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Abstract

The paper is focused on the analysis of parasitism for multivalue numerical methods in-
tended as geometric numerical integrators for Hamiltonian problems. In particular, the
main topic is the design of multivalue numerical methods whose parasitic components
remain bounded over certain time intervals, opening the path to the development of
nearly conservative multivalue methods able to guarantee a control of parasitism in the
long time. The analysis of parasitism as well as the development of the corresponding
methods is the core of the treatise. The effectiveness of the approach is also confirmed
on selected Hamiltonian problems.

Keywords: Geometric numerical integration, Hamiltonian problems, multivalue
methods, symmetry, parasitism.

1. Introduction

Geometric Numerical Integration (GNI; see, for instance, [24, 31] and references
therein) is a mature branch of Numerical Analysis that provides a different and more
modern perspective on the discretizations to conservative evolutionary operators. In-
deed, geometric numerical methods are designed in order to inherit qualitative prop-
erties of a conservative differential operator along its discretized solutions, rather than
only relying on computing accurate numerical solutions.

A relevant class of conservative differential systems is given by Hamiltonian prob-
lems, assuming the form

ẏ(t) = J−1∇H(y), J =

 0 I

−I 0

 , (1.1)

where I ∈ Rd is the identity matrix and the vector y(t) ∈ R2d collects the conju-
gate momenta and generalized coordinates of a mechanical system with d degrees of
freedom. The function H , known as Hamiltonian function of the system, is a first in-
tegral of (1.1). The principal task of GNI for Hamiltonian problems is the design of
numerical schemes able to perform an excellent long-time conservation of the Hamil-
tonian function along the corresponding discretized dynamics. A relevant class of ge-
ometric methods is given by symplectic (or canonical) Runge-Kutta (RK) methods
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[4, 24, 29, 31, 32, 33], which are meant to exactly preserve (clearly, within round-off

error) quadratic invariants possessed by (1.1) along the numerical solution. Moreover, a
symplectic numerical method is able to preserve Hamiltonian functions over exponen-
tially long times, as proved by Benettin and Giorgilli (see [24], Theorem 8.1, §IX.8), if
the solution to (1.1) lies in a compact set.

Symplecticity is a prerogative of certain implicit RK methods, since linear multi-
step methods and genuine multi-value methods cannot be symplectic [8, 22, 30, 34].
This issue is due to the fact the both multistep and multivalue methods add parasitic
components to the numerical solutions growing in time and destroying the accuracy of
long-term conservations. However, several contributions in the recent literature have
been focused on the design and the analysis of nearly-conservative methods other than
RK schemes, as in [4, 5, 6, 7, 1, 13, 14, 15, 18, 19, 23, 24] and references therein,
meant to break down the effects of parasitism on long-time intervals and providing a
cheaper alternative to symplectic methods.

In this paper we aim to design multivalue numerical methods whose parasitic com-
ponents remain bounded over certain time intervals, opening the path to the develop-
ment of nearly conservative multivalue methods able to guarantee a control of para-
sitism in the long time. The manuscript is organized as follows: Section 2 contains a
brief description of multivalue numerical methods and their representation as General
Linear Methods (GLMs); Section 3 provides an analysis of the parasitic components
and the developments of algebraic constraints on the coefficients of the methods guar-
anteeing their boundedness; the development of methods is object of Section 4, while
their performances are evaluted by the numerical evidence given in Section 5. Some
concluding remarks are the topic of Section 6.

2. Methodology: multivalue numerical schemes

Multivalue numerical methods provide a general family of time integrators for the
well-posed initial value problem y′(t) = f (y(t)), t ∈ [t0,T ],

y(t0) = y0 ∈ Rd,
(2.2)

here supposed to be autonomous, properly including many well-known numerical schemes,
e.g., Runge-Kutta and linear multistep methods (compare [4, 17, 28] and references
therein). Referring to the step point tn ∈ Ih, with

Ih =

{
tn = nh, n = 0, 1, . . . ,M, h =

T
M

}
,

multivalue numerical methods compute a vector of r entries

y[n] =



y[n]
1

y[n]
2

...

y[n]
r


∈ Rrd,
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assuming that y[n−1] is given. Such a vector does not only (and not necessarily) con-
tain the approximation of the solution in the grid points (as it happens in the case of
Runge-Kutta methods, for instance), but also solution related quantities (e.g., linear
combination of the derivatives, evaluations of the vector field in off-step points and so
on). For instance, a multivalue method discretizing the equation of motion of a system
of particles may provide, at each step point, an approximation to the position and the
velocity of each particle, i.e., the vector y[n] approximates the solution of the differential
equation and its first derivative.

It is also worth observing that the addition of more quantities in the discretized
dynamics may allow the introduction of additional degrees of freedom in the method
which can be exploited to improve the classical order and stability barriers of multistep
and multistage methods [4].

A multivalue numerical method provides a discrete dynamics as described in Figure
1; the corresponding numerical scheme can be formally described through the follow-
ing maps:

• a starting procedure
S h : Rd → Rrd,

providing the starting vector y[0] = S h(y0);

• a forward map
Gh : Rrd → Rrd,

updating the vector y[n] in y[n+1]. In the remainder, we will usually refer to the
notation

y[n+1] = Vy[n+1] + hΦ(h, y[n]), (2.3)

where V ∈ Rrd×rd and Φ(h, y[n]) : [0,+∞) × Rrd → Rrd is an increment term.
The matrix V has the form

V = Ṽ ⊗ Id, (2.4)

being Ṽ ∈ Rr, Id ∈ Rd×d the identity matrix and ⊗ the usual Kronecker tensor
product. Ṽ has simple eigenvalues, all lying on the unit circle for zero-stability
requirements [4, 28];

• a finishing procedure
Fh : Rrd → Rd,

projecting the vector y[n] into the numerical solution yn ≈ y(tn).

It was proved in [24] that, for any given forward and finishing procedures, there
exist a unique starting procedure and a unique one-step method

yn+1 = ϕh(yn),

such that
Gh ◦ S h = S h ◦ ϕh,

with Fh◦S h equal to the identity map. Such a formal one-step map ϕh is called underly-
ing one-step method. In other terms, the numerical solution obtained by the multivalue
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Figure 1: Dynamics of a multivalue numerical method

method is (formally) equal to that of the one-step method ϕh; this issue makes relevant
anaylizing the underlying one-step method in order to infer meaningful properties of
the forward map.

Multivalue methods are usually represented in the form of General Linear Methods
(GLMs, compare [4, 17, 28] and references therein)

Y [n] = hAF[n] + Uy[n],

y[n+1] = hBF[n] + Vy[n],
(2.5)

that is an extended Runge-Kutta formulation giving a practical scheme to compute the
updated vector y[n+1], given y[n] and the vector of internal stages Y [n] ∈ Rsd, where Y [n]

i
approximates the solution to (2.2) in the internal point tn+cih ∈ [tn, tn+1], i = 1, 2, . . . , s,
with ci usually belonging to the interval [0, 1]. F[n] ∈ Rsd denotes the supervector

F[n] =



f (Y [n]
1 )

f (Y [n]
2 )

...

f (Y [n]
s )


∈ Rsd.

The matrices A ∈ Rsd×sd, U ∈ Rsd×rd, B ∈ Rrd×sd, V ∈ Rrd×rd are usually collected in
the Butcher tableau  A U

B V

 .
When r = 1 and the Butcher tableau reduces to A e ⊗ Id

bT ⊗ Id Id

 ,
being e the unitary vector in Rs, the multivalue method (2.5) is then equivalent to the
Runge-Kutta method

4




Y [n] = hAF[n] + (e ⊗ I)y[n],

y[n+1] = h(bT ⊗ I)F[n] + y[n].
(2.6)

3. Analysis of parasitism

A full backward error analysis for multivalue numerical methods has been given in
[18]. It relies on the following ansatz

ŷ[n] = Y(tn) +

r∑
j=2

ζn
j Z j(tn), (3.1)

where ŷ[n] is an approximation to y[n]. In (3.1), a clear separation between the smooth
part Y(tn) and the parasitic ones Z j(tn), related to the point tn, are made visible. The
functions Y(t) and Z j(t) are independent on n, but depend smoothly on the stepsize
h. The scalars ξ1 = 1, ξ2, . . ., ξr are the eigenvalues of the matrix Ṽ in (2.4), which
are supposed to be simple and located on the unit circle for zero-stability requirements
[4, 28], as aforementioned. In this representation, we are tacitly assuming that the
component ŷ[n]

1 approximates the solution to (2.2) in tn. The ansatz (3.1) is useful in
several situations, such as the analysis of the long-term behavior of linear multistep
methods [25, 26] and in the study of the long-time behavior of analytic and numerical
solutions to highly oscillatory problems by modulated Fourier expansions [27].

In the remainder of the treatise, we will always assume that r = 2 and the matrix Ṽ
of the form

Ṽ =

[
1 0
0 −1

]
. (3.2)

Then, the ansatz (3.1) reads

ŷ[n] = Y(tn) + (−1)nZ(tn). (3.3)

By denoting with v j and v∗j the right and left eigenvectors of V (i.e, Vv j = ξ jv j and v∗jV =

ξ jv∗j) satisfying v∗jv j = 1, we write Y(t) and Z(t) in terms of the basis of eigenvectors of
V , i.e.

Y(t) = y1(t)v1 + y2(t)v2, Z(t) = z1(t)v1 + z2(t)v2. (3.4)

This representation is useful to get an amenable form of the so-called modified differ-
ential equations, given by the following theorem [18].

Theorem 3.1. For a given multivalue method, represented in the GLM form (2.5) with
r = 2, whose matrix V assumes the form (3.2), there exist h-independent real func-
tions f`(y1) and complex functions g`(y1), a`(y1) and b`(y1), such that for an arbitrarily
chosen truncation index N and any solution yk(t), zk(t), k = 1, 2, of the system

ẏ1 = f (y1) + h f1(y1) + . . . + hN−1 fN−1(y1),
y2 = h g1(y1) + . . . + hNgN(y1),
ż1 =

(
a0(y1) + h a1(y1) + . . . + hN−1aN−1(y1)

)
z1,

z2 =
(
h b1(y1) + . . . + hNbN(y1)

)
z1,

(3.5)

5



the approximation (3.3) satisfy (2.3) with a small defect, i.e.,

ŷ[n+1] = V ŷ[n] + h Φ(h, ŷ[n]) + O(hN+1) + O(h‖Z‖2),

with ‖Z‖ = max {|z1(tn)|, |z2(tn)|}, as long as y1(tn) lies in a compact set.

A complete proof of this result, for any arbitrary value of r, is given in [18]. We
now aim to provide an analysis of the parasitic components in order to translate their
boundedness into algebraic conditions on the coefficients of (2.5).

According to Theorem 3.1,

Y(tn + h) + (−1)nZ(tn + h) = V (Y(tn) + (−1)nZ(tn))

+ h Φ (h,Y(tn) + (−1)nZ(tn)) + O(hN+1) + O(h‖Z‖2),

i.e., by Taylor series arguments expansion of Φ around Y(t),

Y(tn + h) + (−1)n+1Z(tn + h) = V (Y(tn) + (−1)nZ(tn)) + h Φ (h,Y(tn))

+ (−1)nh Φ′ (h,Y(tn)) Z(t) + O(hN+1) + O(h‖Z‖2).

Isolating the parasitic part leads to

Z(tn + h) = −VZ(tn) − h Φ′ (h,Y(tn)) Z(t) + O(hN+1) + O(h‖Z‖2).

Assuming the form of the increment arising from the GLM formulation (2.5), we have

Φ (h,Y(tn)) = B f
(
UY(tn) + hA f (Y [n])

)
and expanding the inner evaluation of f around UY(tn) leads to

Φ (h,Y(tn)) = B f
(
UY(tn) + hA f (UY(tn)) + h2 f ′(UY(tn))A f (UY(tn))

)
+ O(h3)

and expanding the outer evaluation of f around UY(tn) yields

Φ (h,Y(tn)) = B
(

f (UY(tn)) + h f ′ (UY(tn)) A f (UY(tn))

+ h2 f ′ (UY(tn)) f ′(UY(tn))A f (UY(tn))
)

+ O(h3).

As a consequence,

hΦ′ (h,Y(tn)) = hB f ′ (UY(tn)) U + h2B f ′′ (UY(tn)) (U, A f (UY(tn)))

+ h2B f ′ (UY(tn)) A f ′ (UY(tn)) U + O(h3).

Then,

Z(tn) + hŻ(tn) +
h2

2
Z̈(tn) = −VZ(tn) − hΛZ(tn) − h2ΓZ(tn) + O(h3) + O(h‖Z‖2).

(3.6)
with

Λ = B f ′ (UY(tn)) U (3.7)
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and
Γ = B f ′′ (UY(tn)) (U, A f (UY(tn))) + B f ′ (UY(tn)) A f ′ (UY(tn)) U. (3.8)

Let us focus on the second component Z2(tn), taking into account that Z1(tn) = O(h2).
We obtain from (3.6) that

hż2(tn) +
h2

2
z̈2(tn) = −hλ22z2(tn) − h2γ22z2(tn) + O(h3) + O(h‖Z‖2). (3.9)

The coefficient of λ22, appearing in (3.9) as elementary differential associated to the
second order rooted tree [τ], is the so-called linear growth parameter (see [7, 15, 18])
and it is responsible of the boundedness of parasitic components as designed so far in
the existing literature. Standard computations yields λ22 annihilated if

vT
2BUv2 = 0. (3.10)

Then, we give the following definition.

Definition 3.1. A given multivalue method, represented in the GLM form (2.5) with
r = 2, whose matrix V assumes the form (3.2), is first order parasitic if (3.10) holds
true.

However, as proved in [18], having λ22 = 0 only guarantees to have bounded par-
asitic components on intervals of length at most O(h−2). As observable from [18], if
λ22 = 0, then z̈2(tn) = O(h) and (3.9) becomes

ż2(tn) = −hγ22z2(tn) + O(h2) + O(‖Z‖2). (3.11)

We now aim to annihilate also γ22 in order to have a more limited parasitic behaviour
over longer time windows than that achievable with first order parasitic methods. Stan-
dard computations yields γ22 annihilated if the coefficients of the elementary differen-
tials associated to the third order rooted trees [[τ]] and [τ2] are zero, i.e. if the following
conditions hold true

vT
2BAUv2 = 0, vT

2B(Ae · Uv2) = 0, (3.12)

where · denotes componentwise vector multiplication. Then, we give the following
definition.

Definition 3.2. A given multivalue method, represented in the GLM form (2.5) with r =

2, whose matrix V assumes the form (3.2), is second order parasitic if both conditions
in (3.12) hold true.

4. Construction of methods

We now focus our attention on the developments of first and second order parasitic
methods, represented in the GLM form A U

B V

 =

 Ã ⊗ I Ũ ⊗ I

B̃ ⊗ I Ṽ ⊗ I

 ,
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with r = 2, s = 2 and

 Ã Ũ

B̃ Ṽ

 =


a11 a12 1 u12
a21 a22 1 u22

b11 b12 1 0
b21 b22 0 −1

 .
In the remainder of the treatise we assume that the vector of the updates y[n] has the
so-called Nordsieck form [28]

y[n] =

y[n]
1

y[n]
2

 ≈
 y(tn)

hy′(tn)

 . (4.1)

Due to the form (3.2) of the matrix V , the methods are automatically zero-stable, then
they are convergent if they fulfill the preconsistency and consistency requirements [4,
28]

U

1
0

 = e, Be + V

0
1

 =

1
1

 . (4.2)

Then, the first column of U is the unit vector in Rs, while the condition on B leads to

b11 + b12 = 1, b21 + b22 = 2.

Correspondingly, the family of two-stage and two-value methods in the GLM form
(2.5), is first order parasitic if their Butcher tableau assumes the form

 Ã Ũ

B̃ Ṽ

 =


a11 a12 1 u12
a21 a22 1 u22

1 − b12 b12 1 0

−
2u22

u12 − u22

2u12

u12 − u22
0 −1


while it is second order parasitic if

 Ã Ũ

B̃ Ṽ

 =



a11 −
u12(a11 − a22)

u12 + u22
1 u12

u22(a11 − a22)
u12 + u22

a22 1 u22

1 − b12 b12 1 0

−
2u22

u12 − u22

2u12

u12 − u22
0 −1


.

According to [4, 28], together with the above discussed minimal requirements of
accuracy and stability, we enforce our methods to attain order 2 of convergence, by
imposing the condition 

1
2

1

 − B(A + I)e = 0,
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where I is the identity matrix of dimension s. Then, the family of two-stage and two-
value second order methods (2.5), is a class of first order parasitic formulae if their
Butcher tableau depends on

 Ã Ũ

B̃ Ṽ

 =



u22 − u12 + 2a21u12 − 2a12u22 + 2a22u12

2u22
a12 1 u12

a21 a22 1 u22

−
u22

u12 − u22

u12

u12 − u22
1 0

−
2u22

u12 − u22

2u12

u12 − u22
0 −1


,

while it is second order parasitic if

 Ã Ũ

B̃ Ṽ

 =



u12 + u22 − 2a22u12

2u22

u12(2a22 − 1)
2u22

1 u12

1/2 − a22 a22 1 u22

−
u22

u12 − u22

u12

u12 − u22
1 0

−
2u22

u12 − u22

2u12

u12 − u22
0 −1


.

Two examples of methods falling in the aforementioned classes are given by

• GLM1  Ã Ũ

B̃ Ṽ

 =


19/30 −1/3 1 1/2
1/5 1/2 1 −1/2
1/2 1/2 1 0
1 1 0 −1

 .
that is first order parasitic and of order 2;

• GLM2  Ã Ũ

B̃ Ṽ

 =


19/50 3/25 1 1/5
3/10 1/5 1 −1/2
5/7 2/7 1 0

10/7 4/7 0 −1

 .
that is second order parasitic and of order 2.

5. Numerical evidence

We now aim to show the results of selected numerical experiments, in order to
highlight the features of GLM1 and GLM2 methods provided in the previous section,
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Figure 2: Pattern of the Hamiltonian deviation for the multivalue methods GLM0 (top), GLM1 (middle) and
GLM2 (bottom) applied to the simple pendulum, with Hamiltonian function (5.1), in a fixed stepsize environ-
ment of steplength h = 0.05.

when applied to given Hamiltonian problems. Both methods are also compared with
the following multivalue method (see [28])

 Ã Ũ

B̃ Ṽ

 =


19/50 3/25 1 1/5
3/10 1/5 1 −1/2
5/7 2/7 1 0

10/7 4/7 0 −1

 ,
denoted in the remainder as GLM0, whose parasitism has not been bounded in any way.
All the experiments are carried out in a fixed stepsize environment in the time interval
[0,10000], with stepsize specified on the case by case basis.

We first consider the standard mathematical pendulum [24], depending on the Hamil-
tonian function

H(y) =
y2

1

2
− cos(y2), (5.1)

with initial value y(0) = [0 3]T. Figure 2 shows the pattern of the Hamiltonian devia-
tion in time, computed by the multivalue methods GLM0, GLM1 and GLM2 with stepsize
h = 0.05. It is visible that the parasitic components, though growing in each case,
are more bounded the more the parasitic order is higher. Without any parasitic order,
as in the case of GLM0, the corresponding method does not guarantee any long-term
conservation.

We next consider the following modified pendulum [24], depending on the Hamil-
tonian function

H(y) =
y2

1

2
− cos(y2) +

1
5

sin(2y2), (5.2)
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Figure 3: Pattern of the Hamiltonian deviation for the multivalue methods GLM0 (top), GLM1 (middle) and
GLM2 (bottom) applied to the modified pendulum, with Hamiltonian function (5.2), in a fixed stepsize envi-
ronment of steplength h = 0.05.

with initial value y(0) = [2.5 0]T. The pattern of the Hamiltonian deviation, displayed
in Figure 3, has essentially the same behaviour as in the previous case, confirming a
better performance for the higher parasitic order method. Also in this case, the em-
ployed stepsize is h = 0.05.

We finally aim to provide a comparison between GLM1 and GLM2, in order to check
if the second parasitic order method maintains the parasitic components bounded over
longer time intervals than GLM1. To this purpose, we consider a non-reversible problem
[21], depending on the following Hamiltonian function

H(y) =
y3

1

3
−

y1

2
+

y6
2

30
+

y4
2

4
−

y3
2

3
+

1
6
, (5.3)

with initial value y(0) = [1 0]T. From the numerical evidence, depicted in Figure 4, it
is visible that the parasitic components generated by GLM1 blow up more rapidly than
those associated to GLM2.

6. Concluding remarks

We have focused our attention on the ability of multivalue numerical methods to
act as geometric numerical integrators for Hamiltonian problems. In particular, we
have provided conditions on the coefficients of the method in such a way that the cor-
responding methods have more bounded parasitic components, with respect to other
cases known in the literature. The analysis of parasitism as well as the development
of the corresponding methods have been given and their effectiveness confirmed on
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Figure 4: Pattern of the Hamiltonian deviation for the multivalue methods GLM1 (top) and GLM2 (bottom)
applied to the non-reversible problem with Hamiltonian function (5.3), in a fixed stepsize environment of
steplength h = 0.01.

selected Hamiltonian problems. Future developments of this research will be ori-
ented to merging higher order parasitism and symmetry, in order to have large inter-
vals in which parasitic components remain properly bounded, as well as to applying
these ideas to discrezation of other deterministic and stochastic evolutionary operators
[2, 3, 9, 10, 11, 12, 16, 20].
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