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Abstract

The paper is focused on the nonlinear stability analysis of stochastic θ-methods. In particular, we consider
nonlinear stochastic differential equations such that the mean-square deviation between two solutions expo-
nentially decays, i.e., a mean-square contractive behaviour is visible along the stochastic dynamics. We aim
to make the same property visible also along the numerical dynamics generated by stochastic θ-methods:
this issue is translated into sharp stepsize restrictions depending on parameters of the problem, here accu-
rately estimated. A selection of numerical tests confirming the effectiveness of the analysis and its sharpness
is also provided.

Keywords: Stochastic differential equations, stochastic theta-methods, exponential mean-square
contractivity.

1. Introduction

We consider a nonlinear system of stochastic differential equations (SDEs) of Itô type, assuming the
form dX(t) = f (X(t))dt + g(X(t))dW(t), t ∈ [0,T ],

X(0) = X0,
(1.1)

where f : Rn → Rn, g : Rn → Rn×m and W(t) is an m-dimensional Wiener process. For theoretical results on
the existence and uniqueness of solutions to (1.1), we refer to the monograph [19]. Moreover, in the sequel,
we assume that (1.1) is commutative.

We focus our attention on providing a nonlinear stability analysis to the general classes of stochastic
θ-methods for (1.1) that, with reference to the discretized domain I∆t = {tn = n∆T, n = 0, 1, . . . ,N, N =

T/∆t}, assume the following forms:

Xn+1 = Xn + (1 − θ)∆t f (Xn) + θ∆t f (Xn+1) + g(Xn)∆Wn, (1.2)

Xn+1 = Xn + (1 − θ)∆t f (Xn) + θ∆t f (Xn+1) +

m∑
j=1

g j(Xn)∆W j
n (1.3)

+
1
2

m∑
j=1

L jg j(Xn)((∆W j
n)2 − ∆t) +

1
2

m∑
j1, j2=1
j1, j2

L j1 g j2 (Xn)∆W j1
n ∆W j2

n ,
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where θ ∈ [0, 1], Xn is the approximate value for X(tn), the discretized Wiener increment ∆Wn is distributed
as a gaussian random variable with zero mean and variance ∆t, the operator L j is defined as

L j =

n∑
k=1

gk, j ∂

∂xk , j = 1, ...,m,

where g j(Xn) is the j−th column of the matrix g(Xn) and ∆W j
n the j−th element of vector ∆Wn. We refer to

(1.2) as θ-Maruyama method and to (1.3) as θ-Milstein method in its componentwise form. We note that, if
m = 1, (1.3) reduces to the form

Xn+1 = Xn + (1 − θ)∆t f (Xn) + θ∆t f (Xn+1) + g(Xn)∆Wn

+
1
2

g(Xn)g′(Xn)(∆W2
n − ∆t).

The stability analysis of ϑ-methods has been given in [2, 13] with respect to linear test problems, both
scalar and vector-valued, while conservation properties of these methods when applied to stochastic oscilla-
tors has been investigated in [5, 10]. The investigation led to conditions according to which the mean-square
and asymptotic behaviours of the solutions to such linear problems are inherited also along the discretized
counterpart provided by above ϑ-methods.

This paper is instead focused on providing a nonlinear stability analysis for ϑ-methods (1.2) and (1.3),
with the aim to numerically inherit relevant properties of nonlinear problems along their discretizations. The
discussion is motivated by some contributions on the so-called exponential stability properties of nonlinear
SDEs, contained in [15, 16] and here briefly summarized in the following result.

Theorem 1.1. For a given nonlinear SDE (1.1), let us assume the following properties for the drift f and
the diffusion g, by denoting with | · | both the Euclidean norm in Rn and the trace (or Frobenius) norm in
Rn×m:

(i) f , g ∈ C1(Rn);
(ii) f satisfies a one-side Lipschitz condition, i.e. there exists µ ∈ R such that

< x − y, f (x) − f (y) >≤ µ |x − y|2 , ∀x, y ∈ Rn; (1.4)

(iii) g is a globally Lipschitz function, i.e. there exists L > 0 such that

|g(x) − g(y)|2 ≤ L |x − y|2 ∀x, y ∈ Rn. (1.5)

Then, any two solutions X(t) and Y(t) of (1.1), with E |X0|
2 < ∞ and E |Y0|

2 < ∞, satisfy

E |X(t) − Y(t)|2 ≤ E |X0 − Y0|
2 eαt, (1.6)

where α = 2µ + L.

The inequality (1.6) is denoted as exponential mean-square stability inequality for (1.1). An eventual
negative sign on the parameter α appearing in the stability inequality (1.6) allows to infer an exponential
decay of the mean-square deviation between two solutions of a given SDE (1.1). Motivated by an ana-
log property of deterministic differential equations (see, for instance, [12] and references therein) we then
introduce the following definition.
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Definition 1.1. A nonlinear SDE (1.1) whose solutions satisfy the exponential stability inequality (1.6) with
α < 0 is said to generate exponential mean-square contractive solutions.

We observe that, when g is identically zero in (1.1), Definition 1.1 recovers the deterministic condition
µ < 0 that guarantees the contractive behaviour of the solutions to the corresponding deterministic problem.
The discretization of deterministic differential equations with one-sided Lipschitz vector field with nega-
tive one-sided Lipschitz constant led to the notion of G-stability of numerical methods, introduced by G.
Dahlquist in [8].

Problems with one-sided Lipschitz vector fields are widely investigated in the literature both in the
deterministic and stochastic settings. Their main areas of application are finance and economics, neural
networks, population dynamics, systems synchronization, stochastic differential equations with jumps, dy-
namical systems, delay ordinary (and stochastic) differential equations, see [3, 7, 18, 20, 22, 25, 26, 27, 31]
and references therein.

Here we aim to provide the numerical counterpart of exponential mean-square contractivity, that is cer-
tainly a relevant property to be inherited also by the discretized problem, since it ensures a long-term damp-
ing of the error along the numerical solutions. In particular, we aim to prove that the stability inequality
(1.6) is translated into a restriction on the stepsize employed in the numerical discretization, here sharply
estimated. The provided inequalities characterizing the numerical methods depend on parameters that are
also accurately estimated, in order to make the corresponding restrictions on the stepsize fully computable.

In line with our research, the literature is rich in contributions analyzing structure-preservation problem
in other contests, see for example [1, 4, 6, 9, 21, 23, 28, 30]. In particular, in [9], a nonlinear stability analysis
for stochastic Runge-Kutta methods has been addressed, leading to a generalization of the notion of algebraic
stability, well-known in the deterministic setting. However, as proved in [9], the family of stochastic Runge-
Kutta methods generally generate a spurious term that may corrupt the accurate conservation of the decay
visible in problems generating mean-square contractive solutions. Here, we look for methods free from
spurious terms, making this kind of decay visible provided that some restrictions on the stepsize are satisfied.
These restrictions are here sharply computed.

The paper is organized as follows: Section 2 briefly recalls the main results regarding the linear stability
properties of stochastic θ-methods; Section 3 provides exponential mean-square stability inequalities for
the θ-methods (1.2) and (1.3), giving the numerical counterpart of (1.6); in Section 4 we give a notion of
mean-square contractivity for the numerical solutions computed by (1.2) and (1.3), which is here translated
into stepsize restrictions depending on parameters which are here estimated; Section 5 shows the numerical
evidence on a selection of nonlinear problems (1.1), confirming the sharpness of the provided estimates;
some conclusions are presented in Section 6.

2. Linear stability of stochastic θ-methods

It is worth recalling the main results regarding the linear stability properties of stochastic θ-methods (1.2)
and (1.3), according to [2, 13]. Indeed, the stepsize restrictions we present in the next sections in order to
ensure the conservation of the exponential mean-square contractivity along numerical solutions clearly have
to be compatible with the linear stability properties of the corresponding method.

The linear stability analysis for the discretization of SDEs (1.1), as well known for instance from [13,
14, 24], is performed with respect to the linear scalar problemdX(t) = λX(t)dt + µX(t)dW(t), t ∈ [0,T ],

X(0) = X0,
(2.7)

with λ, µ ∈ C. The following definition occurs (see, for instance [13, 14]).
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Definition 2.1. The solution X(t) of (2.7) is mean-square stable if

lim
t→∞

E |X(t)|2 = 0.

As proved in [13, 14, 24], the solution X(t) to (2.7) is mean-square stable if and only if

Re(λ) +
1
2
|µ|2 < 0. (2.8)

The numerical counterpart of above arguments is provided in the following definition [13, 14, 24].

Definition 2.2. The numerical solution Xn of (2.7) is mean-square stable if

lim
n→∞

E |Xn|
2 = 0.

Correspondingly, according to [13], the stochastic θ-Maruyama method (1.2) is mean-square stable if and
only if

|1 + (1 − θ)∆tλ|2 + ∆t |µ|2

|1 − θ∆tλ|2
< 1. (2.9)

Let us provide an analogous condition for the θ-Milstein method (1.3). To this purpose, we apply the
method (1.3) to (2.7), obtaining

Xn+1 =

[1 − (1 − θ)∆tλ + µ + 1
2µ

2(∆W2
n − ∆t)

1 − θ∆tλ

]
Xn. (2.10)

Squaring and passing to the expectation leads to

E|Xn+1|
2 =

[
β2 +

βµ2∆t
1 − θ∆tλ

+
µ2∆t + 3

4µ
4∆t2

(1 − θ∆tλ)2

]
E|Xn|

2,

with

β =
1 + (1 − θ)∆tλ − 1

2µ
2∆t

1 − θ∆tλ
.

Therefore, according to Definition 2.2, the θ-Milstein method (1.3) is mean-square stable if and only if∣∣∣∣∣β2 +
βµ2∆t

1 − θ∆tλ
+
µ2∆t + 3

4µ
4∆t2

(1 − θ∆tλ)2

∣∣∣∣∣ < 1. (2.11)

In the remainder, we check that all the values of θ and ∆t leading to an exponential mean-square con-
tractive behaviour of the numerical solution to (1.1) computed by (1.2) or (1.3) fulfill the constraints given
by (2.9) and (2.11), respectively.

3. Exponential mean-square stability inequalities

We aim to provide the numerical counterpart of (1.6), i.e., we develop an analogous exponential mean-
square stability inequality for the numerical discretization of (1.1) with the θ-methods (1.2) and (1.3), under
the assumptions of Theorem 1.1 . The following technical lemma (see [16]) is useful in the remainder.

Lemma 3.1. Under the assumptions (i)–(iii) given in Theorem 1.1, for any h > 0 and b1, b2 ∈ Rn and , there
exist unique a1, a2 ∈ Rn solutions of the implicit equations

ai − h f (ai) = bi, i = 1, 2,

satisfying the inequality
(1 − 2hµ) |a1 − a2|

2 ≤ |b1 − b2|
2 .
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3.1. Exponential mean-square stability of θ-Maruyama methods

The following result provides the counterpart of (1.6) for the numerical discretization of (1.1) with the
θ-Maruyama method (1.2).

Theorem 3.1. Under the assumptions (i)–(iii) given in Theorem 1.1, any two numerical solutions Xn and Yn,
n ≥ 0, computed by applying the θ-Maruyama method (1.2) to (1.1) with initial values such that E |X0|

2 < ∞
and E |Y0|

2 < ∞, satisfy the inequality

E |Xn − Yn|
2 ≤ E |X0 − Y0|

2 eν(θ,∆t)tn , (3.12)

where
ν(θ,∆t) =

1
∆t

ln β(θ,∆t) (3.13)

and

β(θ,∆t) = 1 +
α + (1 − θ)2M∆t

1 − 2θµ∆t
∆t, (3.14)

with
M = sup

t∈[0,T ]
E| f ′(X(t))|2. (3.15)

Proof: Since Xn+1 and Yn+1 satisfy the implicit equations

Xn+1 = Xn + (1 − θ)∆t f (Xn) + θ∆t f (Xn+1) + g(Xn)∆Wn,

Yn+1 = Yn + (1 − θ)∆t f (Yn) + θ∆t f (Yn+1) + g(Yn)∆Wn,

according to Lemma 3.1 we obtain

(1 − 2θµ∆t)|Xn+1 − Yn+1|
2 ≤

∣∣∣(Xn − Yn) + (1 − θ)∆t∆ fn + ∆gn∆Wn

∣∣∣2, (3.16)

where ∆ fn = f (Xn) − f (Yn) and ∆gn = g(Xn) − g(Yn). The right-hand side of (3.16) is then bounded by

|Xn − Yn|
2 + (1 − θ)2∆t2|∆ fn|2 + |∆gn∆Wn|

2 + 2(1 − θ)∆t < Xn − Yn,∆ fn >

+ 2 < Xn − Yn,∆gn∆Wn > +2(1 − θ)∆t < ∆ fn,∆gn∆Wn > .

By applying the assumptions (i)–(iii) of Theorem 1.1, we obtain

(1 − 2θµ∆t)|Xn+1 − Yn+1|
2 ≤ (1 + L|∆Wn|

2 + 2(1 − θ)∆tµ)|Xn − Yn|
2

+ (1 − θ)2∆t2|∆ fn|2 + 2 < Xn − Yn,∆gn∆Wn >

+ 2(1 − θ)∆t < ∆ fn,∆gn∆Wn > .

Passing to the expectations leads to

E|Xn+1 − Yn+1|
2 ≤ β(θ,∆t)E |Xn − Yn|

2 .

Since
E|Xn+1 − Yn+1|

2 ≤ β(θ,∆t)n+1E|X0 − Y0|
2,

the thesis holds true.
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�

According to Theorem 3.1, the θ-Maruyama method (1.2) satisfies the exponential mean-square stability
inequality (3.12) with argument ν(θ,∆t) of the exponential given by (3.13), when applied to the SDE (1.1)
satisfying the inequality (1.6) with parameter α = 2µ + L. Let us now provide an estimate for the error
|ν(θ,∆t) − α|.

Theorem 3.2. Under the same assumptions of Theorem 3.1, for any fixed value of θ ∈ [0, 1], we have

|ν(θ,∆t) − α| = O(∆t). (3.17)

Proof: By expanding ν(θ,∆t) in (3.13) in power series of ∆t, we obtain

ν(θ,∆t) = α +

(
2αµθ + (1 − θ)2M −

α2

2

)
∆t + O(∆t2),

leading to the thesis.

�

3.2. Exponential mean-square stability of θ-Milstein methods
The following result is focused on the counterpart of (1.6) for the numerical discretization of (1.1) with

the θ-Milstein method (1.3).

Theorem 3.3. Under the assumptions (i)–(iii) given in Theorem 1.1, any two numerical solutions Xn and Yn,
n ≥ 0, computed by applying the θ-Milstein method (1.3) to (1.1) with initial values such that E |X0|

2 < ∞
and E |Y0|

2 < ∞, satisfy the inequality

E |Xn − Yn|
2 ≤ E |X0 − Y0|

2 eε(θ,∆t)tn , (3.18)

where
ε(θ,∆t) =

1
∆t

ln γ(θ,∆t) (3.19)

and

γ(θ,∆t) = β(θ,∆t) +
3M̃∆t2

4(1 − 2θµ∆t)
, (3.20)

with M̃ defined as

M̃ =

m∑
i, j=1

n∑
k,l=1

M̃k,l
i, j , (3.21)

where

M̃k,l
i, j = sup

t∈[0,T ]

E
(
hk,l

i, j(X(t),Y(t))
)

E|X(t) − Y(t)|2
,

being

hk,l
i, j(X(t),Y(t)) = < gk,i(X(t))

∂

∂xk g j(X(t)) − gk,i(Y(t))
∂

∂yk g j(Y(t)),

gl,i(X(t))
∂

∂xl g j(X(t)) − gl,i(Y(t))
∂

∂yl g j(Y(t)) >,

i, j = 1, . . . ,m, k, l = 1, . . . , n.
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Proof: First, we show the proof for m = 1. Since Xn+1 and Yn+1 satisfy the implicit equations

Xn+1 = Xn + (1 − θ)∆t f (Xn) + θ∆t f (Xn+1) + g(Xn)∆Wn +
1
2

h(Xn)(∆W2
n − ∆t),

Yn+1 = Yn + (1 − θ)∆t f (Yn) + θ∆t f (Yn+1) + g(Yn)∆Wn +
1
2

h(Yn)(∆W2
n − ∆t),

where h(x) = g(x)g′(g), Lemma 3.1 leads to

(1 − 2θµ∆t)|Xn+1 − Yn+1|
2 ≤

∣∣∣∣∣(Xn − Yn) + (1 − θ)∆t∆ fn + ∆gn∆Wn

+
1
2

∆hn(∆W2
n − ∆t)

∣∣∣∣∣2 .
By proceeding as in Theorem 3.1, the thesis holds true for m = 1. The general case m > 1 holds true as
direct generalization of the previous one.

�

According to Theorem 3.3, the θ-Milstein method (1.3) satisfies the exponential mean-square stability
inequality (3.12) with argument ε(θ,∆t) of the exponential given by (3.19), when applied to the SDE (1.1)
satisfying the inequality (1.6) with parameter α = 2µ + L. As in the previous section, let us now provide an
estimate for the error |ε(θ,∆t) − α|.

Theorem 3.4. Under the same assumptions of Theorem 3.3, for any fixed value of θ ∈ [0, 1], we have

|ε(θ,∆t) − α| = O(∆t). (3.22)

Proof: By expanding ε(θ,∆t) in (3.19) in power series of ∆t, we obtain

ε(θ,∆t) = α +

2αµθ + (1 − θ)2M −
α2

2
+

3M̃
4

 ∆t + O(∆t2),

leading to the thesis.

�

4. Mean-square contractivity

According to Definition 1.1, the nonlinear stochastic system (1.1) generates mean-square contractive
solutions if α < 0 in (1.6). A natural counterpart of this definition for a stochastic θ-method is now given as
follows.

Definition 4.1. Consider a nonlinear stochastic differential equation (1.1) satisfying assumptions (i)–(iii)
given in Theorem 1.1 and let Xn and Yn, n ≥ 0, be two numerical solutions of (1.1) computed by the θ-
methods (1.2) or (1.3). Then, the applied method is said to be generate mean-square contractive numerical
solutions in a region R ⊆ R+ if, for a fixed θ ∈ [0, 1],

ν(θ,∆t) < 0, ∀∆t ∈ R
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for (1.2), being ν(θ,∆t) the parameter in (3.12), or

ε(θ,∆t) < 0, ∀∆t ∈ R

for (1.3), where ε(θ,∆t) is the parameter in (3.18).

Definition 4.2. A stochastic θ-method (1.2) or (1.3) is said unconditionally mean-square contractive if, for
a given θ ∈ [0, 1], R = R+.

As regards the θ-Maruyama method (1.2), according to Definition 4.1, mean-square contractive numeri-
cal solutions are generated if

0 < β(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =


(
0,

|α|

(1 − θ)2M

)
, θ < 1,

R+, θ = 1.
(4.23)

As a consequence, we have proved the following result for the θ-Maruyama method with θ = 1, i.e., for
the implicit Euler-Maruyama method

Xn+1 = Xn + ∆t f (Xn+1) + g(Xn)∆Wn. (4.24)

Theorem 4.1. For a given a nonlinear problem (1.1) satisfying the assumptions (i)–(iii) given in Theorem
1.1, the implicit Euler-Maruyama method (4.24) is unconditionally mean-square contractive.

In other terms, the stochastic perturbation (4.24) of the deterministic implicit Euler method preserves its
unconditional contractivity property [12].

In analogous way, as regards the θ-Milstein method (1.3), Definition 4.1 leads to

0 < γ(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =



(
0,

4|α|

4(1 − θ)2M + 3M̃

)
, θ < 1,

(
0,

4|α|

3M̃

)
, θ = 1.

(4.25)

The computation of the regions R in (4.23) and (4.25) relies on the knowledge of the Lipschitz constant
L to the diffusion of (1.1), the one-sided Lipschitz constant µ of the drift, the constants M and M̃ defined
by (3.15) and (3.21), respectively. The estimation of the parameters L and µ is typically required in global
optimization algorithms, therefore we adopt a similar estimation strategy (see [29]) to make the region R
fully computable.
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Algorithm 1: estimation of the Lipschitz constant L

Step 1. We perform P paths of the θ-methods (1.2) or (1.3) and denote by Xi, j
n the i-th component of the

j-th realization of the solution Xn, i = 1, 2, . . . , d, j = 1, 2, . . . , P. Then, we compute

ai = min
j=1,...,P

min
tn∈I∆t

Xi, j
n , bi = max

j=1,...,P
max
tn∈I∆t

Xi, j
n , (4.26)

i = 1, 2, . . . , d.

Step 2. We generate Q couples of vectors

xk =
[
x1

k , x2
k , . . . , xd

k

]T
, yk =

[
y1

k , y2
k , . . . , yd

k

]T
,

with k = 1, 2, . . .Q, such that (xi
k, y

i
k) is uniformly distributed in [ai, bi] × [ai, bi], i = 1, 2, . . . , d.

Step 3. We compute

sk =
|g(xk) − g(yk)|2

|xk − yk |
2 , k = 1, 2, . . . ,Q.

Step 4. We assume as estimate of L the value of max{s1, ..., sQ}.

For a detailed accuracy analysis of the algorithm, we refer to [29]. An analogous algorithm for the
estimate of the one-sided Lipschitz constant µ is obtained in a similar way.

Algorithm 2: estimation of the one-sided Lipschitz constant µ

Step 1. See Step 1 of Algorithm 1.

Step 2. See Step 2 of Algorithm 1.

Step 3. We compute

sk =
< xk − yk, f (xk) − f (yk) >

|xk − yk |
2 , k = 1, 2, . . . ,Q.

Step 4. We assume as estimate of µ the value of min{s1, ..., sQ}.

Clearly the estimates of M in (3.15) and M̃ in (3.21) is straightforward from their definitions, once P
realizations of the numerical solution are computed.
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5. Numerical experiments

In this section, we present the numerical evidence arising from the application of the θ-Maruyama (1.2)
and the θ-Milstein (1.3) methods to a selection of nonlinear problems generating mean-square contractive
solutions according to Definition 1.1. We confirm the sharpness of the estimates provided in Section 4 for
the stepsize ∆t in order to generate mean-square contractive numerical solutions according to Definition 4.1.
The expected values computed in the remainder of this section always rely on the numerical solutions over
P = 2000 paths.

Problem 1 (stochastic Ginzburg-Landau equation). The Ginzburg-Landau equation plays a relevant role
in the theory of superconductivity, in particular to describe a phase transition (see [11, 17]). Its stochastic
counterpart with multiplicative noise has been provided in [19]. Specifically, we consider the scalar SDE
(1.1) with

f (X(t)) = σX(t) − τX(t)3, g(X(t)) = ρX(t),

being σ, τ, ρ ∈ R. In our experiments we consider σ = −4 , τ = ρ = 1, as in [15]. For this problem the
constants L and µ are given by L = 1 and µ = −4, so α = −7. Then, according to Theorem 1.1, this problem
generates mean-square contractive solutions. Moreover, the values of M in (3.15) and M̃ in (3.21) are 16
and 1, respectively. We consider the following A-stable methods [13]:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with θ = 1/2. In this case
(4.23) yields

R =

(
0,

7
4

)
.

The corresponding estimate on ∆t is confirmed in Figure 1, where the time-evolution of the mean-
square deviation E|Xn − Yn|

2 in logarithmic scale is depicted for various values of ∆t. It is visible that,
the more ∆t decreases, the more the numerical slope ν( 1

2 ,∆t) in (3.12) tends to the exact slope α in
(1.6). For values of ∆t > 7

4 , the mean-square deviation does not exponentially decay;

• the stochastic implicit Euler (4.24), that is unconditionally mean-square contractive, according to
Theorem 4.1. The behaviour depicted in Figure 2 confirms the theoretical result on the unconditional
contractivity of (4.24). Indeed, the mean-square deviation is always exponentially decaying and its
slope tends to the exact slope as ∆t decreases;

• the θ-Milstein method (1.3) with θ = 1/2. For this method, (4.25) leads to

R =

(
0,

14
9

)
.

Also in this case, as shown in Figure 3, the theoretical estimate of ∆t is confirmed by the numerical
evidence. As already proved in Theorem 3.4, the numerical slope ε( 1

2 ,∆t) in (3.18) tends to the exact
slope α in (1.6). For values of ∆t > 14

9 , the mean-square deviation does not exponentially decay.

Problem 2. Let us consider the scalar nonlinear SDE (1.1) with

f (X(t)) = −5X(t), g(X(t)) = sin(X(t))
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Figure 1: Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied to Problem 1.
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Figure 2: Mean-square deviations over 2000 paths for the stochastic implicit Euler method (4.24), applied to Problem 1.
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Figure 3: Mean-square deviations over 2000 paths for the θ-Milstein method (1.3) with θ = 1/2, applied to Problem 1.

and initial data X0 = 1 and Y0 = 0. For this problem the constants L and µ are given by L = 1 and µ = −5,
so α = −9. Then, according to Theorem 1.1, the problem generates mean-square contractive solutions.
Moreover, the values of M in (3.15) and M̃ in (3.21) are 25 and 1, respectively. We consider the following
A-stable methods:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with θ = 1/2. In this case
(4.23) yields

R =

(
0,

36
25

)
.

The corresponding estimate on ∆t is confirmed in Figure 4, as well as the convergence of the numerical
slope ν( 1

2 ,∆t) in (3.12) to the exact slope α in (1.6). Also in this case, for values of ∆t > 36
25 , the mean-

square deviation does not exponentially decay;

• the θ-Maruyama methods (1.2) with θ = 13/20. In this case, according to (4.23), we have

R =

(
0,

144
49

)
.

Also in this case the numerical evidence reported in Figure 5 confirms the theoretical results;

• the θ-Milstein method (1.3) with θ = 13/20. For this method, (4.25) leads to

R =

(
0,

48
19

)
.

The numerical evidence, confirming the theoretical results, is shown in Figure 6.
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Figure 4: Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied to Problem 2.
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Figure 5: Mean-square deviations over 2000 paths for the θ-Maruyama method with θ = 13/20 applied to Problem 2.
.
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Figure 6: Mean-square deviations over 2000 paths for the θ-Milstein method (1.3) with θ = 13/20, applied to Problem 2.

Problem 3. We finally consider the nonlinear system of SDEs with

f (X(t)) = −4

 sin(X1(t))

sin(X2(t))

 , g(X(t)) =
1
7


X1(t)

3
2

X2(t)

5
2

X1(t) −
1
2

X2(t)

 .
and initial data X0 = [1 1]T and Y0 = [0 0]T. For this problem the constants L and µ are estimated
as L = 0.148 and µ = −3.56, so α ≈ −7.5 and, as a consequence, the problem generates mean-square
contractive solutions. Moreover, the value of M in (3.15) is equal to 16. Also for this problem, we consider
the following A-stable methods:

• the stochastic trapezoidal methods, i.e., the θ-Maruyama methods (1.2) with θ = 1/2. In this case
(4.23) yields

R = (0, 1.1875) .

This estimate is confirmed in Figure 7, as well as the exponential decay of the mean-square deviation
with slope tending to the exact slope as ∆t decreases;

• the stochastic implicit Euler (4.24), whose unconditional mean-square contractivity is confirmed by
the numerical evidence reported in Figure 8.

6. Conclusions

In this paper we have analyzed featured nonlinear stability properties of the stochastic θ-Maruyama
(1.2) and θ-Milstein (1.3) methods for nonlinear SDEs (1.1) satisfying the assumptions of Theorem 1.1,
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Figure 7: Mean-square deviations over 2000 paths for the stochastic trapezoidal method applied to Problem 3.
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Figure 8: Mean-square deviations over 2000 paths for the stochastic implicit Euler method (4.24), applied to Problem 3.
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hence fulfilling an exponential mean-square stability inequality of type (1.6). According to Definition 1.1,
if the parameter α in (1.6) is negative, the problem is said to generate exponential mean-square contractive
solutions. We have translated this feature of the continuous problem into stepsize restrictions guaranteeing
that the exponential mean-square contractive behaviour is also visible numerically. Such restrictions depend
on characteristic parameters of the problem (e.g., the Lipschitz constant of the diffusion term and the one-
sided Lipschitz constant of the drift in (1.1)) that have been estimated through the algorithms presented in
Section 4. The overall developed theory provides sharp stepsize restrictions that have also been confirmed on
a selection of scalar and vector valued problems. Future development of this research will highlight similar
conservation issues for SDEs with jump diffusion [15]. Moreover, we also aim to adequate our theory to
problems satisfying only local (one-sided) Lipschitz conditions [17].
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