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Abstract

The paper introduces improved stochastic ϑ-methods for the numerical integration of
stochastic Volterra integral equations. Such methods, compared to those introduced by
the authors in [14], have better stability properties. This is here made possible by in-
heriting the stability properties of the corresponding methods for systems of stochastic
differential equations. Such a superiority is confirmed by a comparison of the stability
regions.
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1. Introduction

We focus our attention on the discretization of stochastic Volterra integral equations
(SVIEs)

Xt = X0 +

t∫
0

a(t, s, Xs)ds +

t∫
0

b(t, s, Xs)dWs, t ∈ [0,T ], (1.1)

where the functions a and b are assumed to have suitable regularity properties in such
a way that existence and uniqueness of solutions can be admitted [24, 27, 31]. As
regards the right-hand side of (1.1), we assume that the second integral is an Itô integral
taken with respect to the Brownian motion Ws [21]. The problem is relevant in many
applications, especially those concerning stochastic dynamical systems with memory,
such as in economy (general stock, insurance, portfolio, financial markets) [1, 2, 32, 40]
and engineering [37]. Their numerical approximation has raised a significant interest
in the recent literature, through various numerical techniques: for instance, stochastic
collocation [9, 36] and spline interpolation methods [28], wavelets based numerical
schemes [19, 25, 26], Petrov-Galerkin methods [20], direct quadrature methods via
rectangular rule [33, 34]. For most of the methods in the existing literature, the stability
issues were almost unexplored.
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In order to further improve direct quadrature methods, the authors have recently
introduced in [10, 14] the so-called stochastic ϑ-method for (1.1), defined as follows

Yn = Y0 + h
n−1∑
i=0

(ϑa(tn, ti+1,Yi+1) + (1 − ϑ)a(tn, ti,Yi)) +
√

h
n−1∑
i=0

b(tn, ti,Yi)Vi, (1.2)

where Y0 = X0, h = tn+1 − tn, n = 0, 1, . . . ,N and Vi is a standard Gaussian random
variable, i.e., it is N(0, 1)-distributed. Under suitable regularity assumptions on the
coefficients a and b of (1.1), the stochastic ϑ-method (1.2) is convergent of order 1/2,
i.e., there exists a real constant C such that

E[(X(tn) − Yn)] ≤ Ch
1
2 ,

for any fixed tn = nh ∈ [0,T ] and sufficiently small values of h, where E denotes the
expected value. In particular, the stability analysis of the ϑ-method and some proposed
variants has been carried out in [14]. This analysis also showed the stability prop-
erties of existing direct quadrature methods [33, 34] and the improvement gained by
ϑ-methods (1.2).

Here we propose a class of revised ϑ-methods in order to further improve their sta-
bility properties, by inheriting the mean-square stability properties of the corresponding
ϑ-method for stochastic differential equations (SDEs).

The paper is organized as follows: Section 2 provides the stability analysis of the
exact solution to the proposed test equations and recalls the main stability results given
in [14] for (1.2); Section 3 analyzes the connections among ϑ-methods for stochastic
integral and differential equations when applied to the same test equation; in Section 4
we introduce an improved version of (1.2) for SVIEs inheriting the mean-square stabil-
ity properties from the analogous methods for SDEs and provide examples of stability
regions. The effectiveness of the improved methods is discussed in Section 5 through
selected numerical experiments on given nonlinear problems; some conclusions are
given in Section 6.

2. Stability issues

The stability analysis is here provided with respect to the following test equations
introduced in [14]: the basic test equation

Xt = X0 +

∫ t

0
λXs ds +

∫ t

0
µXs dWs, λ, µ ∈ R (2.1)

and the convolution test equation

Xt = X0 +

∫ t

0
(λ + σ(t − s)) Xs ds +

∫ t

0
µXs dWs, λ, µ, σ ∈ R. (2.2)

Such equations derive from the basic and convolution test equations employed in the
stability analysis of numerical methods for deterministic VIEs [3, 15, 16], by including
an additional stochastic term.

Let us now analyze the stability properties of the solutions to these test prob-
lems and their numerical counterpart on the approximate solutions computed by the
ϑ-method (1.2).
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2.1. Stability of the exact solutions to the test problems

The basic test equation (2.1) is the integral representation of the linear test equation
for SDEs [5, 21–23, 29]

dXt = λXtdt + µXtdWt. (2.3)

According to [22], solutions of (2.1) are mean-square stable, i.e.,

lim
t→∞

E|Xt |
2 = 0,

if and only if

Re(λ) +
1
2
|µ|2 < 0.

As regards the convolution test equation (2.2), it can be written as a 2 by 2 linear
system of SDEs, having the form

d

 Xt

Zt

 = A

 Xt

Zt

 dt + B

 Xt

Zt

 dWt, (2.4)

with

A =

[
λ σ
1 0

]
, B =

[
µ 0
0 0

]
and

Zt =

∫ t

0
Xsds.

Therefore, the mean-square stability of solutions to (2.2) is equivalent to the mean-
square stability of solutions to (2.4) , which are now analyzed by applying the results
in [6]. In particular, the condition for the mean-square stability of solutions to (2.4) is
given by

α(S ) < 0,

where
S = I2 ⊗ A + A ⊗ I2 + B ⊗ B, (2.5)

I2 is the 2 by 2 identity matrix and α(S ) is the spectral abscissa of S , i.e.,

α(S ) = max
i

Re(λi),

with λi, i = 1, 2, as the eigenvalues of S . In (2.5), ⊗ is the standard Kronecker tensor
product.

The computations in the right-hand side of (2.5) lead to the block matrix

S =


µ2 + 2λ σ σ 0

1 λ 0 σ

1 0 λ σ
0 1 1 0

 .
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Since, according to [30], the determinant of a block matrix[
S 1 S 2

S 3 S 4

]
.

with S 3S 4 = S 4S 3 can be computed as det(S 1S 4−S 2S 3), the characteristic polynomial
p(s) of S requires the computation of

p(s) = det
([

µ2 + 2λ − s σ
1 λ − s

] [
λ − s σ

1 −s

]
− σI2

)
= −(λ − s)q(s),

where
q(s) = s3 − (3λ + µ2)s2 + (2λ2 + λµ2 − 4σ)s + 2σµ2 + 4σλ.

Then, the solutions of (2.4) are mean-square stable if and only if

Re(λ) < 0, Re(s1) < 0, Re(s2) < 0, Re(s3) < 0,

being s1, s2 and s3 the roots of q(s).

2.2. Stability of the ϑ-method
The method (1.2) is mean-square stable with respect to a given test equation if

lim
n→∞

E
[
Y2

n

]
= 0,

where Yn is the numerical solution obtained by applying the method to the chosen test
equation. The stability analysis of the ϑ-method (1.2) relies on the following results,
proved in [14].

Theorem 2.1. Let x = hλ and y = hµ2. The recurrence relation for the stochastic
ϑ-method (1.2) applied to the basic test equation (2.1) assumes the form

Yn+1 = (α + βVn)Yn, (2.6)

with

α =
1 + x(1 − ϑ)

1 − ϑx
, β =

√
y

1 − ϑx
.

Theorem 2.2. The stochastic ϑ-method (1.2) is mean-square stable with respect to the
basic test equation (2.1) if and only if∣∣∣α2 + β2

∣∣∣ < 1.

Theorem 2.3. Let x = hλ, y = hµ2 and z = h2σ. The recurrence relation for the
stochastic ϑ-method (1.2) applied to the convolution test equations (2.2) assumes the
form

(1 − ϑx)Yn+2 = (µ +
√

yVn+1)Yn+1 − (ν +
√

yVn)Yn, (2.7)

where
µ = 2 + (1 − 2ϑ)x + z, ν = 1 + (1 − ϑ)x

and
(1 − ϑx)Y1 = (1 + (1 − ϑ)x + (1 − ϑ)z +

√
yV0)Y0.
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Theorem 2.4. The stochastic ϑ-methods (1.2) is mean-square stable with respect to
the convolution test equation (2.2) if ρ(K) < 1, with

K =



0 0 1

−
y

(1 − ϑx)2 −
ν

1 − ϑx
µ

1 − ϑx

(ν2 + y)(1 − ϑx) − 2µy
(1 − ϑx)3 −

2νµ
(1 − ϑx)2

µ2 + y
(1 − ϑx)2


.

3. Connection with SDEs

There is a deep connection among test equations for SDEs and for SVIEs. Indeed,
as observed in the previous section, the basic test equation (2.1) is equivalent to the
linear test equation for SDEs (2.3). As concerns the convolution test equation (2.2), it
can be written as the 2 by 2 linear system of SDEs (2.4).

We observe that the recurrence relation (2.6) corresponds to the recurrence relation
of stochastic ϑ-method for SDEs applied to the linear test equation (2.3), see [22].
However, if we apply the ϑ-method for SDEs to the system (2.4), we obtain the scheme Yn+1

Zn+1

 =

 Yn

Zn

 + ϑh

λ σ

1 0

  Yn+1

Zn+1

 + (1 − ϑ)h

λ σ

1 0

  Yn

Zn


+ Vn

√
h

µ 0

0 0

  Yn

Zn


(3.1)

with Z0 = 0, i.e., by setting S n = Zn/h,1 − ϑx −ϑz

−ϑ 1

  Yn+1

S n+1

 =

ν + Vn
√

y (1 − ϑ)z

1 − ϑ 1

  Yn

S n

 , (3.2)

with S 0 = 0, which is distinct from (2.7), due to the presence of the implicit z-term on
the left-hand side of (3.2), which is not present in (2.7). The presence of this additional
term is made more evident in the following result.

Theorem 3.1. Let x = hλ, y = hµ2 and z = h2σ. The recurrence relation (3.2) is
equivalent to

(1 − ϑx − ϑ2z)Yn+2 = (µ̃ +
√

yVn+1)Yn+1 − (ν̃ +
√

yVn)Yn, (3.3)

where
µ̃ = 2 + (1 − 2ϑ)x + 2ϑ(1 − ϑ)z, ν̃ = 1 + (1 − ϑ)x − (1 − ϑ)2z

and
(1 − ϑx − ϑ2z)Y1 = (1 + (1 − ϑ)x + ϑ(1 − ϑ)z +

√
yV0)Y0.
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Figure 1: Comparison between the mean-square stability regions in the (x, y)-plane obtained from the re-
currence relation (3.3) (below the dashed line) and that arising from (2.7) (below the continuous line), with
ϑ = 3/4 and z = −2.

Proof: Equation (3.2) is equivalent to

(1 − ϑx)Yn+1 − ϑzS n+1 = (ν + Vn
√

y)Yn + (1 − ϑ)zS n (3.4)

and
S n+1 − S n = ϑYn+1 + (1 − ϑ)Yn. (3.5)

Writing (5.1) a step forward and subtracting side by side we obtain

(1 − ϑx)Yn+2 = (1 − ϑx + ν + Vn+1
√

y)Yn+1 + ϑz(S n+2 − S n+1)
− (ν + Vn

√
y)Yn + (1 − ϑ)z(S n+1 − S n).

Replacing the difference as in (5.2), the thesis holds true. �
Figure 1 shows, for ϑ = 3/4 and z = −2, a comparison between the mean-square

stability regions obtained from the recurrence relation (3.3) and those arising from
(2.7). As visible from the figure, the recurrence relation (3.3) leads to larger stability
regions. A similar behaviour occurs also for other choices of the parameters.

4. Improved stochastic ϑ-method

As we have highlighted in the previous section, the recurrence relation (3.3) pro-
vides better stability properties with respect to (2.7). Our goal is now revising the
ϑ-method (1.2) in order to develop a family of methods showing (3.3) as recurrence
relation when applied to the convolution test equation (2.2). To achieve the purpose,
we propose a novel quadrature rule for the approximation of the deterministic integral
in (1.1). Indeed, we evaluate (1.1) in tn and split the deterministic integral as follows

Xn = X0 +

n−2∑
i=0

ti+1∫
ti

a(tn, s, Xs)ds +

tn∫
tn−1

a(tn, s, Xs)ds +

tn∫
t0

b(tn, s, Xs)dWs,
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t ∈ [0,T ]. While the ϑ-method relies on the quadrature rule
ti+1∫
ti

a(tn, s, Xs)ds ≈ h (ϑa(tn, ti+1,Yi+1) + (1 − ϑ)a(tn, ti,Yi)) , (4.1)

the revised method depends on the following rule
ti+1∫
ti

a(tn, s, Xs)ds ≈ h (ϑa(tn, ti+1 − ϑh,Yi+1) + (1 − ϑ)a(tn, ti + (1 − ϑ)h,Yi)) . (4.2)

The following result analyzes the accuracy of this novel quadrature rule.

Theorem 4.1. Let f (t, y) and y(t) be sufficiently smooth functions. Then,
ti+1∫
ti

f (s, y(s))ds = h (ϑ f (ti+1 − ϑh, y(ti+1)) + (1 − ϑ) f (ti + (1 − ϑ)h, y(ti)))

+ E(h),

with E(h) = h2
(
( 1

2 − ϑ) d
dt f (t, y(t))|t=ti + (2ϑ − 1) ∂ f

∂t (ti, y(ti))
)

+ O(h3).

Proof: Let g(t) be such that g′(t) = f (t, y(t)). Then,∫ ti+1

ti
f (s, y(s)) = g(ti+1) − g(ti) = hg′(ti) +

h2

2
g′′(ti) + O(h3)

= h f (ti, y(ti)) +
h2

2
d
dt

f (t, y(t))|t=ti + O(h3).

Expanding f (ti+1 − ϑh, y(ti+1)) and f (ti + (1 − ϑ)h, y(ti)) around (ti, y(ti)) we obtain

f (ti+1 − ϑh, y(ti+1)) = f (ti, y(ti)) + (1 − ϑ)h
∂ f
∂t

(ti, y(ti))

+ hy′(ti)
∂ f
∂y

(ti, y(ti)) + O(h2)

= f (ti, y(ti)) + h
d
dt

f (t, y(t))|t=ti − ϑh
∂ f
∂t

(ti, y(ti))

+ O(h2)

and
f (ti + (1 − ϑ)h, y(ti)) = f (ti, y(ti)) + (1 − ϑ)h

∂ f
∂t

f (ti, y(ti)) + O(h2).

Then, the thesis holds. �
Assuming Y0 = X0, the revised method, denoted as improved stochastic ϑ-method,

takes the form

Yn = Y0 + h
n−1∑
i=0

(ϑa(tn, ti+1 − ϑh,Yi+1) + (1 − ϑ)a(tn, ti + (1 − ϑh),Yi))

+
√

h
n−1∑
i=0

b(tn, ti,Yi)Vi.

(4.3)
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Remark 4.1. Under hypothesis of sufficient regularity for the functions a and b, from
above Theorem 4.1 and Theorem 2.1 in [14], it follows that the improved stochastic
ϑ-method (4.3) preserves the order of convergence of the ϑ-method (1.2). Indeed, it is
convergent of order 1/2, i.e. there exist a constant C such that

E|Xn − Yn| ≤ Ch
1
2 .

We observe that the recurrence relation of the improved method (4.3) with respect
to the basic test equation (2.1) is the same as the ϑ-method (1.2). Indeed, the quadrature
formulae (4.1) and (4.2) coincide when a(t, s, y) = λy, with constant λ.

As regards the convolution test equation (2.2), the following result provides the
expression of the recurrence relation for the improved stochastic ϑ-method (4.3).

Theorem 4.2. Let x = hλ, y = hµ2 and z = h2σ. The recurrence relation for the im-
proved stochastic ϑ-method (4.3) applied to the convolution test equation (2.2) assumes
the form (3.3).

Proof: Applying the improved ϑ-method to the convolution test equation (2.2) and
collecting the coefficients of Yn leads to

(1 − ϑx − ϑ2z)Yn = Y0 +

n−2∑
i=0

[
ϑx + ϑz(n − i − 1) + ϑ2z

]
Yi+1

+

n−1∑
i=0

[
(1 − ϑ)x + (1 − ϑ)z(n − i) − (1 − ϑ)2z +

√
yVi

]
Yi.

(4.4)

Writing above formula one step forward and subtracting (4.4), we obtain

(1 − ϑx − ϑ2z)Yn+1 =
[
ν̃ +
√

yVn + (1 − ϑ)z
]
Yn +

n−1∑
i=0

[ϑzYi+1 + (1 − ϑz)Yi].

Writing the analogous formula for Yn+2 and subtracting side by side leads to the thesis.
�

The following lemma highlights a useful property to derive the stability matrix of
the improved ϑ-method (4.3).

Lemma 4.1. For the improved ϑ-method (4.3) applied to the test equation (2.2), the
following equality holds true:

(1 − ϑx − ϑ2z)E[
√

yVnYnYn+1] = yE[Y2
n ]. (4.5)

Proof: From the recurrence relation (3.3) referred to the point tn+1

(1 − ϑx − ϑ2z)Yn+1 = (µ̃ +
√

yVn)Yn − (ν̃ +
√

yVn−1)Yn−1,

multiplying both sides by
√

yVnYn and passing to the expectations, we obtain

(1 − ϑx − ϑ2z)E(
√

yVnYnYn+1) = E(Vn)E
[
µ̃
√

yY2
n − ν̃

√
yYnYn−1 − yVn−1YnYn−1

]
+ E(V2

n )E[yY2
n ]

and the thesis immediately follows. �
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Theorem 4.3. The improved stochastic ϑ-method (4.3) is mean-square stable with re-
spect to the convolution test equation (2.2) if ρ(K̃) < 1, with

K̃ =



0 0 1

−
y

(1 − ϑx − ϑ2z)2 −
ν̃

1 − ϑx − ϑ2z
µ̃

1 − ϑx − ϑ2z

(ν̃2 + y)(1 − ϑx − ϑ2z) − 2µ̃y
(1 − ϑx − ϑ2z)3 −

2ν̃µ̃
(1 − ϑx − ϑ2z)2

µ̃2 + y
(1 − ϑx − ϑ2z)2


.

(4.6)

Proof: We obtain the thesis by proving that E[Y2
n+1]

E[Yn+1Yn+2]
E[Y2

n+2]

 = K̃

 E[Y2
n ]

E[YnYn+1]
E[Y2

n+1]

 ,
with K̃ defined in (4.6). Multiplying (3.3) by Yn+1 and passing to the expectations leads
to

(1 − ϑx − ϑ2z)E[Yn+1Yn+2] = µ̃E[Y2
n+1] − ν̃E[YnYn+1] − E[

√
yVnYnYn+1].

By applying (4.5), we obtain

(1 − ϑx − ϑ2z)E[Yn+1Yn+2] = −
y

1 − ϑx − ϑ2z
E[Y2

n ] − ν̃E[YnYn+1] + µ̃E[Y2
n+1],

that provides the second row of the matrix K̃.
By squaring (3.3) and passing to the expectations, we obtain

(1 − ϑx − ϑ2z)2E[Y2
n+2] = (µ̃2 + y)E[Y2

n+1] + (ν̃2 + y)E[Y2
n ] − 2µ̃ν̃E[YnYn+1]

− 2µ̃E[
√

yVnYnYn+1].

By applying (4.5), we obtain

(1 − ϑx − ϑ2z)2E[Y2
n+2] = (ν̃2 + y −

2µ̃y
1 − ϑx − ϑ2z

)E[Y2
n ] − 2µ̃ν̃E[YnYn+1]

+ (µ̃2 + y)E[Y2
n+1],

that provides the third row of the matrix K̃. �
Figures 2 and 3 show the mean-square stability regions with respect to the convo-

lution test equation (2.2) in the (x, y)-plane of the ϑ-method (1.2) and the improved
ϑ-method (4.3), for different values of ϑ and z. We observe that, the more ϑ and |z|
increase, the more the stability region of the improved ϑ-method (4.3) is larger, as it is
particularly visible in Figures 4 and 5.

The evidence obtained by applying both methods (1.2) and (4.3) is displayed in
Figure 6, confirming the theoretical results. The figure shows the mean-square of the
numerical solution over 1000 realizations of problem (2.2), with λ = −2, µ = 2

√
3,

σ = −8. In correspondence of h = 1/2, we obtain the point (−1, 6,−2) belonging to
the stability region of (4.3) and outside that of (1.2), for ϑ = 1.
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Figure 2: Mean-square stability regions with respect to the convolution test equation (2.2) in the (x, y)-plane
of the ϑ-method (1.2) for different values of ϑ and z = 0 (solid line), z = −1 (dashed line) and z = −2
(dashed-dotted line).
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Figure 3: Mean-square stability regions with respect to the convolution test equation (2.2) in the (x, y)-plane
of the improved ϑ-method (4.3) for different values of ϑ and z = 0 (solid line), z = −1 (dashed line) and
z = −2 (dashed-dotted line).
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Figure 6: Mean-square of the numerical solution of problem (2.2), with λ = −2, µ = 2
√

3, σ = −8 and
stepsize h = 1/2, obtained by applying the ϑ-method (solid line) and the improved ϑ-method (dashed line)
for ϑ = 1.

5. Numerical evidence on nonlinear problems

This section is focused on providing the numerical evidence originating from the
application of the improved methods introduced in Section 4 on a selection of nonlinear
problems. Specifically, we consider

• the nonlinear SVIE [25]:

Xt =
1
10
−

1
800

t∫
0

tanh(Xs) sech2(Xs)ds +
1

20

t∫
0

sech(Xs)dWs, (5.1)

for t ∈ [0, 0.55], whose exact solution is

X(t) = arcsinh
(

1
20

Wt + sinh
(

1
10

))
;

• the nonlinear problem [35, 38, 39]

Xt = 1 +

t∫
0

e−(t−s) sin(Xs)ds +

t∫
0

e−(t−s) cos(Xs)dWs, (5.2)

for t ∈ [0, 1].

The results, contained in Figures 7 and 8 confirm the effectiveness of improved θ-
methods when applied to nonlinear problems. In particular, the expected order of con-
vergence 1/2 is confirmed. In the case of Problem (5.1), the error is computed as the
expected gap between the exact solution on the numerical solution in the endpoint of
the integration interval, i.e. E |X(T ) − XN |. As regards Problem (5.2), the unknown
exact solution is replaced by a reference solution computed with a small enough step-
sizes.
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Figure 7: Sampled expected value of the error in the endpoint of the integration interval (solid line), for Prob-
lem (5.1). The dashed line gives the slope for order 1/2. The sampling is computed over 1000 trajectories.
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Figure 8: Sampled expected value of the error in the endpoint of the integration interval (solid line), for Prob-
lem (5.2). The dashed line gives the slope for order 1/2. The sampling is computed over 1000 trajectories.
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6. Conclusions

We have introduced the family of improved ϑ-methods (4.3) for the numerical solu-
tion of SVIEs (1.1). The improvement lies in achieving better stability properties with
respect to the convolution test problem (2.2), namely the improved method applied to
(2.2) provides the same recurrence relation of the ϑ-method for SDEs, applied to the
equivalent system of SDEs (2.4). The improved method is obtained by the quadrature
formula (4.2) for the approximation of the deterministic integral in (1.1). A confir-
mation of the improvement in the stability properties has been provided by depicting
some selected stability regions. Further developments of the research regard the gen-
eralization of the idea to higher order methods relying on more accurate quadrature
formulae, as well as on its application to other stochastic evolutionary operators with
memory, such as the stochastic perturbation of fractional differential equations [7, 11].
Moreover, following the lines drawn in the context of SDEs, a further investigation will
also be focused on the analysis of nonlinear stability properties [4], also in perspective
of a long-term analysis of nonlinear stochastic oscillatory problems [8, 13, 17, 18] and
stochastic Hamiltonian problems [12].
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