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Abstract—The purpose of this work is to derive a family of
multivalue collocation methods for the numerical solution of
ordinary differential equations. The methods are characterized
by a lower triangular coefficient matrix of the nonlinear system
for the computation of the stages, with all equal diagonal entries.
Such structure can be exploited in order to obtain an efficient
implementation. The constructed methods are A-stable and have
a uniform order of convergence.

Index Terms—Multivalue methods, Collocation, General Lin-
ear Methods.

I. INTRODUCTION

In this paper, we consider multivalue collocation numerical
methods for the solution of Ordinary Differential Equations
(ODEs): {

y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0,

(1)

f : Rk → Rk. Such methods have been introduced in [32]
and are able to avoid the order reduction phenomenon which
typically arises when collocation based Runge-Kutta methods
are applied to stiff systems [37]. As a matter of fact, these
methods have uniform order of convergence on the whole
integration interval together with high stability properties.

Multivalue collocation methods require the solution of mk
simultaneous nonlinear equations at each time step, where k
is the dimension of system (1) and m is the number of stages.
The coefficient matrix of such system is typically a full matrix.
With the aim of reducing the computational effort, in [10]
multivalue almost collocation methods with a lower triangular
coefficient matrix have been introduced. A lower triangular
matrix allows to solve the equations in m successive stages,
with only a k-dimensional system to be solved at each stage.
It is the purpose of this work to construct singly diagonally
implicit multivalue collocation based methods, i.e. methods
for which the coefficient matrix is lower triangular and all the
elements on the diagonal are equal. This structure allows to
further decrease the computational cost because, in solving
the nonlinear systems by means of Newton-type iterations, it
is possible to use repeatedly the stored LU factorization of
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the Jacobian. This approach hase been expoited in [28] and
[7] in the context of two-step almost collocation for ODEs and
Volterra Integral Equations, respectively.
Two-step almost collocation methods have been introduced
in [23] for the numerical solution of ODEs and are de-
rived from collocation methods by relaxing some interpo-
lation/collocation conditions in order to achieve A-stability
together with high uniform order of convergence. Such ideas
have been further investigated in [25], [26], [43] for ODEs and
in [2], [3], [12], [16], [17] for Volterra integral and integro-
differential equations. Two step collocation methods have
been also analyzed for the numerical solution of fractional
differential equations. General linear methods (GLMs) for the
numerical solution of second order differential equations, as
well as P-stable methods, have been investigated in [47]. As
regards the nonlinear stability properties of GLMs for ODEs,
it has beel subject of several papers, see for instance [11],
[13], [39], [40].

II. MULTIVALUE COLLOCATION METHODS

Consider the uniform grid tn = t0 + nh, n =
0, 1, ..., N,Nh = T − t0. Collocation methods approximate
the solution of (1) by means of a piecewise collocation
polynomial:

y(tn + θh) ≈ Pn(tn + θh), θ ∈ [0, 1],

with

Pn(tn + θh) =

r∑
i=1

αi(θ)y
[n]
i + h

m∑
i=1

βi(θ)f(Pn(tn + cih)),

(2)
where {αi(θ), βj(θ), i = 1, ..., r, j = 1, ...,m} are functional
the basis of the method, and in the following have been chosen
as polynomials of degree less or equal to r. We impose the
following interpolation conditions:

Pn(tn) = y
[n]
1 , P ′n(tn) = y

[n]
2 , ... P (r−1)

n (tn) = y
[n]
r−1,

and collocation conditions

P ′n(tn + cih) = f(Pn(tn + cih)), i = 1, 2, ..,m.



As a consequence, by using the Nodrdsiek form for the
external stages

y[n] =


y
[n]
1

y
[n]
2
...
y
[n]
r

 ≈


y(xn)
hy′(xn)

...
hr−1yr−1(xn)

 , (3)

multivalue collocation methods can be expressed in the general
linear method (GLM) form:

Y
[n]
i = h

m∑
j=1

aijf
(
Y

[n]
j

)
+

r∑
j=1

uijy
[n−1]
j , i = 1, 2, ...,m,

y
[n]
i = h

m∑
j=1

bijf
(
Y

[n]
j

)
+

r∑
j=1

vijy
[n−1]
j , i = 1, 2, ..., r,

(4)
n = 0, ..., N, where m is the number of internal stages, r
is the number of external stages, c = [c1, c2, ..., cm]T is the
abscissa vector and the coefficient matrices are:

A = [βj(ci)]i,j=1,...,m ∈ Rm×m,
U = [αj(ci)]i=1,...,m,j=1,...,r ∈ Rm×r,

B =
[
β
(i−1)
j (1)

]
i=1,...,m,j=1,...,r

∈ Rr×m,

V =
[
α
(i−1)
j (1)

]
i,j=1,...,r

∈ Rr×r.

We can observe that the polynomial (2) has globally
class Cr−1 while most interpolants based on Runge-Kutta
methods only have global C1 continuity [34]–[36], [41].
Highly continuous interpolants are very useful in many
different situations already shown in the existing literature
such as scientific visualization [45], functional differential
equations with state-dependent delay [38], numerical
solution of differential-algebraic equations and nonlinear
equations [44], [50], [51], optimal control problems [48],
discontinuous initial value problems [35], [49] or, more in
general, whenever a smooth dense output is needed [41], [46].

It has been proved in [32] that a multivalue collocation
method given by the approximation Pn(tn + θh) in (2), is an
approximation of uniform order p to the solution of problem
(1) if and only if the polynomials αi(θ) and βj(θ) in (2) are
computed in according to the following conditions:

α1(θ) = 1 (5)

θν

ν!
− αν+1(θ)−

m∑
i=1

cν−1i

(ν − 1)!
βi(θ) = 0, ν = 1, ..., r − 1,

(6)

θν

ν!
−

m∑
i=1

cν−1i

(ν − 1)!
βi(θ) = 0, ν = r, ..., p. (7)

The uniform order of convergence for a multivalue collocation
method (2) is m+ r−1 and, in order to obtain A-stability the
constraint r ≤ m+ 1 must be fulfilled.

We can write order conditions in (5)-(7) in an equivalent
discrete form:

αj(0) = δj1, α
(ν)
j (0) = δj,ν+1, (8)

j = 1, 2, ..., r, ν = 1, 2, ..., r − 1,

βj(0) = β
(ν)
j (0) = 0, j = 1, 2, ...,m, ν = 1, 2, ..., r − 1,

(9)
α′j(ci) = 0, i = 1, 2, ..., r, j = 1, 2, ...,m, (10)

β′j(ci) = δij , i, j = 1, 2, ...,m, (11)

being δij the usual Kronecker delta.

III. CONSTRUCTION OF METHODS

With the aim of constructing methods having singly lower
triangular coefficient matrix A, as discussed in [10], we will
derive multivalue almost collocation methods, by relaxing
some of the conditions (5)-(7). In order to obtain this struc-
tured matrix, the functional basis {βj(θ), j = 1, ...,m} must
satisfy βj(ci) = 0 for i > j, so:

βj(θ) = ωj(θ)

j−1∏
k=1

(θ − ck), j = 1, ...,m, (12)

where ωj(θ) is a polynomial of degree r −m+ 1:

ωj(θ) =

r−m+1∑
k=0

µ
(j)
k θk, (13)

We want, also, the diagonal elements of the coefficient matrix
A to be the same, so β1(c1) = β2(c2).
In the following we will fix r = m+1. Moreover, we impose
all the conditions (5)-(6) and the parameters µ

(j)
k are free

parameters which will be chosen by eventually imposing
some of conditions (7) together with A-stability.

The stability matrix of method (4) is

M(z) = V + zB(I − zA)−1U, (14)

where I is the identity matrix in Rm×m.
The method is A-stable if the roots of the stability function:

p(ω, z) = det(ωI −M(z)). (15)

are in the unit circle for all z ∈ C such that Re(z) ≤ 0. By
the maximum principle, that will happen if the denominator
of p(ω, z) does not have poles in the negative half plane C−
and if the roots of the p(ω, iy) are in the unit circle for all
y ∈ R. The last condition can be verified using the Schur
criterion [10].

We present an example of A-stable methods with m = 2
and r = 3, so ωj(θ) are polynomial of degree 2. The order of
those methods is 3. So, the collocation polynomial is:

Pn(tn + ϑh) = y
[n]
1 + α2(ϑ)y

[n]
2 + α3(ϑ)y

[n]
3 +

h (β1(ϑ)f(P (tn + c1h)) + β2(ϑ)f(P (tn + c2h))) .



and the Butcher tableau of the considered methods is the
following:

[
A U
B V

]
=


β1(c1) 0
β2(c1) β2(c2)

1 α2(c1) α3(c1)
1 α2(c2) α3(c2)

β1(1) β2(1)
β′1(1) β′2(1)
β′′1 (1) β′′2 (1)

1 α2(1) α3(1)
0 α′2(1) α′3(1)
0 α′′2(1) α′′3(1)


Some values for the free parameters µ(j)

k have been chosen by
imposing the condition (7) for ν = r and β1(c1) = β2(c2)

µ
(1)
1 = −µ

(1)
0

c1
+
c22µ

(2)
1

c1
,

µ
(1)
2 = − 1

3(c1 − c2)
− µ

(1)
0

c22
− (c1c2 + c22)µ

(2)
1

c21
,

µ
(1)
3 = − −2c1 + c2

3c21(c1 − c2)
+
µ
(1)
0

c1c22
+
c2
c21
µ
(2)
1 ,

µ
(2)
0 =

c1
c22
µ
(1)
0 , µ

(2)
2 = − c1

3(c1 − c2)c22
− c1
c42
µ
(1)
0 −

µ
(2)
1

c2
.

The remaining ones have been chosen by performing the Schur
analysis of the stability function (15):

µ
(1)
0 = 0, µ

(2)
1 = 0,

so

α2(ϑ) =
ϑ3(c21 + c1c2 − c22)− ϑ2c21(c1 + c2) + 3ϑc21c

2
2

3c21c
2
2

,

α3(ϑ) =
2ϑ3(c1 − c2) + ϑ2c1(3c2 − 2c1)

6c1c2)
,

β1(ϑ) =
ϑ2(ϑ(2c1 − c2)− c21)

3c21(c1 − c2)
,

β2(ϑ) =
ϑ2c1(c1 − ϑ)
3c22(c1 − c2)

.

(16)
Figure 1 shows the region of A-stability in the (c1, c2) plane.

Fig. 1. Region of A-stability in the (c1, c2) plane.

As an example, we chose c1 = 22/10 and c2 = 9/10,
obtaining:

α2(ϑ) =
ϑ
(
15025ϑ2 − 37510ϑ+ 29403

)
29403

,

α3(ϑ) =
ϑ2 (130ϑ− 187)

594
,

β1(ϑ) =
5

4719
ϑ2 (175ϑ− 242) ,

β2(ϑ) = −
440

3159
ϑ2 (5ϑ− 11) .

which is the continuous C2 extension of uniform order p = 3
of the A-stable multivalue method:[

A U
B V

]
=

=



11

15
0

− 351

4840

11

15

1
22

15

121

150

1
3473

14520
− 21

220

− 335

4719

880

1053

205

4719

3080

3159

2830

4719
−3520

3159

1
2306

9801
− 19

198

0 − 542

29403

8

297

0
15130

29403

203

297


IV. CONCLUSIONS

In this paper we have derived singly diagonally implicit
multivalue almost collocation methods for the numerical so-
lution of ODEs. These method have uniform order of conver-
gence on the whole integration interval, so they do not suffer
from order reduction. We have provided examples of A-stable
methods with two stages having order 3. Future work will
address the construction of methods with diagonal coefficient
matrix in order to possibly exploit parallel computation and the
application of the same tecnique to other types of problems,
such as partial differential equations [4], [27], [30], [31],
oscillatory problems [9], [14], [18], [29], [33], [42], integral
and fractional equations [1], [2], [5], [6], [8], [19], [20] and
stochastic differential equations [15]. In addition, a derivation
of algebraically stable high order collocation based multivalue
methods [24], the extention to second order problems [22]
and the employ of multivalue methods as geometric numerical
integrators [21] could be investigate.
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