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Abstract

This paper introduces multivalue collocation methods for the numerical solution of stiff
problems. The presented approach does not exhibit the phenomenon of order reduc-
tion, typical of collocation based Runge-Kutta methods applied to stiff systems, since
the introduced methods have uniform effective order of convergence on the overall inte-
gration interval. Examples of methods as well as numerical experiments on a selection
of stiff problems are given.
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1. Motivational aspects

In this paper, we aim to consider the numerical solution of stiff problems of the
general class y′ = f (y), which commonly arise from time-dependent partial differential
equations discretized along the space variable. The key point in solving stiff prob-
lems is that of employing suitable highly stable numerical methods possibly avoiding
order reduction phenomena, typical of classical numerical formulae such as Runge-
Kutta methods [2]. Even if there is an extensive bibliography regarding the numerical
solution stiff problems (we refer, for instance, to the monographs [2, 19, 24, 26] and
references therein), this issue still deserves attention, since stiffness is intrinsic in many
situations of interest. A gifted contribution on the topic is the paper [36], where the
authors provide a modern vision of stiffness, also very well framed in the existing lit-
erature.

Stiff problems arise in many relevant mathematical models, such as those describ-
ing multiscale problems. “Stiff equations are multiscale problems”: this sentence,
contained in the first pages of [3], provides an example of stiff equations occurring in
the description of coupled physical systems having components which vary on very
different time-scales (also see [19, 37] and references therein). This situation is very
common, for instance, in the spatial discretization of time-dependent partial differen-
tial equations by the method of lines through finite elements or finite differences. In
recent times, in many contexts such as Immunology, multiscale models are extensively
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developed, for instance to support the major challenge of identifying drug targets that
efficiently interfere with viral replication in case of influenza [23]. Multiscale model-
ing provides an ideal framework to combine several aspects such as immune response,
pharmacokinetics and comprehensive information on virus-host interactions as diverse
cellular processes which can be simulated individually and incorporated as separate
modules into a unifying framework.

In summary, improving the numerical treatment of stiff ordinary differential equa-
tions can provide a benefit in a wider range of problems and situations of certain inter-
est. As aforementioned, the main gap regarding the existing literature on the numeri-
cal treatment of stiff problems is given by the order reduction phenomenon visible in
classical Runge-Kutta methods [2], thus the main improvement here provided regards
the introduction of numerical methods free from order reduction when applied to stiff
problems. This issue is studied in the context of a wide family of methods, i.e. the so-
called multivalue numerical methods, for which we aim to define a suitable notion of
numerical collocation, a methodology which seems particularly suitable to solve stiff
problems (see [19] and references therein). In particular, we will introduce and analyze
multivalue collocation methods which do not show order reduction phenomenon, as it
happens for classical collocation methods, i.e. those based on suitable implicit Runge-
Kutta methods. The treatise is organized as follows: Section 2 contains a brief review
of methodological aspects regarding the classical idea of numerical collocation and
some extensions; Section 3 introduces multivalue numerical methods, for which we
look for smooth continuous extensions; Section 4 presents the form of the continuous
approximant and its usefulness; Section 5 gives an error analysis leading to the set of
uniform order conditions and also focuses on linear stability properties, giving possible
order and stability barriers for A-stable multivalue collocation methods; examples of
methods are given in Section 6, while numerical experiments are object of Section 7.
Some conclusions are given in Section 8.

2. Methodology: a brief review on (modified) collocation methods

As announced, we aim to numerically treat stiff problems by novel collocation-
based numerical methods. Collocation [2, 19, 26, 41] is an extensively applied tech-
nique based on the idea of approximating the exact solution of a given functional equa-
tion with a continuous approximant belonging to a chosen finite dimensional space
(desirably chosen coherently with the qualitative behaviour of the solution). Such an
approximant usually satisfies interpolation conditions in the grid points and exactly
satisfies the equation on a given set of points, the so-called collocation points. We now
briefly recall some basic aspects regarding collocation methods, together with some
recent modifications developed in the literature.

• One-step collocation. In classical one-step collocation methods (see [2, 19, 26])
the collocation function is given by an algebraic polynomial Pn(t), t ∈ [tn, tn+1],
satisfying

Pn(tn) = yn, P′n(tn + cih) = f (Pn(tn + cih)), i = 1, 2, ...,m,
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i.e. interpolating the numerical solution in tn and exactly satisfying the given
system in {tn + cih, i = 1, 2, . . . ,m}, where c1, c2, . . . , cm are given collocation
points. The solution in tn+1 can then be computed from the function evaluation
yn+1 = Pn(tn+1). Guillou and Soule [18] and Wright [41] independently proved
that one step collocation methods form a subset of implicit Runge-Kutta meth-
ods,

yn+1 = yn + h
m∑

i=1

bi f (Yi),

Yi = yn + h
m∑

j=1

ai j f (Y j), i = 1, 2, . . . ,m,

whose coefficients are given by

ai j =

∫ ci

0
L j(t)dt, bi =

∫ 1

0
Li(t)dt, (2.1)

i, j = 1, 2, . . . ,m, being Li(t) the i-th fundamental Lagrange polynomial over the
set of collocation points. The maximum attainable order of such methods is at
most 2m, and it is obtained by using Gaussian collocation points [19, 26], while
the uniform order of convergence over the entire integration interval is only m.
As a consequence, they suffer from order reduction showing effective order equal
to m [2]. Concerning their linear stability properties, it is known that collocation
methods based on Gaussian and Lobatto IIIA nodes are A-stable, while the ones
based on Radau IIA points are L-stable [2, 19, 26].

• Perturbed and discontinuous collocation. As remarked, only some implicit Runge-
Kutta methods are of collocation type. The literature on the topic has provided
some efforts in order to extend the idea of collocation to a larger class of meth-
ods; this operation is useful because the properties of collocation methods (such
as order, linear and nonlinear stability) can be derived in a simpler and very el-
egant way, rather than as it happens outside collocation. An extension of the
collocation idea, the so-called perturbed collocation, is due to Norsett and Wan-
ner [32, 33], where the authors proved the equivalence result between the family
of perturbed collocation methods and Runge-Kutta methods. Another relevant
extension of the collocation principle is given by discontinuous collocation [20],
which applies to a larger family rather than collocation.

• Multistep collocation. The idea of multistep collocation was first introduced
by Lie and Norsett in [29] (also see [18, 19, 28]) and extends the collocation
technique to the family of multistep Runge-Kutta method. The collocation poly-
nomial Pn(t) satisfies the following interpolation and collocation conditions:

Pn(tn−i) = yn−i, P′n(tn + c jh) = f (P(tn + c jh)),

for i = 0, 1, ..., k − 1 and j = 1, ...,m. The numerical solution is then given
by yn+1 = Pn(tn+1). Lie and Norsett [29] proved that the maximum attainable
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order is 2m + k − 1. They also proved the existence of
(

m+k−1
k−1

)
nodes allowing

superconvergence. However, the corresponding methods are not stiffly stable,
while in [19] A-stable methods of highest order 2m + k − 2 are introduced.

• Two-step collocation. Two-step collocation methods extend the collocation idea
to the class of two-step Runge-Kutta methods (introduced by Jackiewicz and
Tracogna in [25]), pursuing the aim of deriving highly stable collocation-based
methods which do not suffer from order reduction. The continuous approximant
is given by

P(tn+sh) = ϕ0(s)yn−1+ϕ1(s)yn+h
m∑

j=1

(
χ j(s) f (P(tn−1+c jh))+ψ j(s) f (P(tn+c jh))

)
,

(2.2)
s ∈ [0, 1]. The collocation polynomial (2.2) is expressed as linear combination
of the unknown basis functions {ϕ0(s), ϕ1(s), χ j(s), ψ j(s), j = 1, 2, . . . ,m}, to be
suitably determined. It is required that the polynomial P(tn + sh) interpolates
the solution in the points tn−1 and tn and collocates it in the points tn−1 + cih,
tn +cih, i = 1, 2, . . . ,m. As proved in [9], this is equivalent to determine the basis
functions as unique solution of the order conditions system

ϕ0(s) + ϕ1(s) = 1,
(−1)k

k!
ϕ0(s) +

m∑
j=1

(
χ j(s)

(c j − 1)k−1

(k − 1)!
+ ψ j(s)

ck−1
j

(k − 1)!

)
=

sk

k!
,

s ∈ [0, 1], k = 1, 2, . . . , 2m + 1. Thus, the maximum attainable order of conver-
gence is 2m+1, uniformly on the overall integration interval. However, according
to the Daniel-Moore theorem [2] (i.e. the maximum attainable order of a m-stage
A-stable method is 2m), such methods cannot be A-stable. Hence, a modifica-
tion of this idea has been proposed to achieve at least A-stability, leading to the
so-called family of almost collocation methods.

• Almost collocation. In order to fulfill Daniel-Moore requirement (see [2] and
references therein), methods of order p = m + r, with r = 1, 2, . . . ,m, have
to be considered. In two-step collocation methods, this can be made possible
by relaxing some order conditions (thus, by removing some interpolation and/or
collocation conditions). The corresponding formulae are known in literature as
two-step almost collocation methods. In [8, 9, 10, 11] many A-stable and L-
stable methods have been introduced: such methods do not suffer from the order
reduction phenomenon in the integration of stiff systems. This is in contrast to
implicit Runge-Kutta methods, whose stage order is only m, suffering from order
reduction [2, 19]. However, only low uniform order almost collocation methods
have been provided so far in the aforementioned papers.

3. Multivalue numerical methods

Our attention is focused on the family of multivalue numerical methods (see [1, 2,
5, 24] and references therein), i.e. methods transferring a whole vector of information
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Figure 1: Dynamics of a multivalue numerical method

from a step to the following one. This vector does not only contain the approxima-
tion of the solution of the problem in the step points (as it happens for linear multistep
methods and Runge-Kutta methods), but many solution related quantities and evalua-
tions of the vector field along the discretization. The reason why such quantities are
considered is essentially twofold: they can be useful and needed for practical purposes
(for instance, when not only the positions but also the velocities and other quantities
need to be computed, such as in Hamiltonian dynamics [20]); they allow the introduc-
tion of additional degrees of freedom in the method which can be exploited to improve
classical order and stability barriers.

A multivalue numerical method for the solution of the initial value problem

y′ = f (y), t ≥ 0 y(t0) = y0, (3.1)

provides a discrete dynamics which is described in Fig. 1.
Indeed, it is characterized by three fundamental maps: a starting procedure Sh,

for the computation of the missing starting vector y[0]; a forward procedure Gh, which
updates the vector of the approximations at each step point; a finishing procedure Fh,
that projects each vector of approximations into the corresponding numerical solution,
i.e. yn = Fh(y[n]).

Under some basic hypothesis described in details in [20] (compare Theorem 8.1 in
Section XV), one can prove that for any given forward and finishing procedures, there
exist a unique starting procedure and a unique one-step method yn+1 = ϕh(yn), such that
any subdiagram in Fig. 1 referring to a single step commutes. In particular, one can
easy recognize a one-step map ϕh that underlies the discrete dynamics of a multivalue
methods: it is called underlying one-step method and its properties are very important,
because they reveal more of the nature of the forward procedure. For instance, in [7],
it was proved that for a given G-symplectic method, the underlying one-step method
is conjugate symplectic; as well as (see [20]) the underlying one-step method of a
symmetric method is symmetric as well.

A widely used representation of multi-value methods is usually given by the family
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of General Linear Methods (GLMs, compare [2, 24] and references therein)
Y [n]

i = h
m∑

j=1
ai j f (Y [n]

j ) +
r∑

j=1
ui jy

[n]
j , i = 1, 2, . . . ,m,

y[n+1]
i = h

m∑
j=1

bi j f (Y [n]
j ) +

r∑
j=1

vi jy
[n]
j , i = 1, 2, . . . , r,

(3.2)

provided in correspondence of the uniform grid {t0 + ih, i = 0, 1, . . . ,N}, with h =

(T − t0)/N. The values Y [n]
i are approximations of y(tn + cih), being c1, c2, . . ., cs a set

of s real numbers (usually belonging to the interval [0, 1]); in other terms, Y [n]
i shares

the same interpretation of internal stage values as in the case of Runge-Kutta methods.
Representation (3.2) involves the coefficient matrices A ∈ Rm×m, U ∈ Rm×r, B ∈

Rr×m, V ∈ Rr×r, which can be collected in the following partitioned (m + r) × (m + r)
Butcher tableau [

A U
B V

]
, (3.3)

In the remainder of the treatise we will always assume that the vector of the updates
y[n] has the so-called Nordsieck form [24]

y[n] =


y[n]

1
y[n]

2
...

y[n]
r

 ≈


y(xn)
hy′(xn)

...
hr−1y(r−1)(xn)

 , (3.4)

i.e. it provides an approximation of the first r − 1 scaled derivatives of the solution.

4. Collocation-based Nordsieck methods

We now propose to extend smoothly a multivalue numerical method in GLM form
(3.2) and depending on the Nordsieck vector (3.4) by means of a piecewise collocation
polynomial of the form

Pn(tn + ϑh) =

r∑
i=1

αi(ϑ)y[n]
i + h

m∑
i=1

βi(ϑ) f (Pn(tn + cih)), (4.1)

with ϑ ∈ [0, 1]. This representation is provided with respect to the functional basis

{αi(ϑ), β j(ϑ), i = 1, 2, . . . , r, j = 1, 2, . . . ,m}

to be determined by imposing suitable conditions. In particular, since we aim to provide
a collocation polynomial, we impose interpolation conditions of the type

Pn(tn) = y[n]
1 , P′n(tn) = y[n]

2 , · · · , P(r−1)
n (tn) = y[n]

r−1 (4.2)

and collocation conditions

P′n(tn + cih) = f (Pn(tn + cih)), i = 1, 2, . . . ,m. (4.3)
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In other terms, due to the fact that derivatives up to order r − 1 are interpolated, the
global piecewise polynomial generated by multivalue collocation is globally of class
Cr−1. It is worth observing that most interpolants based on Runge-Kutta methods only
have global C1 continuity, while two-step (almost) collocations methods are globally of
class C0 [15, 16, 17, 22]. The practical value of highly continuous interpolants is visible
in many different situations already shown in the existing literature such as scientific
visualization [30], functional differential equations with state-dependent delay [21],
numerical solution of differential-algebraic equations and nonlinear equations [27, 39,
40], optimal control problems [35], discontinuous initial value problems [16, 38] or,
more in general, whenever a smooth dense output is needed [22, 34].

Above interpolation conditions (4.2) on Pn are naturally reflected on the basis func-
tions and, indeed, they are equivalent to

α j(0) = δ j1, α
(ν)
j (0) = δ j,ν+1, j = 1, 2, . . . , r, ν = 1, 2, . . . , r − 1, (4.4)

β j(0) = β(ν)
j (0) = 0, j = 1, 2, . . . ,m, ν = 1, 2, . . . , r − 1, (4.5)

as well as collocation conditions (4.3) are equivalent to

α′j(ci) = 0, i = 1, 2, . . . , r, j = 1, 2, . . . ,m, (4.6)

β′j(ci) = δi j, i, j = 1, 2, . . . ,m, (4.7)

being δi j the usual Kronecker delta. Above conditions state that each basis function is
subject to m+ r constraints, hence it is an algebraic polynomial of degree at most m+ r.

In summary, the collocation polynomial (4.1) is a global smooth extension of class
Cr−1, of the Nordsieck GLM (3.2) with tableau (3.3) depending on the following ma-
trices

A =
[
β j(ci)

]
i, j=1,...,m

, U =
[
α j(ci)

]
i=1,...,m, j=1,...,r

,

B =
[
β(i−1)

j (1)
]
i=1,...r, j=1,...,m

, V =
[
α(i−1)

j (1)
]
i, j=1,...,r

.

5. Error and stability analysis

We now aim to analyze the error associated to a multivalue collocation approximant
of type (4.1), in order to provide the conditions guaranteeing a uniform approximation
of order p to the solution of the differential system. In other terms, a multivalue collo-
cation polynomial (4.1) is required to satisfy

Pn(tn + ϑh) = y(tn + ϑh) + O(hp+1), ϑ ∈ [0, 1],

i.e., to provide approximations of uniform order on the overall integration interval,
which is the main difference with respect to classical collocation based Runge-Kutta
methods [2]. Then, the local discretization error associated to a single step of a multi-
value collocation method can be defined as the residuum operator

ξn(tn + ϑh) = y(tn + ϑh) −
r∑

i=1

αi(ϑ)hi−1y(i−1)(tn) − h
m∑

i=1

βi(ϑ)y′(tn + cih), (5.1)

with ϑ ∈ [0, 1], and y exact solution of the problem. Then, the following result holds.
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Theorem 5.1. A multivalue collocation method given by the approximant Pn(tn + ϑh)
in (4.1), ϑ ∈ [0, 1], is an approximation of uniform order p to the solution of the well-
posed problem (3.1) if and only if

α1(ϑ) = 1

ϑν

ν!
− αν+1(ϑ) −

m∑
i=1

cν−1
i

(ν − 1)!
βi(ϑ) = 0, ν = 1, 2, . . . , r − 1,

ϑµ

µ!
−

m∑
i=1

cµ−1
i

(µ − 1)!
βi(ϑ) = 0, µ = r, . . . , p.

(5.2)

Proof: We expand y(tn + ϑh) and y′(tn + ch) in Taylor series around tn and replace them
in (5.1), obtaining

ξ(tn + ϑh) = y(tn) + ϑhy′(yn) + . . . +
(ϑh)p

p!
y(p)(tn)

− α1(ϑ)y(tn) −
r∑

j=2

αi(ϑ)hi−1y(i−1)(tn)

− h
m∑

i=1

βi(ϑ)
(
y′(tn) + cihy′′(tn) + . . . +

(cih)p−1

(p − 1)!
y(p)(tn)

)
+ O(hp+1).

Conditions (5.2) arise from annihilating all terms up to order p. �
We can then interpret conditions (5.2) as uniform order conditions for a multivalue

collocation methods defined by (4.1). Moreover, from the last theorem, we can also
understand which is the uniform order of convergence for a multivalue collocation
method.

Corollary 5.1. The uniform order of convergence for a multivalue collocation method
(4.1) is m + r − 1.

Proof: The linear system (5.2) is a system of p + 1 linearly independent equations in
m + r unknowns admitting a unique solution if and only if the number of equations
equals that of the unknowns, i.e. when p = m + r − 1. �

As well as uniform order conditions, also linear stability plays an important role
in this theory. In particular, since we are dealing with collocation - thus implicit -
methods, we should require at least A-stability from our novel multivalue collocation
integrators. The following result clarifies the restriction on r and s necessary for A-
stability.

Theorem 5.2. An A-stable multivalue collocation method (4.1) fulfills the constraint
r ≤ m + 1.

Proof: A-stable methods are subject to Daniel-Moore theorem (see [2] and references
therein), according to which the order of a m-stage method cannot exceed 2m. Theorem
5.1 says that the uniform order of a multivalue collocation method is m + r − 1: this
result, merged with Daniel-Moore condition, gives the thesis. �
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We can put together all the results proved in this section, in order to state which is
maximum attainable order of a A-stable multivalue collocation method.

Corollary 5.2. The maximum attainable uniform order of convergence for an A-stable
multivalue collocation method is 2m.

Proof: The results is a straightforward consequence of Corollary 5.1 and Theorem 5.2.
�

It is worth observing that multivalue collocation methods of maximum uniform
order 2m totally fills the gap of classical collocation based Runge-Kutta methods on
Gauss-Legendre points [26], having order 2m only in the grid points. This gap is filled
without heightening the computational cost, since the number of internal stages is the
same in both cases.

6. Construction of methods

We now aim to provide two examples of multivalue collocation methods, with
m = 1 and m = 2, of maximum uniform order. According to Corollary 5.2, A-stable
methods with m = 1 have maximum uniform order 2, while those with m = 2 have
maximum uniform order 4.

In searching for A-stable formulae, we will always need to analyze the properties
of the stability matrix [2, 24]

M(z) = V + zB(I − zA)−1U, (6.1)

being I the identity matrix in Rm×m.

6.1. One-stage multivalue collocation method

According to Theorem 5.2, A-stability necessarily requires r ≤ m + 1 = 2 and the
maximum order p = 2 is achieved with r = 2. Thus, we search for A-stable multivalue
methods based on (4.1) with r = 2 and m = 1, i.e.

Pn(tn + ϑh) = y[n]
1 + α2(ϑ)y[n]

2 + hβ1(ϑ) f (Pn(tn + ch)).

Order 2 is achieved by solving conditions (5.2) for p = 2, i.e.

ϑ − α2(ϑ) − β1(ϑ) = 0

ϑ2

2
− cβ1(ϑ) = 0.

This systems leads to

α2(ϑ) = ϑ

(
1 −

ϑ

2c

)
, β1(ϑ) =

ϑ2

2c
,

which are the basis functions of a general multivalue collocation method (4.1) of order
2, with r = 2 and m = 1. We now aim to find the values of c such that the corresponding
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method is A-stable. Thus, we analyze the stability matrix (6.1) corresponding to the
Butcher tableau

[
A U
B V

]
=

 β1(c) 1 α2(c)
β1(1) 1 α2(1)
β′1(1) 0 α′2(1)

 =


c
2 1 c

2

1
2c 1 1 − 1

2c

1
c 0 1 − 1

c

 . (6.2)

Then, the corresponding stability matrix (6.1) assumes the form

M(z) =


(c2 − 1)z − 2c

c(cz − 2)
c(c − 1)z − 2c + 1

c(cz − 2)

−
2z

c(cz − 2)
c(c − 2)z − 2c − 2

c(cz − 2)


and its characteristic polynomial is

p(ω, z) = ω2 + p1(z)ω + p0(z),

with

p0(z) =
(c − 1)2z − 2c + 2

c(cz − 2)
, p1(z) =

(1 + 2c − c2)z + 4c − 2
c(cz − 2)

.

By performing Schur analysis of this polynomial (for a detailed description of Schur
criterion we refer to [8, 26] and references therein), we discover that A-stability is
achieved if and only if

c ≥ 1.

6.2. Two-stage multivalue collocation method

We now aim to construct A-stable two-stage methods (4.1) of maximum uniform
order. In this case, A-stability requires r ≤ m + 1 = 3 and the maximum order p = 4 is
achieved with r = 3. Hence, we search for A-stable multivalue methods based on (4.1)
with r = 3 and m = 2, i.e.

Pn(tn+ϑh) = y[n]
1 +α2(ϑ)y[n]

2 +α3(ϑ)y[n]
3 +h (β1(ϑ) f (P(tn + c1h)) + β2(ϑ) f (P(tn + c2h))) .

Order 4 is achieved by solving conditions (5.2) up to p = 4, i.e. leading to

α2(ϑ) =
(c1 + c2)(3ϑ − 4c2)ϑ3 + 4c2

1ϑ(3c2
2 − ϑ

2)

12c2
1c2

2

,

α3(ϑ) =
ϑ2(6c1c2 − 4c1ϑ − 4c2ϑ + 3ϑ2)

12c1c2
,

β1(ϑ) =
ϑ3(3ϑ − 4c2)
12c2

1(c1 − c2)
, β2(ϑ) =

ϑ3(4c1 − 3ϑ)
12c2

2(c1 − c2)
.

which are the basis functions of a multivalue collocation method (4.1) of order 4, with
r = 3 and m = 2. We now aim to find the values of c1 and c2 such that the corresponding
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Figure 2: Region of A-stability in the (c1, c2) plane for order 4 multivalue methods with s = 2 and r = 3.

method is A-stable. Thus, we analyze the stability matrix (6.1) corresponding to the
Butcher tableau

[
A U
B V

]
=


β1(c1) β2(c1) 1 α2(c1) α3(c1)
β1(c2) β2(c2) 1 α2(c2) α3(c2)
β1(1) β2(1) 1 α2(1) α3(1)
β′1(1) β′2(1) 0 α′2(1) α′3(1)
β′′1 (1) β′′2 (1) 0 α′′2 (1) α′′3 (1)

 .
and perform Schur analysis of its characteristic polynomial. Figure 2 shows the region
of A-stability in the (c1, c2) plane.

As an example, we choose c1 = 3/2 and c2 = 9/5, obtaining

α2(ϑ) = ϑ

(
55

486
ϑ3 −

91
243

ϑ2 + 1
)
, α3(ϑ) =

1
54
ϑ2

(
5ϑ2 − 22ϑ + 27

)
,

β1(ϑ) = −
2
27
ϑ3(5ϑ − 12), β2(ϑ) =

125
486

ϑ3(ϑ − 2).

which is the continuous C2 extension of uniform order p = 4 of the A-stable general
linear method

[
A U
B V

]
=



9
8 − 125

288 1 233
288

7
32

162
125 − 3

10 1 201
250

27
125

14
27 − 125

486 1 359
486

5
27

32
27 − 125

243 0 80
243

4
27

8
9 0 0 − 8

9 − 1
3


. (6.3)

7. Numerical results

We now provide numerical experiments confirming the theoretical expectations
and, in particular, showing that the introduced multivalue collocation methods do not
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show order reduction when integrating stiff problems as it happens for classical collo-
cation based Runge-Kutta methods [2]. In particular, we aim to show that the effective
order of convergence of our methods is p = 2m while, on the contrary, that of Runge-
Kutta methods is m. We compare the second order method (6.2), denoted as GLM2
in the remainder of this section, with the second order Gaussian Runge-Kutta method
(denoted as RK2)

1
2

1
2

1

both depending on one single stage and A-stable. We also compare the fourth order
method (6.3), next denoted as GLM4, with the fourth order Gaussian Runge-Kutta
method (denoted as RK4)

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 −

√
3

6
1
4

1
2

1
2

both depending on two stages and A-stable. The comparison occurs in a fixed stepsize
environment. We provide both the error in the final point and the observed order of
convergence for the following problems:

1. the Prothero-Robinson problem [2]{
y′(t) = λ

(
y(t) − sin(t)

)
+ cos(t), t ∈ [0, 10],

y(t0) = y0,

with Re(λ) < 0, employed by several authors [2, 19] to prove order reduction for
Runge-Kutta methods;

2. the van der Pol oscillator [19] y′1 = y2, y1(0) = 2,

y′2 =
(
(1 − y2

1)y2 − y1
)
/ε, y2(0) = −2/3,

(7.1)

t ∈ [0, 3/4], with stiffness parameter ε.

As regards the Prothero-Robinson problem, we consider the results originated for
different values of the stiffness parameter λ, listed in Tables 1–4. For λ = −103, the
problem is not stiff and we see order of convergence p = 2 for both RK2 and GLM2
methods, and order p = 4 for both RK4 and GLM4 methods. However, when λ =

−106, the problem is stiff and the Runge-Kutta method exhibits the order reduction
phenomenon, while this is not the case for the multivalue collocation methods GLM2
and GLM4.

As it regards Van der Pol problem, results are presented in Tables 5 and 6, for
several values of the parameter ε. When the problem is not stiff (i.e. for ε = 10−3),
both RK4 and GLM4 methods exhibit order of convergence p = 4. In the stiff case
(i.e. for ε = 10−6) RK4 method suffers from order reduction, while the multivalue
collocation method GLM4 still preserves order 4.
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λ = −103 λ = −106

h error p h error p

1/10 6.80 · 10−4 1/10 6.81 · 10−4

1/20 1.70 · 10−4 2.00 1/20 3.24 · 10−4 1.07
1/40 4.25 · 10−5 2.00 1/40 1.58 · 10−4 1.04
1/80 1.06 · 10−5 2.00 1/80 7.83 · 10−5 1.01

Table 1: Observed errors (in the final step point) and orders of convergence for the RK2 method applied to
the Prothero-Robinson problem

λ = −103 λ = −106

h error p h error p

1/10 7.16 · 10−7 1/10 1.53 · 10−9

1/20 1.75 · 10−7 2.03 1/20 3.81 · 10−10 2.01
1/40 4.37 · 10−8 2.00 1/40 9.19 · 10−11 2.05
1/80 1.09 · 10−9 2.00 1/80 2.11 · 10−11 2.12

Table 2: Observed errors (in the final step point) and orders of convergence for the GLM2 applied to the
Prothero-Robinson problem

λ = −103 λ = −106

h error p h error p

1/10 1.77 · 10−4 1/10 1.52 · 10−4

1/20 1.32 · 10−5 3.75 1/20 3.84 · 10−5 1.98
1/40 7.82 · 10−7 4.08 1/40 9.99 · 10−6 1.94
1/80 4.78 · 10−8 4.03 1/80 2.78 · 10−6 1.85

Table 3: Observed errors (in the final step point) and orders of convergence for the RK4 method applied to
the Prothero-Robinson problem
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λ = −103 λ = −106

h error p h error p

1/10 2.54 · 10−8 1/10 2.41 · 10−8

1/20 8.29 · 10−10 4.94 1/20 7.50 · 10−10 5.01
1/40 2.83 · 10−11 4.87 1/40 2.21 · 10−11 5.08
1/80 1.05 · 10−12 4.75 1/80 7.06 · 10−13 4.97

Table 4: Observed errors (in the final step point) and orders of convergence for the GLM4 method applied to
the Prothero-Robinson problem

ε = 10−3 ε = 10−6

h error p h error p

1/26 2.25 · 10−4 1/26 1.49 · 10−3

1/27 1.68 · 10−5 3.74 1/27 3.71 · 10−4 2.01
1/28 1.11 · 10−6 3.93 1/28 8.84 · 10−5 2.07
1/29 7.02 · 10−8 3.98 1/29 1.87 · 10−5 2.24

Table 5: Observed errors (in the final step point) and orders of convergence for the RK4 method applied to
van der Pol problem

ε = 10−3 ε = 10−6

h error p h error p

1/26 9.93 · 10−5 1/26 1.25 · 10−4

1/27 5.30 · 10−6 4.23 1/27 5.97 · 10−6 4.39
1/28 2.93 · 10−7 4.18 1/28 2.88 · 10−7 4.37
1/29 1.61 · 10−8 4.18 1/29 1.20 · 10−8 4.58

Table 6: Observed errors (in the final step point) and orders of convergence for the GLM4 method applied to
van der Pol problem
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8. Conclusions

We have introduced a theory of multivalue collocation methods in comparison with
classical collocation based Runge-Kutta methods. The main issue we achieve by mul-
tivalue collocation methods is the lack of order reduction, which is typical of Runge-
Kutta methods. Numerical experiments confirm that multivalue collocation methods
converge with stage order equal to their order, also in presence of stiffness. For stiff
problems, Gaussian Runge-Kutta methods converge with order m, being m the number
of internal stages, even if they have theoretical order equal to 2m. It is also worthwhile
mentioning that both multivalue and Runge-Kutta collocation methods require the same
computational effort; moreover, stability properties are also the same, since both multi-
value and Runge-Kutta collocation methods are A-stable. Future issues of this research
will regard the adaptation of this technique to continuous approximants based on non-
polynomial basis, especially suitable for the numerical solution of periodic stiff prob-
lems [19], also belonging to the numerical discretization of PDEs generating periodic
wavefronts [4, 12, 13, 14] and the implementation in a variable stepsize-variable order
environment.
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scale Modeling of Influenza A Virus Infection Supports the Development of Direct-
Acting Antivirals, PLOS Comp. Biol. 9(11), e1003372 (2013).

[24] Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John
Wiley & Sons, Hoboken, New Jersey, 2009.

[25] Z. Jackiewicz, S. Tracogna, A general class of two-step Runge-Kutta methods for
ordinary differential equations, SIAM J. Numer. Anal. 32, 1390–1427 (1995).

[26] J.D. Lambert, Numerical methods for ordinary differential systems: The initial
value problem, John & Wiley, Chichester, 1991.

[27] M.T. Lawder, V. Ramadesigan, B. Suthar, V.R. Subramanian, Extending explicit
and linearly implicit ODE solvers for index-1 DAEs, Comput. Chem. Eng. 82,
283–292 (2015).

[28] I. Lie, The stability function for multistep collocation methods, Numer. Math.
57(8), 779–708 (1990).

[29] I. Lie, S.P. Nørsett, Superconvergence for Multistep Collocation, Math. Comp.
52(185), 65–79 (1989).

[30] Z. Liu, R.J. Moorhead, J. Groner, An advanced evenly-spaced streamline place-
ment algorithm, IEEE Trans. Vis. Comput. Graph. 12(5), 965–972 (2006).

[31] D. Noble, A. Varghese, P. Kohl, P. Noble, Improved guinea-pig ventricular cell
model incorporating a diadic space, IKr and IKs, and length- and tension-dependent
processes, Can. J. Cardiol. 14, 123–134 (1998).

[32] S.P. Norsett, Collocation and perturbed collocation methods, in Numerical anal-
ysis, Proc. 8th Biennial Conf., Univ. Dundee, Dundee, 1979), 119–132; Lecture
Notes in Math. 773, Springer, Berlin, 1980.

[33] S.P. Norsett, G. Wanner, Perturbed collocation and Runge Kutta methods, Numer.
Math. 38, 2 (1981), 193–208.

[34] S.N. Papakostas, Ch. Tsitouras, Highly continuous interpolants for one-step ode
solvers and their application to Runge-Kutta methods, SIAM J. Numer. Anal.
34(1), 22–47 (1997).

[35] R. Quirynen, M. Vukov, M. Zanon, M. Diehl, Autogenerating microsecond
solvers for nonlinear MPC: a tutorial using ACADO integrators, Optim. Contr.
Appl. Meth 36(5), 685–704 (2015).

[36] G. Sd̈erlind, L. Jay, M. Calvo, Stiffness 1952–2012: Sixty years in search of a
definition. BIT 55(2), 531–558 (2015).

[37] J. Southern, J. Pitt-Francis, J. Whiteley, D. Stokeley, H. Kobashi, R. Nobes, Y.
Kadooka, D. Gavaghan, Multi-scale computational modelling in biology and phys-
iology, Prog. Biophys. Mol. Bio. 96, 60–89 (2008).

17



[38] H. True, A.P. Engsig-Karup, D. Bigoni, On the numerical and computational as-
pects of non-smoothnesses that occur in railway vehicle dynamics, Math. Comput.
Simul. 95, 78–97 (2014).

[39] H. Vazquez-Leal, A. Sarmiento-Reyes, Power series extender method for
the solution of nonlinear differential equations, Math. Prob. Eng., doi:
10.1155/2015/717404 (2015).

[40] H. Vazquez-Leal, Generalized homotopy method for solving nonlinear differen-
tial equations, Comput. Appl. Math. 33(1), 275–288 (2014).

[41] K. Wright, Some relationships between implicit Runge-Kutta, collocation and
Lanczos τ-methods, and their stability properties, BIT 10 (1970), 217–227.

18


