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Abstract

The paper provides a spectral collocation numerical scheme for the approximation of
the solutions of stochastic fractional differential equations. The discretization of the
operator leads to a system of nonlinear algebraic equations, whose coefficient matrix
can be computed by an automatic procedure, consisting of linear steps. A selection
of numerical experiments confirming the effectiveness of the approach is given, with
respect to various sets of function bases and of collocation points.
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1. Introduction

The treatise is devoted to the numerical discretization of stochastic fractional dif-
ferential equations

Dαu = f (t, u) +

∫ t

0
g(t, s)dWs, t ∈ [0,T ]

u(t0) = u0,

(1.1)

0 < α < 1, where Dα denotes the Caputo fractional derivative, defined as [16]:

Dαu(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αu′(s)ds, 0 < α < 1, t > 0.

In (1.1) Ws, s ∈ [0,T ] is standard Wiener process and the integral with respect to it is
assumed to be the so-called Itô integral, defined as the following limit of a quadrature
formula [11] ∫ t

0
g(t, s)dWs = lim

h→0

M−1∑
i=0

g(τi, s) (W(τi+1) −W(τi)) ,

where τ0 = 0 < τ1 < . . . < τM = T are equidistant points of steplength δt. We observe
that Weiner increments W(τi+1) −W(τi) are distributed as

√
δt N(0, 1) where N(0, 1)

is a standard normal random variable.
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Existence of the uniqueness of the solution, under suitable regularity assumptions,
have been discussed in [1, 14, 17] and references therein, while fields of applications
where stochastic fractional models are relevant are given, for instance, in [15] and
references therein.

On the side of numerical treatment, a few methods have been proposed so far for
fractional stochastic differential models. In [12] Kamrani applied to (1.1) a Galerkin
method. In [1] Ahmadi et al. introduced a collocation method based on radial basis
functions, to solve problem (1.1). In [14] Mohammadi considered a stochastic frac-
tional integro-differential equation (SFIDE) and introduced a Galerkin method based
on Chebychev wavelets. In [18] Tahari et al. the solution of a SFIDE is expanded
by shifted Legendre polynomials, while the noise term is discretized by Newton-Cotes
formulas, after a suitable transformation. In [13] Mirzaee and Samadyar expand the
solution of a SFIDE and other functions involved in the model by orthogonal Bernstein
polynomials

The scope of this paper is the description of a spectral numerical scheme for the
computation of approximate solutions of the stochastic problem (1.1). As a matter
of fact, the deterministic version of problem (1.1) has been handled by the literature
with various numerical methods (see [4, 6, 9] and references therein). The proposed
approach for the stochastic problem is described in Section 2, while Section 3 provides
a selection of experiments confirming the effectiveness of the approach.

2. Discretization of the operator

We approximate the solution of (1.1) by means of a linear combination of chosen
basis functions {P j(x), j = 0, 1, . . . ,N}

u(t) ≈ uN(t) =

N∑
j=0

û jP j(t), (2.1)

which is usually denoted as modal expansion of the numerical solution. For the ac-
tual computation, it will be useful to express the numerical solution using the nodal
expansion [2]

uN(t) =

N∑
j=0

ϕ j(t)uN(t j), (2.2)

where t0 = 0 < t1 < . . . < tN = T is the set of collocation points. Though the basis
functions ϕ j(t) are not known, we can give their complete characterization, as described
in the remainder of the treatise. Let us set

ψ j(t) = Dαϕ j(t)

leading to

DαuN(tk) = ψ0(tk)u0 +

N∑
j=1

ψ j(tk)u j, (2.3)
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where u j = uN(t j) ≈ u(t j), j = 1, 2, . . . ,N. We evaluate (1.1) in the collocation points
and, taking into account (2.3), we obtain

ψ0(tk)u0 +

N∑
j=1

ψ j(tk)u j = f (tk, uk) +

∫ tk

0
g(tk, s)dWs, k = 1, 2, . . . ,N.

Once the integral in the above right-hand side is suitably discretized by a chosen
quadrature formula, we obtain a nonlinear system of dimension N is the unknowns
u1, u2, . . . , uN . This leads to

D u + d u0 = f (u) + I, (2.4)

where

D =
(
ψ j(tk)

)N

k, j=1
, d = (ϕ0(tk))N

k, j=1 , u =
(
u j

)N

j=1
, f (u) = (tk, f (uk))N

k=1 , I = (Ik)N
k=1 .

Ik is an approximation of the Itô integral appearing in (1.1). The formalism for the fully
discretized problem (2.4) is independent on the definition of the integral approximated
by Ik. In the specific case of Itô integrals,

Ik =

k∑
i=0

√
δtVi,

where Vi is a standard normal random variable. For the simulation of Vi, in the experi-
ments presented in Section 3, we have employed the Matlab built-in function randn.

Matrix D and vector d rely on the knowledge of the fractional derivates ψ j in the
collocation points. Their computation can be performed by an automatical procedure
based on the following result.

Theorem 2.1. Let define the matrices

A =


P0(t0) · · · PN(t0)
...

. . .
...

P0(tN) · · · PN(tN)

 , B = A−1, P =


DαP0(t1) · · · DαPN(t1)

...
. . .

...
DαP0(tN) · · · DαPN(tN)

 .
Then,

[d,D] = P · B. (2.5)

Proof. We evaluate (2.1) in the collocation points t0, t1, . . . , tN and obtain the N + 1-
dimensional linear system

Aû = ū,

in the unknown û = [û0, û1, . . . , ûN]T ,with ū = [uN(t0), uN(t1), . . . , uN(tN)]T. There-
fore, û = Bū. We now recall the modal expansion (2.1) and replace uN(ti) by

uN(ti) =

N∑
j=0

Bi juN(t j), i = 0, . . . ,N,
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Figure 1: Mean of estimated error for problem (3.3). path=1000 for power basis, path=2000 for Jacobi basis.
There is a logarithmic scale on the y-axis.

obtaining

uN(t) =

N∑
`=0

û`P`(t) =

N∑
j=0

 N∑
`=0

B` jP`(t)

 uN(t j).

Comparing the above expression with the nodal expansion (2.2) yields

ϕ j(t) =

N∑
`=0

B` jP`(t), ψ j(t) = Dαϕ j(t) =

N∑
`=0

B` jDαP`(t)

and (2.5) follows.

3. Numerical experiments

To define our numerical scheme, we have to choose a basis of functions and a set
of collocation nodes. Here we consider two classes of functions, both satisfying the
requirement of having fractional derivatives. The first one is the power basis

1, tα, t2α, . . . , tNα. (3.1)

This class is suggested by the observation that the FDE Dαy(t) = λy(t), λ ∈ R, has the
solution y(t) = Eα(λtα), where Eα is the Mittag-Leffler function Eα(x) =

∑∞
j=0

x j

Γ(1+α j)
[10, 16]. The second basis consists of a class of Jacobi polynomials shifted in the
interval [0,T ]:

P(0,1)
n,T (t) =

n∑
k=0

(−1)n−k (n + k + 1)!
(k + 1)!(n − k)!k!T k tk. (3.2)

This class plays a relevant role in the solution of the fractional Sturm Liouville problem
[19]. As regards the collocation points, we considered equidistant points in [0,T ],
Chebychev zeroes and extrema shifted in [0,T ].
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Figure 2: Mean of estimated error for problem (3.4). path=2000 for both bases. There is a logarithmic scale
on the y-axis.

To validate our approach, we consider this selection of test problems:

D
1
2 u(t) = −u(t) + t +

Γ(2)
Γ(2 − α)

t0.5 +

∫ t

0
dWs, t ∈ [0, 1], u(0) = 0. (3.3)

D
1
2 u(t) = −u(t) + t2 +

2t
3
2

Γ(5/2)
+

∫ t

0
dWs, t ∈ [0, 1], u(0) = 0. (3.4)

In both cases the solution is not known, thus we measured convergence by computing
the mean value of the estimated error, defined as follows:

est.error = |uN(T ) − uN−1(T )|.

We employed a large number of paths to obtain significant results (compare also [11]),
usually 1000 or more.

Figures 1 and 2 illustrate the behavior of the error on test problems (3.3) and (3.4).
In both cases, power basis has poor results, since a very slow reduction of the error is
registered only for Chebychev zeroes. On the other hand, the method with Jacobi poly-
nomial basis exhibits exponential convergence, when Chebychev zeroes or extrema are
used. We observe that the accuracy of our scheme is affected also by the condition
number of matrix D. In our experiments, high condition numbers of D were registered
in the case of power basis and in the case of uniform nodes (both for power basis and
for Jacobi basis), and in any case for large N. This was responsible for the increase of
the error for large N, in Figures 1(b) and 2(b).

4. Conclusions

We have presented a spectral collocation scheme for the discretization of stochastic
fractional differential equations (1.1). The introduced method relies on the numerical
solution of a nonlinear system of algebraic equations providing the fully discretized
version of the continuous operator. The numerical evidence, carried out on a selection
of test problems, confirms the effectiveness of the approach, provided that a suitable
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choice of the function basis and of the collocation points are given. Further devel-
opments of this research will be oriented to the analysis of the discretization of other
stochastic operators, such as stochastic Volterra integral equations [5] and stochastic
differential equations, that inherits the main qualitative features of the problem along
the numerical solutions [7, 8]. In the case of stochastic Volterra integral equations we
will also consider the numerical technique employed in [3].
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