A Sample Exercise

Alice and Bob are fighting over who gets the last slice of
pizza.

They decide to settle the dispute by playing n = 2k + 1,
k € N rounds of Heads of Tails.

Alice (resp. Bob) wins if the majority of the coin flips land
on Heads (resp. Tails).

Your task is to design an algorithm that, given the outcomes
of the coin flips, decides who gets the last pizza slice.




A Sample Exercise

Input. The input consists of T instances, or test cases of the
previous problem. The first line of the input contains the integer
I'. Each of the following lines represents a test cases and consists
of the number n and of a string s of n characters, where the i-
th character of s is H if the i-th coin landed on heads and T
otherwise.

Output. The output consists of T’ lines, one per test case, each
containing a single character. In particular the i-th line should
be "A" if alice won the ¢-th instance, and B otherwise.




A Sample Exercise

Example

Input: example.in

3

1 H

5 HHTHT
3 TTH

Output: example.out

A
A
B

Notes
A reasonable implementation should not require more than 1

second for each input file.



A Possible Solution

#include<cstdlib>
#include<string>
#include<iostream>

int main()

{
int T;
std::cin >> T;

while(T--)
solve_testcase();

return EXIT_SUCCESS;



A Possible Solution

void solve_testcase()
{
int n;
std::string s;
std::cin >> n >> s;

int number_of_H = O0;
for(const char c : s)
if(c == ’H’)
number_of_H++;

std: :cout << ((number_of_H>n/2)7"A":"B") << "\n'";



Compiling

g+t+ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution



Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

o We will use C4++417



Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

e We will use C++17

e Enable “all” warnings



Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

e We will use C++17

e Enable “all” warnings

e Strict compliance to the standard



Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

e We will use C++17

e Enable “all” warnings

e Strict compliance to the standard

e Optimize




Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

e We will use C++17

e Enable “all” warnings

e Strict compliance to the standard

e Optimize

e Source file




Compiling

g++ —-std=c++17 -Wall -pedantic -03 solution.cpp -o solution

e We will use C++17

e Enable “all” warnings

e Strict compliance to the standard

e Optimize

e Source file

e Binary




Checking the solution

$ ./solution < example.in > solution.out



Checking the solution

$ ./solution < example.in > solution.out

e Redirect stdin from example.in




Checking the solution

$ ./solution < example.in > solution.out

e Redirect stdin from example.in

e Redirect stdout to solution.out —



Checking the solution

$ ./solution < example.in > solution.out

e Redirect stdin from example.in

e Redirect stdout to solution.out —
$ diff -w solution.out example.out
i

e Ignore white space



Checking the solution

$ ./solution < example.in > solution.out

e Redirect stdin from example.in

e Redirect stdout to solution.out —
$ diff -w solution.out example.out
T -

e Ignore white space

e No output = files are identical. __|



Timing your solution

$ time ./solution < example.in > solution.out

real OmO.00bs
user OmO.000s
Sys OmO.005s



Timing your solution

$ time ./solution < example.in > solution.out

real OmO.00bs
user OmO.000s
Sys OmO.005s

Everything in a single command

$ time ./solution < example.in | diff -w - example.out



Tips
e Use the assert() macro in the cassert header.

e T[est the assumptions you are making in your program.

e Perform sanity checks of your intermediate results.

#include<cassert>

void solve_testcase()

{
int n;
std::string s;
std::cin >> n >> s;
assert(s.size() == n);



Tips
e Use the assert() macro in the cassert header.

e T[est the assumptions you are making in your program.

e Perform sanity checks of your intermediate results.

e Beware: checking assertions can take time.

e Disable assertions by defining the NDEBUG macro.

g++ -std=c++17 -Wall -pedantic -03 -DNDEBUG solution.cpp -o solution




Tips
e Use the assert() macro in the cassert header.

e T[est the assumptions you are making in your program.

e Perform sanity checks of your intermediate results.

e Beware: checking assertions can take time.

e Disable assertions by defining the NDEBUG macro.

g++ -std=c++17 -Wall -pedantic -03 -DNDEBUG solution.cpp -o solution

e If your program requires heavy 1/0O, this might help

std::ios_base::sync_with_stdio(false);



