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PACS 87.23.Ge – Dynamics of social systems
PACS 87.23.Kg – Dynamics of evolution

Abstract – Given a population of N elements with their geographical positions and the genetic
(or lexical) distances between couples of elements (inferred, for example, from lexical differences
between dialects which are spoken in different towns or from genetic differences between animal
populations living in different faunal areas) a very interesting problem is to reconstruct the geo-
graphical positions of individuals using only genetic/lexical distances. From a technical point of
view the program consists in extracting from the genetic/lexical distances a set of reconstructed
geographical positions to be compared with the real ones. We show that geographical recovering
is successful when the genetic/lexical distances are not a simple consequence of phylogenesis but
also of horizontal transfers as, for example, vocabulary borrowings between different languages.
Our results go well beyond the simple observation that geographical distances and genetic/lexical
distances are correlated. The ascertainment of a correlation, in our perspective, merely is a
prerequisite.

Copyright c© EPLA, 2017

Introduction. – It is well known that in genetics and
in lexicostatistics distances Di,j between couple of indi-
viduals (taken from a population of N individuals, with
i, j = 1, . . . , N) can be operatively computed starting from
genetic [1–8] and lexical [9–19] data.

Both in biology and linguistics, the matrix of ge-
netic/lexical distances, Di,j , is often used for the construc-
tion of phylogenetic trees, as, for example, the UPGMA
tree [20] and the NJ tree [21]. Over each of these trees
one can measure the reconstructed phylogenetic distances
between pairs of individuals. The major problem is that
Di,j is a symmetric matrix (with vanishing diagonal ele-
ments) with N(N−1)/2 elements, while the cited trees try
to recover the matrix Di,j with a number of free variables
which is smaller, typically of order of N . As a consequence,
reconstruction of distances is usually approximated; only
if Di,j is itself the output of a process whose nature is
purely phylogenetic, the reconstruction can be totally cor-
rect. For example, UPGMA leads to a totally correct
reconstruction only in the case of a process with haploid
reproduction and constant mutation rate, while for NJ
variable mutation rate is also allowed.

In reality, pure phylogenesis is quite rare and the entries
of the matrix of distances and distances on the generated
tree are different. Their degree of similarity can be quan-
tified by a proper index as, for example, that one used
in [22] or, more simply, by measuring their correlation.
It should be stressed that the inaccuracy of tree recon-
struction can also affect the topological structure as, for
example, pointed out in [23].

The main reason of inadequacy of tree reconstruction
lies in horizontal transfer processes such as horizontal
gene transfer between neighbors or vocabulary borrow-
ings between different languages. These processes break
the purely ultra-metric phylogenetic structure of the ma-
trix of distances. Thus, in the translation of the matrix
of genetic distances Di,j in a phylogenetic trees, many in-
formation can be totally lost especially those concerning
geography which, indeed, is relevant both in biology and
linguistics [24–26].

We propose in this paper a different interpretation of
a matrix of genetic distances which privileges geography
with respect to phylogenetics. The next section is de-
voted to the presentation of the model of geographical
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reconstruction while in the section “A simple model” a
simple stochastical model able to directly generate a ma-
trix of genetic distances Di,j is given. In the “Result”
section the reader can find the discussion of results while
some remarks and conclusions are given in the section
“Conclusions”.

Reconstruction of geographical positions. – Once
we know that [xg

i , yg
i ] are the geographical locations of

individuals, a preliminary requirement for the feasibility
of our program is that there is a strong correlation between
genetic/lexical distances Di,j and geographical distances

Dg
i,j = [(xg

i − xg
j )

2 + (yg
i − yg

j )2]
1

2 .
In order to focus on a real case we considered the

N(N − 1)/2 = 253 lexical distances Di,j between pairs
of N = 23 Malagasy dialects that we computed in [27,28]
from Swadesh lists of words. We also considered the geo-
graphical distances Dg

i,j obtained by the geographical co-
ordinates of the corresponding towns where the dialects
are spoken. The geographical distances are indifferently
computed using great-circle or chord distance, considering
Madagascar a flat bi-dimensional object for all purposes
of the present article.

We find a correlation coefficient between the geograph-
ical distance and the genetic distance such as C(D, Dg) =
0.675, which is a quite large value indicating that geog-
raphy strongly influences the relatedness among dialects.
Therefore, in this case, we expect that the construction
of phylogenetic trees is not sufficient since the matrix of
genetic distances Di,j contains information concerning ge-
ography of Madagascar which are neglected by trees.

In what follows the methodology able to extract ge-
ographical information from the matrix of genetic dis-
tances is presented. Imagine that geography is unknown,
i.e., the geographical positions of N individuals, [xg

i , yg
i ],

are unknown and we want to reconstruct them form ge-
netic/lexical data. To each individual, i, we arbitrarily
associate a position [xi, yi]. Then, the Euclidean distance

between two individuals is [(xi −xj)
2 +(yi−yj)

2]
1

2 so that
we can define the cost function

R(x,y) =
∑

i<j

[

D2
i,j − (xi−xj)

2−(yi−yj)
2
]2

, (1)

where x,y indicates the configuration [x1, y1],
[x2, y2], . . . , [xN , yN ] and the set of genetic distances,
Di,j , is given.

Since positions [xi, yi] are arbitrary, the quantity
R(x,y) is meaningless unless one finds those positions

[x̄i, ȳi] whose distances [(x̄i − x̄j)
2 + (ȳi − ȳj)

2]
1

2 better
coincides with the genetic distances Di,j . This optimal
configuration x̄, ȳ = [x̄1, ȳ1]; [x̄2, ȳ2]; . . . ; [x̄N , ȳN ] can be
simply found minimizing (1) with respect to all variables
of the configuration

R̄ = min
x,y

(R(x,y)) = R(x̄, ȳ), (2)

which gives the optimal configuration x̄, ȳ. We used a cost
function where squared distances are compared instead of

distances. Note that the quantities in eq. (1) are homo-
geneous since the 2d Euclidean coordinates resulting from
the minimization of such equation are not the “true” geo-
graphical positions, but their Euclidean distance is similar,
in a geometric sense, to the real one. In the limit case in
which the unique mechanism is the geographical one, the
minimum of eq. (1) is zero.

Indeed, it is easy to get convinced that the minimum is
for sure not unique unless one preliminary anchors the two-
dimensional representation by fixing origin, orientation
and specularity for reflection with respect to the two cardi-
nal axes. For example, with the choice x1 = y1 = y2 = 0,
the first individual is in the origin and the second on the
x-axis. The number of variables to optimized is, there-
fore, 2N − 3. Moreover the problem of specularity for
reflection with respect to the two cardinal axes can be re-
solved by choosing the signs of x2 and y3. For example,
choosing both positive, the second individual is on the
positive x semi-axis and the third individual is in the up-
per half-plane. Also doing so the structure of minima of
the function (1) could be very complicated and an accu-
rate study of the minimal values found by the numerical
algorithm starting with different initial configuration x,y
is needed in order to assure the reaching of a satisfactory
minimum.

As an output we obtain the set of reconstructed op-
timal positions [x̄i, ȳi] (reconstructed geographical posi-
tions) and also the set of reconstructed distances D̄ij =

[(x̄i − x̄j)
2 + (ȳi − ȳj)

2]
1

2 . Necessarily some information
is lost in this procedure since the original matrix, D,
has N(N − 1)/2 entries, Dij , which we try to reproduce
by the D̄ij which depends only on 2N − 3 coordinates.
A measure of the loss of information is the correlation
C(D, D̄) between Dij and D̄ij . More interestingly, one
can compute the correlation C(D̄, Dg) between the recon-
structed distances D̄ij and the real geographical distances

Dg
ij = [(xg

i − xg
j )

2 + (yg
i − yg

j )2]
1

2 . This gives a measure of
the quality of geographical reconstruction obtained using
only genetic data.

For Malagasy dialects we had as input lexical distances,
D, with a correlation C(D, Dg) = 0.675 with geographic
distances, Dg, and we have as output the reconstructed
optimal positions x̄, ȳ, whose distance matrix, D̄, has a
correlation with the original lexical distances C(D, D̄) =
0.835 which means that the N(N − 1)/2 entries of the
matrix of lexical distances is very well represented by the
coordinates x̄, ȳ. More importantly, real geographical dis-
tances and reconstructed distances have a quite large cor-
relation C(D̄, Dg) = 0.690 indicating that geography is
better recovered from the reconstructed optimal configu-
ration than by lexical data. Let us stress that in the transi-
tion from Dij to D̄ij no information about geography was
lost, on the contrary there was an increase of correlation,
although small, from 0.675 to 0.690. This implies that
geographically close dialects deeply influence each other
and this horizontal transfer is, at least, as important as
phylogenetics.
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Fig. 1: (Color online) Geographical positions of the 23 towns in Madagascar (left) and optimal reconstruction of the positions
from dialects (right).

Moreover, the comparison of the left side of fig. 1, where
the towns are geographically located in [xg

i , yg
i ], and the

right side, where the optimal positions [x̄i, ȳi] are depicted,
gives a qualitative perception of the accuracy goodness of
the geographical reconstruction. Although the reconstruc-
tion is imprecise, there is a clear correspondence between
the two pictures. Physical barriers (such as mountains
and rivers) may partially explain the differences between
geographical and reconstructed positions, most of the dif-
ference is due to phylogenesis which is the complementary
phenomenon which explains genetic distances. Although
the reconstruction is imprecise, it is remarkable that it has
been obtained only from lexical data, totally neglecting ge-
ographical inputs. Using a colorful language, we could say
that in case we ignored the geography of Madagascar we
could have an idea of it simply collecting lists of words of
various dialects.

It must be noted that the physical dimension of the
reconstructed geography has to be the same as the physi-
cal dimension of the “true” geography (dimension two for
towns or faunal areas, dimension three for stars,. . .). In
this work we privileged dimension two since in most cases
one has to handle individuals situated on a surface which
is approximately plane (as in the case of Malagasy towns
with corresponding dialects), but everything can be easily
translated to different physical dimensions.

Finally, we would like to stress that the purpose of this
geographical interpretation of genetic/lexical distances is
different from other approaches, such as the Principal
Component Analysis (PCA), the improved versions of
PCA [29,30], and multidimensional scaling (MDS) also
known as the Principal Coordinates Analysis (PCoA) [31].
For PCA the focus is in embedding data which are in a
multidimensional space (matrix) in a lower-dimensional
one which maintains most of the information contained in
the matrix. PCoA (or MDS) refers to an ordination tech-
nique aiming to place each object in N -dimensional space
such that the between-object distances are preserved as
well as possible by minimizing a stress function resem-
bling that of (1). Limiting the dimension to two, applying
PCoA/MDS to the lexical distance matrix Dij , one could
obtain results similar to our results, but in our work we
have the specific purpose of reconstructing the geographi-
cal locations of individuals from the available genetic and
lexical differences and to study under which conditions it
is possible to obtain good geographical information about
distances on a surface from the minimum-distortion em-
bedding of complex genetic and lexical relations into a
physical landscape.

A simple model. – We consider here a simple, but not
trivial, model which allows to precisely test when distances
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are better represented by a geographical approach and
when they are better represented by a phylogenetic tree.

Let us assume a population of N individuals with no
differences in fitness and whose size N remains the same
at all times. An individual is typically the population of
a village/town (linguistics) or an animal/plant population
in a given faunal area (biology).

Any generation is replaced by a new one at any time
step and we assume that the time t is an integer which
numbers the generations. The genetic distances between
pairs of individuals i an j are the N(N − 1)/2 entries of
a symmetrical matrix (Di,j(t) = Dj,i(t)) with vanishing
diagonal elements (Di,i(t) = 0). Moreover, any individual
is identified by its fixed position on a unitary circumfer-
ence so that i indicates the individual whose geographi-
cal position is [xg

i , y
g
i ] = [cos(2πi/N), sin(2πi/N)], with

i = 1, . . . , N .
In place of simulating the evolution of the genetic (or

linguistic) makeup of any individual [22,32–34], we equiv-
alently chose to simulate directly the evolution of dis-
tances [35–39].

The initial state can be chosen assuming that all indi-
viduals are identical (Di,j(0) = 0). The evolution of this
matrix consists, at any generation step, of three steps:
mutation, death/reproduction and gene-flow.

The first step concerns mutation and distances increase.
This can happen at different and eventually random rates,
but, for the sake of simplicity, we assume a constant rate:

D′

i,j(t) = Di,j(t) + γ
[

1 − Di,j(t)
]

(3)

for any pair with i �= j, while for diagonal elements
D′

i,i(t) = 0. The parameter 0 ≤ γ ≤ 1 is proportional
to the mutation rate, while [1 − Di,j(t)] is the fraction of
genome the two individual have still in common.

The second step (death/reproduction) implies that
some of the individuals have no offspring and some other
have more than one. We simply assume that at any time
t each individual i has a single parent α(i, t), where α(i, t)
are independent random variables for different individuals
i and for different times t. With probability 1− p one has
that α(i, t) equals i (parent is at the same location) and
with probability p one has that α(i, t) takes at random one
of the N − 1 values k �= i (parent is in another location,
meaning extinction of a local population and doubling of
another one).

Thus for any pair with i �= j one has the following
stochastic equation:

D′′

i,j(t) = D′

α(i,t),α(j,t)(t), (4)

while for diagonal elements D′′

i,i(t) = 0. Notice that this
passage sets some distances to zero since α(i, t) and α(j, t)
can be equal even if i and j are not. Also notice that the
average number of populations which extinguish in a time
step is pN .

The third step (gene-flow) allows for some genetic flow
between two nearest individuals. Therefore, for any couple

of individuals with i �= j,

Di,j(t + 1) =
∑

i′,j′

ǫ(i, i′)ǫ(j, j′)D′′

i′,j′(t), (5)

where i′ can be either i or a first neighbor of i and the
same for j′. The coefficient ǫ(i, i′) equals 1 − q if i′ coin-
cides with i and it equals q/2 if i′ is one a the two first
neighbors of i. Also in this case the diagonal elements
are zero, Di,i(t + 1) = 0. Notice that this passage tends
to decrease those distances where i and j are first or sec-
ond neighbors. In this case, in fact, i′ may be equal to
j′ so that one (second neighbors) or two (first neighbors)
elements in the sum vanish. This passage means that a
fraction q < 1 of the genome of any individual is replaced
by the genome of its two neighbors. In linguistics this
horizontal transfer corresponds to lexical borrowings from
geographically close languages or dialects.

It is important to note that the γ parameter must be
very small in such a way the genetic distances increase al-
most continuously in time due to mutations. Such an as-
sumption is quite common both in biology and linguistics
and corresponds to the observed phenomenology. From a
mathematical point of view γ has to be of the order of
1/N (or less) to ensure the proper infinite population size
limit [40]. Moreover, at varying p and q the geographical
reconstruction passes from being very good to being very
poor, as discussed in the following. Finally, our choice for
the value of N is arbitrary since it does not influence the
geographic reconstruction.

After an initial transient T needed to reach a stationary
state, any matrices Di,j(T + t) can be taken as a represen-
tative of Di,j . An upper bound for T is 10 · N/p + 2N2/q
according to the fact that time for coalescence (same an-
cestor for all individuals) is of the order of N/p (but it can
be several time this value for some realizations) [35–37,39]
while the diffusion time over the ring for the random walk
underling the third passage is of the order of N2/q.

Results. – Let us discuss the numerical results ob-
tained from the model introduced in the previous section.
As already mentioned, a prerequisite for geography re-
construction is a strong correlation between the genetic
distances and the geographical distances, therefore we
computed the correlation C(D, Dg) between the Di,j(t)
and the Dg

i,j at different times t. Geographical distances
are given by Dg

i,j = 2 sin(π||i − j||/N) where ||i − j|| =
min(|i − j|, N − |i − j|).

In fig. 2 (left) we show C(D(t), Dg) for T ≤ t ≤ 2T
for the stochastic evolution of the distance D(t) according
to eqs. (3), (4) and (5). The population is composed of
N = 25 individuals and the model parameters are q =
0.2, γ = 0.001 and three different values of p. It can be
seen that in all the considered cases a time T = 10000
is largely sufficient for reaching a stationary state, i.e., in
the range T ≤ t ≤ 2T only fluctuations around a typical
value appear and no trend is detectable. On the right
side of fig. 2 we have plotted the value of the averaged
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Fig. 2: (Color online) (Left) Correlation between genetic distances Di,j(t) and geographical ones D
g

i,j as a function of T ≤ t ≤ 2T

for a population of N = 25 individuals with q = 0.2, γ = 0.001 and T = 10000. The values of p are: p = 0.004 (top), p = 0.2
(middle), p = 1.0 (bottom). The average values of the correlation over the window are 0.867 for p = 0.004, 0.546 for p = 0.02
and 0.134 for p = 1. (Right) Averaged correlation (again N = 25, γ = 0.001) as a function of p for different values of q.

correlation 〈C(D(t), Dg)〉t (again for the population N =
25, γ = 0.001) as a function of p for four different values of
q. The average is made over the same time window of the
left side of fig. 2. As expected the correlation decreases
with p and increases with q. When q = 0 the process is
purely phylogenetic and correlation between geographical
and genetic distances is totally absent, nevertheless, when
q �= 0 even for p = 1 (all parents in a random location)
some correlation survives.

From this preliminary investigation we can have an idea
of the range of values of p and q which allow for good, or
at least acceptable, reconstruction of geography. For ex-
ample, for q = 0.2 only those value of p which are in the
interval [0, 0.2] should lead to a good geographical recon-
struction since the correlation is sufficiently high.

In fig. 3, we show the reconstructed geographical posi-
tions [x̄i, ȳi] and we remind that in the model there are
N = 25 individuals whose “true” geographical positions
are equally spaced on a unitary circumference. All the four
reconstructed geographies are made choosing γ = 0.001
and q = 0.2. The figure contains four panels correspond-
ing to p = 1, p = 0.5, p = 0.2 and p = 0.04. Notice that
for p = 1 all individuals are replaced in a single genera-
tion but also in the case p = 0.04 the replacement rate is
high since, on average, in a single generation one individ-
ual extinguishes and it is replaced. Colors of points are
inserted in order to add a feeling of the goodness of the
reconstruction, otherwise only the distance of points from
circumference could be perceived.

The upper left panel in fig. 3 corresponds to p = 1. In
this case, the input correlation C(D, Dg) = 0.139 is small
and, therefore, reconstruction fails: C(D̄, D) = 0.342 and
C(D̄, Dg) = 0.025. For the picture at the upper right
panel of fig. 3, one has p = 0.5, for which C(D, Dg) =
0.462. The situation is similar since also in this case recon-
struction fails: C(D̄, D) = 0.397 and C(D̄, Dg) = 0.341.

The scenario changes for the picture at the lower left
side of fig. 3 with p = 0.2 for which C(D, Dg) = 0.720.

Fig. 3: (Color online) Reconstructed geographical positions
[x̄i, ȳi] for a a population of N = 25 individuals whose real
geographical positions are equally spaced on a unitary circle.
The four reconstructed geographies are related to a model with
parameters γ = 0.001, q = 0.2 and p = 1 (upper-left), p = 0.5
(upper-right), p = 0.2 (lower-left), p = 0.04 (lower-right).

Our approach is able to identify the geometry since the
output correlations are strong enough, C(D̄, D) = 0.753
and C(D̄, Dg) = 0.920. Finally, for the lower right side of
fig. 3, with p = 0.04 and C(D, Dg) = 0.916, reconstruction
is very accurate. In this last case, in fact, C(D̄, D) = 0.926
and C(D̄, Dg) = 0.988.

Notice how, for the last two cases, correlation C(D̄, Dg)
between reconstructed distances and geographical dis-
tances is larger than correlation C(D, Dg) between lexical

48003-p5



M. Serva et al.

distances and geographical distances. For example, for
p = 0.2 we have a correlation C(D, Dg) = 0.720 be-
tween the matrix entries and geographical distances while
C(D̄, Dg) = 0.920. Given that the D̄ij are obtained only
from the Dij the result is somehow unexpected and it
means that the method is able to extract the geometry
which is hidden in lexical distances.

Conclusions. – We propose a feasible method for re-
constructing the geographic positions of individuals only
using genetic (or linguistic) distances available from ge-
netic or linguistic data that are not a priori Euclidean.
Our purpose is to extract the geographical information
about distances on a surface by optimizing the embedding
of complex genetic and lexical relations into a physical
landscape.

We have strong evidence that recovering of the ge-
ographical positions from genetic or linguistic data is
successful when horizontal transfer processes such as hori-
zontal gene transfer between neighbors or vocabulary bor-
rowings between different languages play a major role.
When the process is purely phylogenetic (vertical), the
correlation between geographical and genetic distances is
absent and the reconstruction of geography from genetic
or linguistic data fails.

We think that our method could be useful in linguistics
as a complementary tool with respect to the phylogenetic
approach. Representing the members of a linguistic fam-
ily in terms of positions on a plane gives some information
that is neglected by a tree representation and vice versa.
We argue that the geographical approach could be espe-
cially useful when the languages of a family continuously
modify one into the other as for example Romance lan-
guages where borders are artificial and mostly politically
motivated.
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