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Abstract

The paper is focused on analyzing the linear stability properties of stochastic Runge-Kutta (SRK) methods interpreted
as a stochastic perturbation of the corresponding deterministic Runge-Kutta methods. In particular, we give a condition
such that deterministic A-stability is automatically inherited by stochastic Runge-Kutta methods as mean-square A-
stability. This issue provides classes of mean-square A-stable SRK methods straightforwardly.
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1. Introduction

We consider a system of stochastic differential equations (SDEs) of Itô type, assuming the formdY(t) = f (Y(t))dt + g(Y(t))dW(t), t ∈ [0,T ],

Y(0) = Y0 ∈ Rd,
(1.1)

where f , g : Rd → Rd and W(t) is an m-dimensional Wiener process. For theoretical results on the existence and
uniqueness of solutions to (1.1), we refer to the monographs [17, 20, 22]. Referring to the discretized domain

I∆t = {tn = n∆T, n = 0, 1, . . . ,N, N = T/∆t},

we focus our attention on the following family of stochastic numerical methods
Ŷi = Yn + ∆t

s∑
j=1

ai j f (Ŷ j) + g(Yn)∆Wn, i = 1, ..., s,

Yn+1 = Yn + ∆t
s∑

i=1

bi f (Ŷi) + g(Yn)∆Wn,

(1.2)

where Yn is an approximation to Y(tn) and Ŷi approximates Y(tn + ci∆t), i = 1, ..., s, with ci ∈ [0, 1]. The class of
methods (1.2), hereinafter denoted as stochastic Runge-Kutta methods (SRK), arises from the stochastic perturbation
of deterministic Runge-Kutta methods by adding an explicit additional diffusive term depending on the discretized
Weiner increment ∆Wn, that is a Gaussian random variable with zero mean and variance ∆t. SRK methods (1.2) are
characterized by the weights bi, the nodes ci and the scalars ai j, i, j = 1, 2, . . . , s, collected as usual in the Butcher
tableau

c A

bT
=

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

(1.3)
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that is equal to the Butcher tableau of the underlying deterministic Runge-Kutta method
Zi = zn + ∆t

s∑
j=1

ai j f (Z j), i = 1, ..., s,

zn+1 = zn + ∆t
s∑

i=1

bi f (Zi)
(1.4)

for the deterministic equation z′ = f (z).
The analysis of strong and weak accuracy properties of SRK methods of various types has extensively been ad-

dressed by the existing literature; see, for instance [1, 3, 4, 5, 6, 7, 13, 16, 21, 23, 24] and references therein. As regards,
in particular, the family of SRK methods (1.2), they belong to the family of stochastic Runge-Kutta methods introduced
by Gard in the monograph [17], so the analysis of their convergence comes straightforward from [17]. Hence, we can
infer from [17], that the strong convergence of (1.2) is equivalent to the convergence of the underlying RK method
(1.4), i.e., it occurs when

∑s
i=1 bi = 1.

In this paper, we address our investigation to the analysis of the linear stability properties of SRK methods (1.2), by
providing the conditions under which the stability properties of the underlying deterministic Runge-Kutta method (1.4)
are automatically inherited by its stochastic perturbation (1.2). This issue would provide, for instance, classes of mean-
square A-stable SRK methods (1.2) straightforwardly, which may also eventually be good candidates to numerically
inherit the stability properties of nonlinear test problems, such as those in [2, 8, 9, 10, 11, 12, 14, 15].

The manuscript is organized as follows: Section 2 provides the main tools for the linear stability analysis of SRK
methods; Section 3 contains the main result of the manuscript, dealing with conditions guaranteeing that the stability
properties of the underlying RK methods are inherited by the corresponding SRK methods, also confirmed by the
numerical evidence.

2. Mean-square stability of SRK methods

In order to analyze the linear stability properties of SRK methods, we consider the following linear scalar test SDE
with multiplicative noise dY(t) = λY(t)dt + µY(t)dW(t), t ∈ [0,T ],

Y(0) = Y0,
(2.1)

where λ, µ ∈ C. The following definition occurs (see, for instance [18, 19]).

Definition 2.1. The solution Y(t) of (2.1) is mean-square stable if

lim
t→∞

E |Y(t)|2 = 0.

As proved in [18, 19, 25], the solution Y(t) to (2.1) is mean-square stable if and only if

Re(λ) +
1
2
|µ|2 < 0 (2.2)

and the set

SS DE =

{
λ, µ ∈ C : Re(λ) +

1
2
|µ|2 < 0

}
is the stability region of the problem (2.1). Let us provide the numerical counterpart of above arguments, described by
the following result.

Theorem 2.1. Let Yn be the numerical solution computed by a SRK method (1.2) to the linear scalar SDE (2.1). Then,

E|Yn+1|
2 = Rs(η, ζ)E|Yn|

2, (2.3)

where
Rs(η, ζ) = (1 + |ζ |2)|Rd(η)|2, (2.4)

being η = λ∆t, ζ = µ
√

∆t, Rd(η) = 1 + ηbT (I − ηA)−1 e, I identity matrix in Rs×s and e unit vector in Rs .

2



Proof: Applying (1.2) to problem (2.1) yieldsŶ = Yne + ηAŶ + ζVnYne,

Yn+1 = Yn + ηbTŶ + ζ VnYn,
(2.5)

where Ŷ = [Ŷ1 Ŷ2 · · · Ŷs]T and Vn is a standard Gaussian random variable. Then,

Yn+1 = (1 + ζVn)Rd(η)Yn,

and passing to the mean-square side by side leads to the thesis.

�

Definition 2.2. The function Rs(η, ζ) in (2.4) is denoted as the stability function of the SRK method (1.2).

Theorem 2.1 highlights a connection between the SRK method (1.2) and its underlying RK method (1.4) in terms
of linear stability properties. Indeed, the stability function of (1.2) is related to that of (1.4) according to (2.4). In
particular, the following stability definitions will be useful for the core result of this paper.

Definition 2.3. A SRK method (1.2) is said to be mean-square stable for a fixed couple (η, ζ) ∈ C2, if

Rs(η, ζ) < 1. (2.6)

Moreover, the set
SS RK = {η, ζ ∈ C : Rs(η, ζ) < 1}

is defined as the mean-square stability region of the stochastic Runge-Kutta method.

Definition 2.4. A SRK method (1.2) is said to be mean-square A-stable if

SS RK ⊇ SS DE .

3. Inheriting the A-stability of the underlying RK method

We now provide the link between mean-square A-stability of a SRK method (1.2) and the A-stability of its under-
lying RK method (1.4).

Theorem 3.1. For a given A-stable deterministic Runge-Kutta method (1.4), the corresponding stochastic perturbation
(1.2) is mean-square A-stable if and only if

|Rd(η)|2 ≤
1

1 − 2Re(η)
, (3.1)

for any η ∈ C−.

Proof: For a stochastic Runge-Kutta method (1.2) whose underlying RK method (1.4) is A-stable, (2.6) is equivalent
to

|ζ |2 <
1

|Rd(η)|2
− 1, (3.2)

for any η ∈ C−. The mean-square A-stability of (1.2) would require that Rs(η, ζ) < 1, for any η, ζ ∈ SS DE . By (2.2),
η, ζ ∈ SS DE if and only if

|ζ |2 ≤ −2Re(η). (3.3)

Equations (3.2) and (3.3) provides that the mean-square A-stability of (1.2) holds true if and only (3.1) is satisfied.

�

Let us apply this result to relevant cases of A-stable methods, i.e., Gauss and Radau Runge-Kutta methods.
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Figure 1: Mean-square over 1000 paths of the numerical solution to (2.1) with λ = −2, µ = 1 and X0 = 1, computed by the SRK method (1.2) having
the midpoint rule as underlying RK method. The employed stepsize is ∆t = 2.73.
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Figure 2: Mean-square over 1000 paths of the numerical solution to (2.1) with λ = −2, µ = 1 and X0 = 1, computed by the SRK method (1.2) having
the midpoint rule as underlying RK method. The employed stepsize is ∆t = 3.12.
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Figure 3: Mean-square over 1000 paths of the numerical solution to (2.1) with λ = −2, µ = 1 and X0 = 1, computed by the SRK method (1.2)
having the Radau IA method (equal to the Radau IIA method, since the problem is autonomous) as underlying RK method. The employed stepsize
is ∆t = 3.12.

Example 3.1 (One-stage Gaussian methods). The SRK method (1.2) having the one-stage Gaussian method (i.e., the
midpoint rule) as underlying RK method, does not inherit the A-stability property. Indeed, we recall that

Rd(η) =
1 + 1

2η

1 − 1
2η
,

then (3.1) holds true only for Re(η) ≥ − 1
4 |η|

2. To give a numerical evidence of this issue, let us consider the problem
(2.1) with λ = −2, µ = 1 and X0 = 1, in the time interval [0, 100]; then, (2.6) holds true if and only if ∆t < 3. The
confirmation of this bound is visible from Figures 1 and 2.

Example 3.2 (One-stage Radau IA and IIA methods). Both the SRK methods (1.2) having the one-stage Radau IA
and IIA methods as underlying RK ones, are mean-square A-stable. Indeed, both deterministic methods share the same
stability function

Rd(η) =
1

1 − η
.

Then, condition (3.1) is equivalent to
1

|1 − η|2
≤

1
1 − 2Re(η)

,

that holds true for any η ∈ C, as required by Theorem 3.1. A numerical confirmation on the same problem as in
Example 3.1 can be inferred by Figure 3.
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