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Abstract

We introduce a theory of two-step Runge-Kutta (TSRK) methods for stochastic dif-
ferential equations, arising from the perturbation of the corresponding TSRK methods
for deterministic problems. We present a proof of convergence and study the mean-
square stability properties. Numerical experiments confirming the theoretical results
are provided.
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1. Introduction

Numerics for stochastic differential equations (SDEs) (see [20, 21, 29]) has at-
tracted the interest of many researchers, because of the great number of applications in
biology, chemistry, epidemiology, economics and finance. In particular, we follow here
the idea of building the stochastic analogue of a certain numerical method for ordinary5

differential equations (ODEs), following the lines drawn by several papers dedicated to
stochastic multistep [2, 4, 8, 30, 33] and Runge Kutta methods [5–7, 9–11, 16, 31, 32].

The specific aim of this paper is to introduce and analyze the stochastic analogue of
two-step Runge-Kutta (TSRK) methods for deterministic ODEs, introduced by Jack-
iewicz et al. in [25, 26, 28] (also see [24] and references therein) with purpose to
heighten the usual accuracy and stability barriers of classical Runge-Kutta methods.
For a given Hadamard well-posed Cauchy problemy′ = f (y), x ∈ [0,T ]

y(0) = y0

and with respect to the uniform grid

Ih = {0 = t0 < t1 < t2 < · · · < tN = T, N = T/h}, (1)
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TSRK method takes the form

yi+1 = (1 − θ)yi + θyi−1 + h
m∑

j=1

(v j f (Y j
i−1) + w j f (Y j

i−1)),

Y j
i−1 = yi−1 + h

m∑
s=1

a js f (Y s
i−1), j = 1, ...,m,

Y j
i = yi + h

m∑
s=1

a js f (Y s
i ), j = 1, ...,m,

(2)

for i = 1, 2, ...,N − 1. yi approximates the solution y(xi) and θ, v j,w j and a js are the
coefficients, which characterize the method. These methods represent a middle ground
between Runge-Kutta and two-step methods and provide our building blocks for analog10

methods for SDEs, as described in the remainder. The paper is organized as follows:
in Section 2 we present the structure of the method and the study of the convergence.
In Section 3, we provide a study of mean-square stability and Section 4 is dedicated to
numerical experiments. Some conclusions are given in Section 5.

2. Method formulation and convergence analysis15

We consider the Ito scalar stochastic differential equation with multiplicative noise

dx(t) = a(t, x(t))dt + σ(t, x(t))dW(t), (3)

for t ∈ [0,T ], with initial conditions x(0) = x0. The functions a, σ : R → R are
supposed smooth enough to guarantee existence and uniqueness to the solution of (3)
(see [20] and references therein). In correspondence of the probability space (Ω,F ,P)
with a normal filtration (Ft)t∈[0,T ], W : [0,T ]×Ω→ R is a standard (Ft)t∈[0,T ]-Brownian
motion with continuous sample paths on (Ω,F ,P).20

With reference to the grid (1), given x0 = x0 and computed the missing starting
value x1 by a suitable one-step method, inspired by the notation introduced in [31], we
design explicit stochastic TSRK method of the following form

xi+1 = (1 − θ)xi + θxi−1 + h
m∑

j=0

(
p jKi

j + r jKi−1
j

)
+ ∆Wi

m∑
j=0

q jGi
j + ∆Wi−1

m∑
j=0

s jGi−1
j ,

(4)
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where
Ki

0 = a(ti + α0h, xi), Gi
0 = σ(ti + α0h, xi),

xi
(1) = xi + β10Ki

0h + γ10G0∆Wi

Ki
1 = a(ti + α0h, x(1)

i ), Gi
0 = σ(ti + α0h, x(1)

i ),
...

x(m)
i = xi +

m−1∑
k=0

βmkKkh +

m−1∑
k=0

γmkGk∆Wi,

Ki
m = a(ti + αmh, x(m)

i ), Gm = σ(ti + αmh, x(m)
i ),

for i = 3, ...,N. The coefficients of the method are then collected in the following
Butcher tableau

α B Γ

θ pT qT

rT sT

=

α0 β10 γ10

α1 β20 β20 γ20 γ21

...
...

...
. . .

...
...

. . .

αm−1 βm0 βm1 · · · βm,m−1 γm0 γm1 · · · γm,m−1

θ p1 p2 · · · pm q1 q2 · · · qm

r1 r2 · · · rm s1 s2 · · · sm

.

In order to guarantee the convergence of the underlying deterministic TSRK method
(see [25]), we set

−1 < θ ≤ 1, and
m∑

j=0

(p j + r j) = 1 + θ. (5)

The analysis of the mean-square convergence for the stochastic method (4) is presented
in the following result.

Theorem 2.1. Consider the scalar Ito SDE (3) and suppose that the functions

a, σ,
∂a
∂x
,
∂a
∂t
,
∂σ

∂x
,
∂σ

∂t
,
∂2σ

∂x2 ,
∂2σ

∂t2 ,
∂2σ

∂t∂x

are bounded. Then, the approximation xt, t ∈ [0,T ] given by the TSRK method (4)- (5)
converges in mean-square sense to the solution yt of the equation

dy =

[
a(t, y) + λ

∂σ

∂x
(t, y)σ(t, y)

]
dt + σ(t, y)dw (6)

where

λ =

m∑
j=1

q j

j−1∑
k=0

γ jk, m ≥ 1 (7)
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The presentation of the proof to this result benefits of the following remarks.25

Remark 2.1. Since

xi+1 − xi = θ(xi−1 − xi) + h
m∑

j=0

(
p jKi

j + r jKi−1
j

)
+ ∆Wi

m∑
j=0

q jGi
j + ∆Wi−1

m∑
j=0

s jGi−1
j ,

under the hypothesis of boundedness in the statement of Theorem (2.1) and since θ < 1,
we can say that

|xi+1 − xi| ≤ θ|xi−1 − xi| + C1h + C2∆Wi + C3∆Wi−1

< · · · < D1h +

i∑
k=0

Ck∆Wk,
(8)

with D1,C0, . . . ,Ci ∈ R, supposing that the missing value x1 is computed by a starting
method satisfying |x1 − x0| = O(h). As consequence, we get

E|xi+1 − xi| = D1h.

Remark 2.2. Following the approach of [31] for proving the convergence of stochastic
explicit Runge-Kutta methods, we consider the two-step Maruyama method

yi+1 =(1 − θ)yi + θyi−1 + hβ0(ai−1 + λ
∂σi−1

∂x
σi−1) + hβ1(ai + λ

∂σi

∂x
σi)

+ θσi−1∆Wi−1 + σidwi,

(9)

where ai = a(ti, yi), σi = σ(ti, yi), ∂σi/∂x = ∂σ/∂x(ti, yi),
∑m

j=0 p j = β0,
∑m

j=0 r j = β1.
With this choice of the coefficients, the method (9) is convergent, see [30]. By the
triangle inequality and Hölder continuity, it is sufficient to prove that

max
i

E(xi − yi)2 −→ 0, for h −→ 0

Remark 2.3. As noted also in [31], the hypotesis of boundedness is not too strong in
computation.

We are now ready to prove the result.

Proof 2.1. Setting ai = a(ti, xi), σi = σ(ti, xi) and ∆Wi = |∆Wi|, we consider the Ito-
Taylor expansions of K jh and Gl∆W, we have

K0h = aih +
∂a
∂t

(ξ0)α0h2 = aih + O(h2),

G0∆Wi = σi∆Wi +
∂σ

∂t
(η0)α0h∆Wi = σ∆Wi + O(h∆Wi),
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with ξ0, η0 [ti, ti + α0h]. Then,

x(1)
i − xi = β10(aih + O(h2)) + γ10(σi∆Wi + O(h∆Wi)

= β10aih + γ10σi∆Wi + O(h∆Wi) + O(h2)),

Ki
1 h = aih +

∂a
∂t

(ξ1)α1h2 +
∂a
∂x

(ξ1)h(x(1)
i − xi)

= aih + O(h∆Wi) + O(h2)),

and

G1∆Wi = σi∆Wi +
∂σi

∂t
α1h∆Wi +

∂σi

∂x
∆Wi(x(1)

i − xi) +
1
2
∂2σ

∂t2 (η1)(α1h)2∆Wi

+
∂2σ

∂t∂x
(η1)α1h∆Wi(x(1)

i − xi) +
1
2
∂2σ

∂2x
(η1)∆Wi(x(1)

i − xi)2

= σi∆Wi + γ10
∂σi

∂x
σi(∆Wi)2 + O(h∆Wi) + O(∆Wi

3
).

At the step j ≥ 1, we have

x( j)
i − xi =

j−1∑
k=0

β jkaih +

j−1∑
k=0

γ jkσi∆Wi + O(∆W2
i ) + O(h∆Wi) + O(∆Wi

3
)

and
K jh = aih + O(h∆Wi) + O(h2),

G j∆Wi = σi∆Wi +

j−1∑
k=0

γ jk
∂σi

∂x
σi(∆Wi)2 + O(h∆Wi) + O(∆Wi

3
).

Moreover,

xi+1 = (1 − θ)xi + θxi−1 + h
m∑

j=0

p jai + h
m∑

j=0

r jai−1 + ∆Wi

m∑
j=0

q jσi

+

m∑
j=1

q j

j−1∑
k=0

y jk
∂σi

∂x
σi∆W2

i +

m∑
j=1

q jσi−1∆Wi−1

+

m∑
j=1

q j

j−1∑
k=0

y jk
∂σi−1

∂x
σi−1∆W2

i−1

+ O(h∆Wi) + O(h∆Wi−1) + O(h2) + O(∆Wi
3
) + O(∆Wi−1

3
).
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Side-by-side subtraction with (9) yields

xi+1 − yi+1 = xi − yi + θ(xi − xi−1 + yi − yi−1) + hβ1(ai − ai)

+ hβ0(ai−1 − ai−1) + λ
∂σi

∂x
σi(∆W2

i − hβ1)

+ λβ1h
(
∂σi

∂x
σi −

∂σi

∂x
σi

)
+
∂σi

∂x
σi(µ∆W2

i−1 − λhβ0)

+ λβ0h
(
∂σi−1

∂x
σi−1 −

∂σi−1

∂x
σi−1

)
+

 m∑
j=0

q jσi − σi

 ∆Wi

+

 m∑
j=0

r jσi−1 − θσi−1

 ∆Wi−1 + O(h∆Wi) + O(h∆Wi−1) + O(h2)

+ O(∆Wi−1
3
) + O(∆Wi

3
).

Thanks to the boundedness condition, and exploiting (8), we get from (10)

|xi+1 − yi+1| < |xi − yi| + Ch +

i∑
k=0

Ck∆Wk + F∆W2
i + O(h∆Wi)

+ O(h∆Wi−1) + O(h2) + O(∆Wi
3
) + O(∆Wi−1

3
).

(10)

Squaring (10) and exploiting the inequality

(a1 + a2 + ... + an)2 ≤ n(a2
1 + a2

2 + ... + a2
n), ∀a1, a2, ..., an ∈ R,

we get

|xi+1 − yi+1|
2 < |xi − yi|

2 + C2h2 +

 i∑
k=0

Ck∆Wk

2

+ F2∆W4
i O(h2∆Wi

2
)

+ O(h2∆Wi−1
2
) + O(h4) + O(∆W6

i ) + O(∆W6
i−1)

< |xi − yi|
2 + C2h2 + (i + 1)

 i∑
k=0

C2
k∆W2

k

 + F2∆W4
i

+ O(h2∆Wi
2
) + O(h2∆Wi−1

2
) + O(h4) + O(∆Wi

6
) + O(∆Wi−1

6
),

where µ =
∑m

j=1 s j
∑ j−1

k=0 y jk. Taking the expected value, we get

E|xi+1 − yi+1|
2 < E|xi − yi|

2 + Ch2 + (i + 1)h
i∑

k=0

C2
k + F23h2 + O(h3) + O(h4).

3. Mean-square stability analysis

In this section, we provide a study of the mean-square stability properties of method
(4). Let us consider the scalar test equation [22, 23]

dx = λxdt + µxdW(t) (11)
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and suppose that it is mean-square stable, i.e.

lim
t−→∞

E|x2(t)| = 0⇐⇒ Re(λ) +
1
2
|µ|2 < 0. (12)

We aim to provide conditions on the stepsize h, such that the numerical solution given
by the TSRK method (4) reproduces numerically the property (12), i.e.

lim
n−→∞

E|x2
n| = 0.

Let us denote by Xi the vector of the stages at the i-th step

Xi =
[
x(0)

i x(1)
i . . . x(m)

i

]T
.

Applying our method to (11), we get

Xi = xie + αBXi + ηiΓXi, (13)

where
B = (βi j), Γ = (γi j),

e the unit n−dimensional vector, α = hλ and ηi = µ∆Wi. As a consequence,

Xi = (I − αB − ηiΓ)−1 xie (14)

and

xi+2 = (1 − θ)xi+1 + θxi + α
(
pT Xi+1 + rT Xi

)
+ ηi+1qT Xi+1 + ηisT Xi. (15)

Setting
Λi = (I − αB − ηiΓ)−1

we get the recurrence relation

xi+2 = Ai+1xi+1 + Cixi (16)

where
Ai+1 = (1 − θ) +

(
αpT + ηi+1qT

)
Λi+1e,

Ci+1 = θ +
(
αrT + ηisT

)
Λie.

Squaring (16) and taking the expected value yields

E|x2
i+2| = E|A2

i+1|E|x
2
i+1| + E|C2

i |E|x
2
i | + 2E|Ai+1|E|Ci xi xi+1| (17)

We observe that

E|Ci xi xi+1| = E|CiAix2
i | + E|CiCi−1 xi xi−1|

= E|CiAi|E|x2
i | + E|Ci|E|Ci−1 xi xi−1|

(18)

and
E|Ci|E|xi xi+1| = E|Ci|E|Aix2

i | + E|Ci|E|Ci−1 xi xi−1|

= E|Ci|E|Ai|E|x2
i | + E|Ci|E|Ci−1 xi xi−1|.

(19)
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Thanks to (18) and (19), (17) becomes

E|x2
i+2| =E|A

2
i+1|E|x

2
i+1| + E|C2

i |E|x
2
i | + 2E|Ai+1|E|Ci|E|xi xi+1|

+ 2E|Ai+1|
(
E|CiAi|E|x2

i | − E|Ci|E|Ai|E|x2
i |
)

=E|A2
i+1|E|x

2
i+1| +

[
E|C2

i | + 2E|Ai+1|·

(E|CiAi| − E|Ci|E|Ai|)
]
E|x2

i | + 2E|Ai+1|E|Ci|E|xi xi+1|

(20)

and

E|xi+2 xi+1| = E|Ai+1x2
i+1| + E|Cixixi+1| (21)

= E|Ai+1|E|x2
i+1| + (E|AiCi| − E|Ai|E|Ci|)E|x2

i | + E|Ci|E|xixi+1|.

Thanks to (20) and (21), we get E|x2
i+2|

E|xi+2 xi+1|

E|x2
i+1|

 = M

 E|x2
i+1|

E|xi xi+1|

E|x2
i |

 ,
where the stability matrix M is given by

M =

E|A
2
i+1| 2E|Ai+1|E|Ci| E|C2

i | + 2E|Ai+1| (E|CiAi| − E|Ci|E|Ai|)
E|Ai+1| E|AiCi| − E|Ai|E|Ci| E|Ci|

1 0 0

 . (22)

Remark 3.1. For any method of the form (4), it is always possible to have an explicit
form of M as function of h. Therefore, for any stepsize h, it is always possible to
establish if the method is mean-square stable, checking if

ρ(M) < 1. (23)

In the following sections, we study the mean square stability of two classes of30

methods.

3.1. Two-stage methods
We consider a general two stage method of the form (4) (i.e. m = 2), characterized

by the matrices

B =

[
0 0
b1 0

]
, G =

[
0 0
g1 0

]
and by the vectors of coefficients p = [p1 p2]T, r = [r1 r2]T, q = [q1 q2]T and s =

[s1 s2]T. In the remainder, we set α = hλ, γ = hµ2 and

u = [1 αb1 + 1] , η = θ + α r · u, ξ = α p · u + 1 − θ,

ψ = s · u + αg1r2, χ = q · u + α g1 p2, ς = g1q2,

υ = g1s2, κ =
(
3υ2 + 2υςξ + 2υ2ς2

)
γ2 +

(
ψ2 + 2ση + 2ξψχ + 2ςψχ

)
γ + η2.
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Then, the corresponding stability matrix has the following form

M =


ς2γ2 +

(
χ2 + 2ςξ

)
γ + ξ2 2(υςγ2 + (ςη + υξ)γ + ξη) κ

ςγ + ξ 2υςγ2 + ψχγ υγ + η
1 0 0

 .
3.2. Three-stage methods

Let us focus on the general class threestage methods (i.e. m = 3), characterized by
the matrices

B =

 0 0 0
b1 0 0
0 b2 0

 , G =

 0 0 0
g1 0 0
0 g2 0


and the vectors of coefficients p = [p1 p2 p3], r = [r1 r2 r3], q = [q1 q2 q3] and
s = [s1 s2 s3]. We set

v =
[
g1 g2 + α(b1g2 + b2g1) αg1g2

]
u =

[
1 αb1 + 1 b1b2α

2 + b2α + 1
]
,

l =
[
g1 g2 + α(b1g2 + b2g1)

]
, η = αp · u + 1 − θ, σ = [q2 q3 p3] · v,

φ = [s2 s3 r3] · v, χ = α r · u + θ, κ = s · u + α[r2 r3] · l,

ν = s · v + α[r2 r3] · l, ζ = g1g2s3, ξ = g1g2q3, δ = q · u + α[p2 p3] · l.

The entries of the stability matrix are then given by

M11 = 15ξ2γ3 + 3(σ2 + 2ξδ)γ2 + (2ση + δ)γ + η2,

M12 = 2(−θ2σφγ2 + (θφη + θ2φ + θ2σ − θχ)γ + ηχ − ηθ + θχ − θ2),

M13 = 15ζ2γ3 + (ψ2 + 2ζκ)γ2 + ν2γ + 2ψχ + 2(η + θ − θσγ)M22,

M21 = η + θ − θσγ,

M22 = 15ξγ3 + 3(σφ + ζδ + ξκ)γ2 + (φη + κδ + σχ − θφη − θ2φ − θ2σ + θχ)γ

− ηχ + ηθ − θχ + θ2χη,

M23 = χ − θ + θφγ.

4. Numerical Experiments

In this section we present some numerical experiments confirming the theoretical35

expectations in terms of convergence and stability properties.

4.1. Numerical evidence for two-stage methods
We first construct an example of two-stage method starting from the second order

Heun method, represented by the following Butcher tableau

0 0 0
1 1 0

1/2 1/2
.
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h err
0.5 0.3819

0.25 0.0096
0.1250 0.0018
0.0625 7.3934 × 10−4

0.0313 2.8874 × 10−4

0.0156 1.9080 × 10−4

0.0078 1.1539 × 10−4

Table 1: Mean-square error at the endpoint T = 1, obtained by method (24) for different values of the stepsize
h.

We set

B =

[
0 0
1 0

]
, Γ = B

and choose

r =
11
16

[1 1]T, p =
1

16
[1 1]T, q = r, s = p, θ = 1/2.

The corresponding Butcher tableau is given by

α B Γ

θ pT qT

rT sT

=

0
1 1 1
1
2

1
16

1
16

11
16

11
16

11
16

11
16

1
16

1
16

. (24)

The underlying deterministic TSRK has (at least) order one, since (5) is satisfied.
To check the properties of this method, we consider the linear equation (11), with
λ = −3 and µ = 1/2, and plot with a solid magenta line the solution

x(t) = x0 exp
((
η −

1
2
µ2

)
t + µW(t)

)
, (25)

where x0 = 1 and η = λ + κµ2, with κ computed according to formula (7).
According to Theorem 2.1 , the constructed method should converge to the solution

of the equation
dx = ηxdt + µxdW(t), (26)

which is given by (25). We choose various values of the stepsize and integrate the equa-
tion in the interval [0, 1]. Correspondingly, Table 1 shows the decay of the mean-square40

error at T = 1, computed over 1000 paths, confirming the mean-square convergence of
the method.

We are able to express the stability matrix (22) as function of h. In Figure 1, we
plot the spectral radius of M as function of h. In Figures 2, we represent E|Xn|

2 for two
different values of the stepsize h, i.e. h = 0.5 (top of the figure) and h = 0.9 (bottom45

of the figure). Since for a given h, we expect that the method is mean-square stable if
the spectral radius of M is less than 1, the graphs in Figure 2, perfectly agree with such
condition. In fact, only the solution on the right is stable.
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Figure 1: Behaviour of the spectral radius of the stability matrix of the method (24), as function of h.

4.2. Numerical evidence for three-stage methods

We start from the following third order Heun method

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

and choose

r =
1

24
[1 1 1]T, p =

5
32

[1 0 3]T, q = r, s = p, θ = 1/2.

Also in this case, the underlying TSRK is convergent. The corresponding Butcher50

tableau is given by

α B Γ

θ pT qT

rT sT

=

0
1
3

1
3

1
3

2
3

2
3

2
3

1
2

5
32

5
32

5
32

1
24

1
24

1
24

1
24

1
24

1
24

5
32

5
32

5
32

. (27)

Similarly to Section 4.1, the reduction of the error according to the stepsize is
highlighted in Table 2. Figure 3 shows the behaviour of the spectral radius of the
stability matrix of method (27). According to our analysis, in Figure 4, it is clear that
taking the stepsize h = 0.313 (top of the picture) we have mean-square stability; on the55

contrary, the value h = 0.837 gives rise to instability (bottom of picture).
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Figure 2: Behaviour of x2
n, computed by (24) with stepsize h = 0.9 (top) and h = 0.5 (bottom), for problem

(26).

4.3. Considerations about stability
Let us consider the Explicit Midpoint method, represented by the Butcher tableau

0 0 0
1
2

1
2 0
0 1

.

We choose

B =

[
0 0
1
2 0

]
, Γ = B

and p = [0 1], r = 1
2

[
1
2

1
2

]
, q = p and s = r. We construct a TSRK method with

θ = 1
2 and consider the same test equation of Sections 4.1 and 4.2 (with λ = −3 and

µ = 0.5). In Figure 5, we plot the behaviour of the spectral radius of the stability60
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h err
0.5 0.2304

0.25 0.0243
0.1250 0.0011
0.0625 0.001
0.0313 8.0053 × 10−4

0.0156 7.7344 × 10−4

0.0078 5.3000 × 10−4

Table 2: Mean-square error at the endpoint T = 1, obtained by method (27) for different values of the stepsize
h.

Figure 3: Behaviour of the spectral radius of the stability matrix of method (27), as function of h.

matrix M as function of h. In [22], we find the mean-square stability condition for the
Euler-Maruyama method, thanks to which we are able to compute the stability interval
(0, 0.6389), which is clearly smaller than the stability interval of the considered TSRK.
We can say that this class of new methods offers potentially more advantageous stability
properties.65

5. Conclusions

In this article, we present a possibility of extend to the stochastic case the family of
TSRK methods, which are well-known in the deterministic ODEs context. We provide
convergence and stability results, which are confirmed by the experimental evidence.
We consider this work as the first step to enlarge the class of the stochastic numerical70

methods in a family analogous to that of General Linear Methods [24]. Furthermore,
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Figure 4: Behaviour of x2
n, computed by (27) with stepsize h = 0.837 (top) and h = 0.313 (bottom), for

problem (26).

future works may be devoted to different stability issues [1, 3, 17, 23] and to the inves-
tigation of properties of conservation of invariance laws [12–15, 18, 19] in a geometric
integration perspective.
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