
to µ̃AM remains essentially constant when the problem becomes more damped.
Hence, in the long-term, numerical position and velocity of the particle computed
by the Adams-Moulton method mostly remain uncorrelated, as desired.

A BDF method

We now consider the following BDF method [2] applied to (4)

Xi+1 −Xi =
2

3
hVi+1,

Vi+1 − Vi = −2

3
h (ηVi+1 + gXi+1) + ε

(
∆Wi −

1

3
∆Wi−1

)
,

(20)
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Figure 3. Patterns over η of |σ̃2
x,AM − σ2

x| (continuous line),

|σ̃2
v,AM − σ2

v | (dashed line) and |µ̃AM − µ| (dashed-dotted line),

for g = 1, ∆t = 10−2, ε = 1 for the Adams-Moulton method (19)
applied to the stocastic problem (4).

corresponding to the following Butcher tableau

M =
1

9 + 4gh2 + 6hη


9 + 6hη 6h 0 0

−6gh 9 0 0

6εh 9ε −2hε −3ε

 . (21)

Through the matrix equation (15), solved with respect to Σ̃ defined by (14), we
obtain the following long-term statistics

σ̃2
x,BDF =

9ε2h

2g(9 + 2gh2 + 6hη)
,

σ̃2
v,BDF =

81ε2

4(4g2h3 + 9η(3 + hη) + 6gh(3 + 2hη))
,

µ̃BDF =
54ε2h2

16g2h4 + 9(3 + 2hη)2 + 12gh2(9 + 4hη)
.

Figure 4 shows the patterns of the errors |σ̃2
x,BDF − σ2

x|, |σ̃2
v,BDF − σ2

v | and

|µ̃BDF − µ| over the damping coefficient η. One can recognize that, the more the
problem is damped, the more the long term mean-square of the velocity and the
position are approximated with low accuracy, with slowly decreasing errors. The
error associated to µ̃BDF remains essentially constant when the problem becomes
more damped. Hence, in the long-term, numerical position and velocity of the
particle computed by the BDF method mostly remain uncorrelated, as desired.

4. Conclusions. The treatise presents a long-term analysis of two-step methods
for second order stochastic differential equations. In particular, we have focused on
the problem of preserving the long-term properties of a linear stochastic damped
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Figure 4. Patterns over η of |σ̃2
x,BDF − σ2

x| (continuous line),

|σ̃2
v,BDF − σ2

v | (dashed line) and |µ̃BDF − µ| (dashed-dotted line),

for g = 1, ∆t = 10−2, ε = 1 for the BDF method (21) applied to
the stochastic problem (4).

linear oscillator, whose position and velocity are uncorrelated in the long-term and
the velocity has Gaussian distribution. The tool we have introduced, following [5, 6],
is given by the simple matrix equation (15), which enables to perform an a-priori
analysis of the long-term properties of two-step stochastic methods (12). As shown
on selected examples of methods, it is not automatic that a method preserves the
long-term properties of the given problem and methods have to be accurately chosen
to achieve the prescribed behaviour. Following this path, future investigations will
be oriented to employing Equation (15) to derive measure exact methods within
the class (12), exploiting the larger number of degrees of freedom in the method
with respect to the one-step case described in [5, 6] in order to achieve a better
balance among accuracy, stability and conservation of qualitative properties of the
continuous problem. Moreover, it is relevant to analyze the ability of stochastic
multistep methods in preserving other types of properties of stochastic differential
problems: this is the case, for instance, of stochastic Hamiltonian problems [3, 4],
where a long-term behaviour in the mean-square of the Hamiltonian function is
a-priori known and it looks relevant to merge this information in the numerical
scheme, in order to accurately reproduce the same property along the numerical
dynamics over long times.
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