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Abstract. The purpose of this work consists in reformulating the coef-
ficients of some exponentially-fitted (EF) methods with the aim of avoid-
ing numerical cancellations and loss of precision. Usually the coefficients
of an EF method are expressed in terms of ν = ωh, where ω is the
frequency and h is the step size. Often, these coefficients exhibit a 0/0
indeterminate form when ν → 0. To avoid this feature we will use two
sets of functions, called C and S, which have been introduced by Ixaru in
[62]. We show that the reformulation of the coefficients in terms of these
functions leads to a complete removal of the indeterminacy and thus
the convergence of the corresponding EF method is restored. Numerical
results will be shown to highlight these properties.
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1 Introduction

Exponential fitting is a mathematical procedure to generate numerical methods
for different problems with a pronounced oscillatory or hyperbolic behaviour,
usualy occurring in interpolation, numerical differentiation and quadrature [30,
31, 33, 35, 72, 61, 65, 66, 80], numerical solution of first order ordinary differen-
tial equations [4, 3, 27, 40, 43, 50, 61, 70, 74, 75, 77, 78, 81], second order differen-
tial equations [55, 64], integral equations [15, 16], fractional differential equations
[1], partial differential equations [14, 45, 46, 51, 53]. This procedure has been in-
troduced in [63]. Its central idea consists in determining the coefficients of a

? The authors Conte, D’Ambrosio, Giordano and Paternoster are members of the
GNCS group. This work is supported by GNCS-INDAM project and by PRIN2017-
MIUR project.
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numerical method by asking that the method is exact for the following set of
functions, which is called a fitting space:

F = {1, x, . . . , xK , e±µx, xe±µx, . . . , xP e±µx} (1)

where µ may be real or imaginary. The coefficients are functions of the parameter
ν = ωh, where ω is the frequency of the oscillatory or hyperbolic functions and
h is the step size. The values of µ to be used in (1) are the imaginary µ = iω
and real µ = ω, respectively.
Often, these coefficients exhibit the indeterminate form 0/0 when ν → 0 such
that, in order to restore the convergence of the corresponding numerical methods
when ν is small (in practice this depends on how small is the step size h),
it is necessary to make use of the Taylor series of the coefficients. Expressed
in different words, an accurate computation of the EF coefficients requires the
knowledge of four different formulas (an analytic formula valid for big ν and a
power series for small ν, for each of the trigonometrical or hyperbolic fitting).
In the paper [62] a method was described to replace the four formulas by a
single one. The coefficients have been expressed in terms of two sets of particular
functions, called C(Z) and S(Z), where Z = ±ν2, for real and imaginary µ. A
similar method has been introduced in the paper [30], in which the coefficients
are expressed in terms of ηm(Z) functions.
The work is organized as follows. In Section 2 we recall the two sets of C and
S functions, and in Section 3 the general procedure for the conversion of the
coefficient in terms of C and S functions is briefly presented. In Section 4 we
reformulate the coefficients for the methods in [69, 71]. In Section 5 numerical
experiments are presented to show how the converted coefficients restore the
convergence of the method.

2 C and S functions

The original ν = µh is replaced by the new Z = ν2 which is negative if ν
is imaginary and positive when ν is real. Thus, Z < 0 and Z > 0 cover the
trigonometric and hyperbolic case, respectively.
To define the sets of functions C and S we rely on the family of functions ηm(Z)
functions, m = −1, 0, 1, ..., . . .:

η−1(Z) =

{
cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0
, η0(Z) =


sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0
(2)

and, for Z 6= 0,

ηm(Z) = [ηm−2(Z)− (2m− 1)ηm−1(Z)]/Z, m = 1, 2, 3, ... (3)

while for Z = 0,

ηm(0) = 1/(2m+ 1)!!, m = 1, 2, 3, ... (4)
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The two sets of C and S functions are defined as follows: C−1(Z) and S−1(Z)
are given by the first two η functions,

C−1(Z) = η−1(Z), S−1(Z) = η0(Z) (5)

while the next ones are derived by recurrence for Z 6= 0,

Cn (Z) =
Cn−1 (Z)− Cn−1 (0)

Z
, Sn (Z) =

Sn−1 (Z)− Sn−1 (0)

Z
, for n = 0, 1, 2, . . . ,

(6)
and by the following values at Z = 0,

Cn (0) =
1

(2n+ 2)!
, Sn (0) =

1

(2n+ 3)!
, for any n =, 0, 1, 2, . . . . (7)

An important property is the reverse relations:

Cn(Z) = ZCn+1(Z) + Cn(0), Sn(Z) = ZSn+1 + Sn(0). (8)

for n = −1, 0, 1, . . .. For an accurate computation of these functions, it is neces-
sary to introduce their series expansions:

Cn(Z) =
∑
k=0

Zk

[2(k + n+ 1)]!
, Sn(Z) =

∑
k=0

Zk

[2(k + n) + 3]!
. (9)

Note: We acknowledge with thanks a recent private communication by Prof.
Ander Murua that sets C and S are directly related to the Stumpff functions
cn(Z)(n = 0, 1, 2, 3, ..):

Cn(Z) = c2n+2(−Z), Sn(Z) = c2n+3(−Z).

For the Stumpff functions see [83] and references therein.

3 Procedure for the conversion of coefficients

Now we describe the procedure introduced in [62] for the conversation of the
coefficients. Let σ(z), a generic coefficient derived by EF technique:

σ (z) =
N (z)

D (z)

where N (z) and D (z) contains trigonometrical or hyperbolic functions and tend
to 0 when z → 0.
Let us denote generically by F any of numerator N or denominator D, and
treated separately these two functions. The procedure has two steps.
In the first step, F (z) is expressed in terms of Z in the following way:

F (z) = zkF (Z) (10)
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where k = 0, 1 and

F (Z) =

M∑
m=0

ZmFm (Z) . (11)

The second step consists in factorizing Z in F (Z) as many times as possible
until the form

F (Z) = ZmF ∗ (Z) (12)

where m ≥ 0 and F ∗ (Z) 6= 0.
To be able to factorize Z in F (Z), we have to first evaluate F0 (Z) at Z = 0. If
F0 (0) 6= 0, then no Z factorization is possible and the procedure is stopped.
Instead, if F0 (0) = 0, then

F (Z) = F0 (Z) = Z∆F0 (Z),

take m = 1 and the following algorithmic applies:

1. Form Fm (Z) = ∆Fm−1 (Z) + Fm (Z) and evaluate in 0;
2. If Fm (0) = 0, one factorization of Z is possible and we put Fm (Z) =
Z∆Fm (Z), then determine ∆Fm (Z), increase m by 1, and go to (1);

3. If Fm (0) 6= 0, the procedure is stopped and

F (Z) = ZmF ∗ (Zz) (13)

where,

F ∗ (Z) =

{
∆Fm−1(Z) +

∑M−m
i=0 ZiFm+i if m ≤M,

∆Fm−1 (Z) if m > M
(14)

In the most cases, Fm is a linear combination of terms containing functions from
sets C and S:

Fm (Z) = K +
∑
j>−1

[ajCj (αjZ) + bjSj (βjZ)] (15)

where aj , bj ,K are constant, and αj , βj > 0.
By replacing (8) in (15), the following expression is obtained:

Fm (Z) = Fm (0) + Z
∑
j>−1

[ajαjCj+1 (αjZ) + bjβjSj+1 (βjZ)] . (16)

If Fm (0) = 0, then the expression of ∆m(Z) is thus obtained:

∆Fm (Z) =
∑
j>−1

[ajαjCj+1 (αjZ) + bjβjSj+1 (βjZ)] . (17)

After applying the procedure described for the numerator and the denominator
of the coefficient, the user-friendly reformulation of the coefficient is obtained:

σ(Z) =
N∗(Z)

D∗(Z)
, (18)

where N∗(0) 6= 0 and D∗(0) 6= 0.
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4 Reformulation of the coefficients

In this Section we reformulate the coefficients of two relevant classes of EF
numerical methods [69, 71] in terms of the C and S functions.
Example 1: The first class of methods, developed by Simos et al. in [69] regards
the numerical solution of the second-order Initial Value Problems (IVPs) of the
form: 

y′′ = f (x, y (x))

y (x0) = y0

y′ (x0) = y′0

. (19)

The scheme examined in [69] is of the form:

yn+1 + d0yn + d1yn−1 + d2yn−2 + d1yn−3 + d0yn−4 + yn−5 =

h2
(
d̃0ỹ
′′
n+1 + d̃1y

′′
n + d̃2y

′′
n−1 + d̃3y

′′
n−2 + d̃2yn−3 + d̃1yn−4 + d̃0y

′′
n−5

) (20)

where ỹn+1 is determined by solving

ỹn+1 + c0yn + c1yn−1 + c2yn−2 + c1yn−3 + c0yn−4 + yn−5 =

h2
(
c̃0y
′′
n + c̃1y

′′
n−1 + c̃2y

′′
n−2 + c̃1y

′′
n−3 + c̃0y

′′
n−4
)
.

(21)

and using ỹ′′n+1 = f (xn+1, ỹn+1) in (20).

The classical version has the constant coefficients:

c̃class0 =
51484823

17645880
, c̃class1 =

23362512

735245
, c̃class2 = −723342859

8822940
(22)

c0 =
12519323

504168
, c1 =

2712635

63021
, c2 = −551

4

d0 = −23362512

735245
, d1 =

84437

105035
, d2 = −9

5

d̃0 =
1

15
, d̃1 =

209837

210070
, d̃2 =

320221

315105
, d̃3 =

638003

315105

. (23)

see [57].
In [69] the exponential fitting procedure is applied to produce the following ν
dependent expressions for the c̃ coefficients :

c̃
ef
0 = −

1

2016672ν6 sin3(ν)

(
3(4965191ν

4 − 82890689ν
2

+ 22589400) sin(ν)

− 48(69329ν
2 − 308970) sin(2ν) − (4965191ν

4 − 8059857ν
2 − 68357160) sin(3ν)

+ 7562520(3ν
2 − 10) sin(4ν) − (59935259ν

2 − 95582232)ν cos(ν)

− 32(437993ν
2

+ 2928636)ν cos(2ν) − 3(4965191ν
2

+ 13671432)ν cos(3ν)

+ 75625200ν cos(4ν) + 48(875986ν
2 − 759933)ν

)
,

(24)
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c̃
ef
1 =

1

1008336ν6 sin3(ν)

(
− 24(875986ν

4
+ 231349ν

2 − 617940) sin(ν)

− 18(14126869ν
2 − 7562520) sin(2ν) + 4(1751972ν

4
+ 9751899ν

2 − 15198660) sin(3ν)

+ 3(4965191ν
2

+ 22785720) sin(4ν) + 3781260(3ν
2 − 20) sin(5ν)

+ 64(875986ν
2 − 2650563)ν cos(ν) − 12(14126869ν

2 − 4537512)ν cos(2ν)

− 2(4965191ν
2

+ 13671432)ν cos(4ν) + 60500160ν cos(5ν)

+ 6(4965191ν
2

+ 13671432)ν

)
,

(25)

c̃
ef
2 =

1

2016672ν6 sin3(ν)

(
6(42380607ν

4
+ 125300744ν

2 − 45276960) sin(ν)

− 24(2281313ν
2 − 679290) sin(2ν) − 3(28253738ν

4 − 74403153ν
2

+ 113732280) sin(3ν)

− 48(1821301ν
2 − 5993130) sin(4ν) − 3(4965191ν

2
+ 22785720) sin(5ν)

− 7562520(ν
2 − 10) sin(6ν) + 160(906559ν

2 − 2390292)ν cos(ν)

− 16(1751972ν
2 − 21371481)ν cos(2ν) + 9(33218929ν

2
+ 4596408)ν cos(3ν)

− 32(437993ν
2

+ 6709896)ν cos(4ν) + (4965191ν
2

+ 13671432)ν cos(5ν)

− 45375120ν cos(6ν) − 288(437993ν
2 − 852624)ν

)
.

(26)

The other coefficients are untouched. They remain the same as in (23).
Theoretically we must have

lim
ν→0

c̃efi = c̃classi (27)

for i = 1, 2, 3, but a direct examination of the EF expressions given in (24-26),
shows that these have an indeterminate form 0/0 for ν → 0 such that, in a
numerical approach, a blow up of each coefficient will be obtained when h is
decreased (we remind that ν = ωh).
This is removed by applying the procedure described in the previous Section.
Indeed, now we have:

c̃
CS
0 =

1

2016672S3
−1

(Z)

(
− 59935259C2(Z) − 897009664C2(4Z) − 10858872717C2(9Z)

− 95582232C3(Z) + 23991386112C3(4Z) + 269094796056C3(9Z) − 4956173107200C3(16Z)

− 14895573S1(Z) + 1206541413S1(9Z) − 248672067S2(Z) − 425957376S2(4Z)

17626907259S2(9Z) + 371712983040S2(16Z) − 67768200S3(Z) − 7593246720S3(4Z)

− 1345473980280S3(9Z) + 19824692428800S3(16Z)

)
;

(28)

c̃
CS
1 =

1

252084S3
−1

(Z)

(
− 14015776C2(Z) + 2712358848C2(4Z) + 10168711168C2(16Z)

− 42409008C3(Z) + 3484809216C3(4Z) − 447984483776C3(16Z) + 5908218750000C3(25Z)

− 5255916S1(Z) + 425729196S1(9Z) + 1388094S2(Z) + 8137076544S2(4Z)

− 21327403113S2(9Z) − 61012267008S2(16Z) − 221558203125S2(25Z) + 3707640S3(Z)

+ 17424046080S3(4Z) + 299155224780S3(9Z) + 4479854837760S3(16Z)

− 36926367187500S3(25Z)

)
;

(29)

c̃
CS
2 =

1

2016672S3
−1

(Z)

(
− 145049440C2(Z) + 1794019328C2(4Z) − 217949393169C2(9Z)

+ 57408618496C2(16Z) − 77581109375C2(25Z) − 382446720C3(Z) + 87537586176C3(4Z)

+ 271413295992C3(9Z) − 14071671816192C3(16Z) + 5340403125000C3(25Z)

− 76212777553920C3(36Z) + 254283642S1(Z) − 20596975002S1(9Z) − 751804464S2(Z)

+ 7008193536S2(4Z) − 488159086833S2(9Z) + 1432329388030S2(16Z)

+ 1163716640625S2(25Z) + 2117021598720S2(36Z) − 271661760S3(Z) + 8347115520S3(4Z)

− 6715777401720S3(9Z) + 75411027394560S3(16Z) − 133510078125000S3(25Z)

+ 762127775539200S3(36Z)

)
.

(30)
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The new expressions are also quotients of two ν dependent functions but, as
expected, they do no longer exhibit indeterminacy when ν → 0. Also worth
mentioning is that the power of Z in (13) for all these three coefficients is m = 4.
The use of η functions has the same effect. In fact, by applying the procedure
described in [30], the coefficients expressed by these functions are (see also [23]):

c̃η0 =
−1071987210η40(Z/64)− 535993605η20(Z/256)(1 + η0(Z/64)) + . . .

13552035840(2 + Zη20(Z/4)− 2Zη1(Z))
3 (31)

c̃η1 =
−2031821820η40(Z/64)− 1015910910η20(Z/256)(1 + η0(Z/64)) + . . .

13552035840(2 + Zη20(Z/4)− 2Zη1(Z))
3 (32)

c̃η2 =
−2146293450η40(Z/64)− 1073146725η20(Z/256)(1 + η0(Z/64)) + . . .

6776017920(2 + Zη20(Z/4)− 2Zη1(Z))
3 (33)

The full expressions can be obtained using the Mathematica modules in [30].
Both ways of deriving single formulae, instead of four, are then acceptable, and
the expected theoretical behavior

lim
Z→0

c̃CS
i = lim

Z→0
c̃ηi = c̃classi , (34)

is preserved.

Example 2: We consider the numerical method developed by Ndukum et
al. [71] to solve the first-order IVP:{

y′ = f(x, y(x))

y(a) = y0
(35)

with x ∈ [a, b].
The scheme used is a k-step numerical method of the form:

yn+k =

k−1∑
r=0

αr(ν)yn+r + h(βk(ν)fn+k + βk+1(ν)fm+k+1). (36)

In the paper [71] the authors presented the coefficients of the method correspond-
ing to k = 1, 2, 3, 4, 5. In the paper [62] the case k = 2 has been considered.
In the following we consider the case k = 3.
By applying the exponential fitting procedure, the coefficients are [71]:

α
ef
0 =

5ν − 11ν cos ν + 7ν cos 2ν − ν cos 3ν + 4 sin ν + 2ν2 sin ν − 2 sin 2ν

7ν cos ν − 17ν cos 2ν + 13ν cos 3ν − 3ν cos 4ν + 4 sin ν + 2ν2 sin 2ν − 2 sin 2ν
(37)

α
ef
1 =

−12ν + 23ν cos ν − 9ν cos 2ν − 3ν cos 3ν + ν cos 4ν − 2 sin ν − 6ν2 sin ν − 2 sin 2ν + 2 sin 3ν

7ν cos ν − 17ν cos 2ν + 13ν cos 3ν − 3ν cos 4ν + 4 sin ν + 2ν2 sin 2ν − 2 sin 2ν
(38)

α
ef
2 =

7nu − 5ν cos ν − 15ν cos 2ν + 17ν cos 3ν − 4ν cos 4ν + 2 sin ν + 6ν2 sin ν + 2 sin 2ν − 2 sin 3ν

7ν cos ν − 17ν cos 2ν + 13ν cos 3ν − 3ν cos 4ν + 4 sin ν + 2ν2 sin 2ν − 2 sin 2ν
(39)

β
ef
3 =

2ν cos ν − 6ν cos 2ν + 6ν cos 3ν − 2ν cos 4ν + 25 sin ν − 20 sin 2ν + 5 sin 3ν

7ν cos ν − 17ν cos 2ν + 13ν cos 3ν − 3ν cos 4ν + 4 sin ν + 2ν2 sin 2ν − 2 sin 2ν
(40)
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β
ef
4 =

−2ν + 6ν cos ν − 6ν cos 2ν + 2ν cos 3ν − 13 sin ν + 12 sin 2ν − 3 sin 3ν

7ν cos ν − 17ν cos 2ν + 13ν cos 3ν − 3ν cos 4ν + 4 sin ν + 2ν2 sin 2ν − 2 sin 2ν
(41)

which all exhibit the 0/0 indeterminacy.
The coefficients modified by means of the the procedure described in the previous
Section are:

α̃
CS
0 =

1 + (6(3C2(Z) − 256C2(4Z) + 1701C2(9Z) − 2048C2(16Z))

−7C2(Z) + 1088C2(4Z) − 9477C2(9Z) + 12288C2(16Z) + 2S1(Z) − 4S2(Z) + 256S2(4Z)
(42)

α̃
CS
1 =

23C2(Z) − 576C2(4Z) − 2187C2(9Z) + 4096C2(16Z) + 6S1(Z) − 2S2(Z) − 256S2(4Z) + 4371S2(9Z)

7C2(Z) − 1088C2(4Z) + 9477C2(9Z) − 2(6144C2(16Z) + S1(Z) − 2S2(Z) + 128S2(4Z))
(43)

α̃
CS
2 =

−5C2(Z) − 960C2(4Z) + 12393C2(9Z) − 16384C2(16Z) − 6S1(Z) + 2S2(Z) + 256S2(4Z) − 4374S2(9Z)

7C2(Z) − 1088C2(4Z) + 9477C2(9Z) − 2(6144C2(16Z) + S1(Z) − 2S2(Z) + 128S2(4Z))
(44)

β̃
CS
3 =

2C2(Z) − 384C2(4Z) + 4374C2(9Z) − 8192C2(16Z) + 25S2(Z) − 2560S2(4Z) + 10935S2(9Z

7C2(Z) − 1088C2(4Z) + 9477C2(9Z) − 2(6144C2(16Z) + S1(Z) − 2S2(Z) + 128S2(4Z))
(45)

β̃4
CS

=
3(2C2(Z) − 128C2(4Z) + 486C2(9Z) − 5S2(Z) + 512S2(4Z) − 2187S2(9Z))

7C2(Z) − 1088C2(4Z) + 9477C2(9Z) − 2(6144C2(16Z) + S1(Z) − 2S2(Z) + 128S2(4Z))
(46)

We observe that in all five coefficient the power of Z in (13) is m = 3.
As for the coefficients expressed in terms of ηm(Z) functions, these are:

α̃η0 =
−210η40(Z/16)− 10η20(Z/64)(1 + η0(Z/16)) + . . .

165η20(Z/64)(1 + η0(Z/16)) + . . .
(47)

α̃η1 =
630η40(Z/16) + 315η20(Z/64)(1 + η0(Z/16))− . . .

165η20(Z/64)(1 + η0(Z/16)) + . . .
(48)

α̃η2 =
−90η40(Z/16)− 45η20(Z/64)(1 + eta0(Z/16)) + . . .

165η20(Z/64)(1 + η0(Z/16)) + . . .
(49)

β̃η3 =
5(162η40(Z/16) + 81η20(Z/64)(1 + η0(Z/16))− . . .

165η20(Z/64)(1 + η0(Z/16)) + . . .
(50)

β̃η4 =
−3(90η40(Z/16) + 45η20(Z/64)(1 + η0(Z/16))− . . .

165η20(Z/64)(1 + η0(Z/16)) + . . .
(51)

Similar to the previous case, the full expression of the coefficients can be obtained
using the Mathematica modules in [30].



User-friendly expressions of the coefficients of some EF methods 9

5 A check on the effectiveness of the approach

In this Section we show the graphs of the behavior of the coefficients and how
our reformulation restores the convergence of the corresponding method.
On the left column of Fig. 1 we show the h dependence of the coefficients

Fig. 1. Left: Coefficients c̃efi , c̃CS
i , c̃ηi of Example 1 for ω = 10; Right: Error of c̃bfi and

c̃CS
i coefficients with respect to c̃ηi

c̃efi (ν), ν = ωh, for ω = 10 and i = 0, 1, 2 of Example 1 compared with the re-
formulated c̃CS

i (Z), Z = −ν2 = −(ωh)2, by means of C(Z) and S(Z) functions,
and c̃ηi (Z) by means of ηm(Z) functions. In particular, we observe that the coef-
ficients expressed in terms of ηm(Z) functions and the coefficients expressed in
terms of C and S functions converge to the classical value, while the coefficients
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c̃eg0 , c̃
eg
1 and c̃eg2 blow up when h is decreased. From the numerical point of view

the limit tendency (27) is not verified but (34) holds true.
On the right column of the same figure we give additional details. On it we
present the deviations of the coefficients computed by the first two approaches
with respect to those expressed in terms of the ηm(Z) functions. It is seen that
the two reformulations (28)–(30) and (31)–(33) differ by a factor of only 10−10

irrespective of h while the EF coefficients (24)–(26) exhibit an error which in-
creases as h→ 0 to reach a value of about 102 for h = 10−3.

Fig. 2. Left: Coefficients αef
i , αCS

i , αηi of Example 2 for ω = 10; Right: Error of αef
i ,

αCS
i coefficients with respect to αηi

The same data are presented on Figs. 2–3 for the coefficients of Example
2. Again, the coefficients obtained in the frame of the original EF approach of
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Fig. 3. Left: Coefficients βef
i , βCS

i , βηi of Example 2 for ω = 10; Right: Error of βef
i

and βCS
i coefficients with respect to βηi

[71] are oscillating and inaccurate when h → 0, in contrast with those in the
other two approaches. The results from the latter two approaches are actually
in agreement within 10−15.
Also instructive is that, in contrast with Example 1, the blow up of the original
EF estimates occurs at values of h much smaller than before, and this is due to
the power m in (13) which for the previous case was m = 4 while it is m = 3 by
now. This allows concluding that the need of reformulations in the spirit of the
approach presented in this paper is more and more stringent when m is increased.

An important issue is that of checking in what extent the accuracy in the
evaluation of the coefficients affects the accuracy of the results when solving
numerically a differential equation. To illustrate this we consider the following
problem: 

y′′ = −100y(t) + 99 sin(t)

y(0) = 1

y′(0) = 11

(52)

with t ∈ [0, 20π], whose analytic solution is y(t) = cos(10t) + sin(10t) + sin(t).
In Fig. 4, we compare the method (20)–(21) for three versions of the coefficients;
in particular we denote:

– EF: the method with coefficients (23)–(24)–(25)–(26);
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Fig. 4. Absolute error in t = 20π of method (20)–(21) on problem (52)

– EF converted CS: the method with coefficients (23)–(28)–(29)–(30) con-
verted by means of C and S functions;

– EF converted ηm(Z): the method with coefficients (23)–(31)–(32)–(33) con-
verted by ηm(Z) functions.

Fig. 4 shows that the reformulation of the coefficients in terms of either C and
S or of η functions fully restores the convergence of the method.

6 Conclusions

We have shown that the reformulation of the expressions of the coefficients of
EF-based numerical methods for differential equations in terms of the sets of
functions C and S has two main advantages:

1. it allows reducing the original set of four expressions for each coefficient to
a single one with universal use:

2. it removes completely the potential inaccuracy of the numerical solution
when the step size h is small.

The procedure is then recommended as a reliable alternative to that based on η
functions.

Further developments of this research will be oriented to the reformula-
tion, through C and S functions, of existing methods for ordinary differen-
tial equations [2, 17, 20, 25, 26, 28, 37–39, 41, 42, 44, 49, 52, 54, 57, 79, 82], integral
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equations [5–8, 10, 11, 24, 29, 32, 34, 56, 73], stochastic problems [12, 13, 18, 19, 29,
47], fractional equations [12, 13, 21, 22, 36], partial differential equations [58–60,
68, 76].
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