Information Systems and Network Security

Docente: Stefano Leucci

Email: stefano.leucci@univaq.it

Information Systems and Network Security

Email: stefano.leucci@univaq.it

Information Systems and Network Security

Email: stefano.leucci@univaq.it

Basic Info

Course length: 48 hours (6 CFU)

- 24 lectures

When/where:

- Tuesday 9:30-11:30

Room: A1.2

- Thursday 11:30-13:30

Room: A1.2

Basic Info

Course length: 48 hours (6 CFU)

- 24 lectures

When/where:

- Tuesday 9:30-11:30

Room: A1.2

- Thursday 11:30-13:30

Room: A1.2

Office hours:

- Thursday 16:30-18:30
- Please send an email to stefano.leucci@gmail.com or ask before/after class

Course material:

https://people.disim.univaq.it/~stefanoleucci/isns24/

Ingredients of Cryptography

Ingredients of Cryptography

(Discrete) Math: Basic algebra, Modular arithmetic, some concepts from group theory and number theory

Ingredients of Cryptography

(Discrete) Math: Basic algebra, Modular arithmetic, some concepts from group theory and number theory
Probability theory: Events, random variables, expectation, independence, conditional probability, Bayes' theorem, ...

Ingredients of Cryptography

(Discrete) Math: Basic algebra, Modular arithmetic, some concepts from group theory and number theory
Probability theory: Events, random variables, expectation, independence, conditional probability, Bayes' theorem, ...

Theoretical computer science: Algorithms, complexity, asymptotic notation, reductions

Ingredients of Cryptography

Prerequisites

(Discrete) Math: Basic algebra, Modular arithmetic, some concepts from group theory and number theory
Probability theory: Events, random variables, expectation, independence, conditional probability, Bayes' theorem,

Theoretical computer science: Algorithms, complexity, asymptotic notation, reductions

Why cryptography?

Why cryptography?

Two entities wish to communicate

Why cryptography?

Two entities wish to communicate

Why cryptography?

Two entities wish to communicate

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit
- Anybody can modify a message in transit

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit
- Anybody can modify a message in transit
- Anybody can inject messages into the channel

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit
- Anybody can modify a message in transit
- Anybody can inject messages into the channel

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit
- Anybody can modify a message in transit
- Anybody can inject messages into the channel

Can Alice and Bob communicate "securely"?

Why cryptography?

Two entities wish to communicate
Alice can send a message to Bob through a communication channel
The communication channel is "insecure"

- Anybody can view a message in transit
- Anybody can modify a message in transit
- Anybody can inject messages into the channel

Can Alice and Bob communicate "securely"?

Why cryptography?

Typically we want to guarantee the following (informal) properties:

Why cryptography?

Typically we want to guarantee the following (informal) properties:

- Secrecy/Confidentiality: The contents messages sent over the channel will be known only to Alice and Bob

Why cryptography?

Typically we want to guarantee the following (informal) properties:

- Secrecy/Confidentiality: The contents messages sent over the channel will be known only to Alice and Bob
- Authentication: any message received by Bob can be confirmed to have originated from Alice (we can detect any message injected by the adversary)

Why cryptography?

Typically we want to guarantee the following (informal) properties:

- Secrecy/Confidentiality: The contents messages sent over the channel will be known only to Alice and Bob
- Authentication: any message received by Bob can be confirmed to have originated from Alice (we can detect any message injected by the adversary)
- Integrity: it is not possible to alter the contents of a message sent across the channel (without the tampering being detected)

Why cryptography?

Intuitively, we established a virtual "secure" communication channel on top of an underlying insecure channel

Why cryptography?

Intuitively, we established a virtual "secure" communication channel on top of an underlying insecure channel

Why cryptography?

D Signal

Bbitcoin

Topics

- Introduction (why cryptography?)

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security

Topics

YOU ARE

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security
- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security
- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security
- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks
- Stream ciphers and block ciphers

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security
- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks
- Stream ciphers and block ciphers
- Integrity and authenticated encryption

Topics

- Introduction (why cryptography?)
- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security

- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks

- Stream ciphers and block ciphers
- Integrity and authenticated encryption

Topics

YOU ARE

HERE

- Introduction (why cryptography?)

- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security

- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security

- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks
- Stream ciphers and block ciphers

- Integrity and authenticated encryption

Topics

- Introduction (why cryptography?)

Private-key cryptography

- Cryptography in the past: historic ciphers
- Cryptography today: formalizing security
- Security against eavesdroppers: achieving perfect secrecy
- Drawbacks of perfect secrecy, computational security

- Building blocks of cryptography: pseudorandom number generators, pseudorandom functions
- Security against stronger attacks
- Stream ciphers and block ciphers

- Integrity and authenticated encryption

Topics

- Hash functions
- Key distribution

At the "boundary" between private-key and public-key cryptography

Topics

- Hash functions
- Key distribution

At the "boundary" between private-key and public-key cryptography

- Public-key cryptography, Hybrid cryptography

Topics

- Hash functions
- Key distribution

At the "boundary" between private-key and public-key cryptography

- Public-key cryptography, Hybrid cryptography
- Digital signatures

Topics

- Hash functions
- Key distribution

At the "boundary" between private-key and public-key cryptography

- Public-key cryptography, Hybrid cryptography
- Digital signatures
- Digital certificates, SSL/TLS

Public-key cryptography

Topics

- Hash functions
- Key distribution

At the "boundary" between private-key and public-key cryptography

- Public-key cryptography, Hybrid cryptography
- Digital signatures
- Digital certificates, SSL/TLS

Public-key cryptography

- Advanced applications: secret sharing, multiparty computation, zero-knowledge proofs

Books

Introduction to
MODERN CRYPTOGRAPHY
Third Edition

Introduction to Modern Cryptography Jonathan Katz, Yehuda Lindell ISBN: 978-0815354369

The Joy Of Cryptography Mike Rosulek
https://joyofcryptography.com/

Books

Introduction to
MODERN CRYPTOGRAPHY
Third Edition

Almost all course material can be found in this book We will use the same notation

Introduction to Modern Cryptography Jonathan Katz, Yehuda Lindell

ISBN: 978-0815354369

The Joy Of Cryptography Mike Rosulek
https://joyofcryptography.com/

Books

Introduction to Modern Cryptography Jonathan Katz, Yehuda Lindell ISBN: 978-0815354369

Almost all course material can be found in this book We will use the same notation

Freely Available Uses different notation.

The Joy Of Cryptography Mike Rosulek
https://joyof cryptography.com/

Exams

Written exam:

- Questions on the theoretical concepts (e.g., security definitions)
- Exercises (e.g., prove security, carry out an attack, etc...)

Some advanced applications

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

- Your bitcoin wallet
- Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

- Your bitcoin wallet
- Nuclear codes

WHAT WOULD

ACTUALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. DRUG HIM AND HIT HIM WITH THIS \$5 WRENCH UNTL HE TEUS US THE PASSWORD.

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

- Your bitcoin wallet
- Nuclear codes

- ...

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

WHAT WOULD
ACTUALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. DRUG HIM AND HIT HIM WITH THIS \$5 WRENCH UNTL HE TEUS US THE PASSWORD.

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

- ...

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

Idea: Share the information
across several agents

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

Idea: Share the information across several agents

"Magic box"

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

Idea: Share the information across several agents

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key
- Your bitcoin wallet
- Nuclear codes

- ...

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

Idea: Share the information across several agents

Secret Sharing

Imagine some sensitive information that is kept by a single agent

- A master encryption key
- Your bitcoin wallet
- Nuclear codes

- ...

Single point of failure!
An attacker can compromise one machine and steal the sensitive information

Idea: Share the information across several agents

Share 1
Share 2

Share 3
Share 4

Secret Sharing

Idea:

- The shares of all agents can be used to reconstruct the secret

Secret Sharing

Idea:

- The shares of all agents can be used to reconstruct the secret

Secret Sharing

Idea:

- The shares of all agents can be used to reconstruct the secret
- The shares of any subset of agents look random and convey no information about the secret

Secret Sharing

Idea:

- The shares of all agents can be used to reconstruct the secret
- The shares of any subset of agents look random and convey no information about the secret

What if the adversary destroys a share?

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.
- Any subset of $<t$ agent must not be able to gain any information about the secret

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.
- Any subset of $<t$ agent must not be able to gain any information about the secret

Example: $n=4, t=3$

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.
- Any subset of $<t$ agent must not be able to gain any information about the secret

Example: $n=4, t=3$

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.
- Any subset of $<t$ agent must not be able to gain any information about the secret

Example: $n=4, t=3$

Secret Sharing

What if the adversary destroys a share?

Idea:

- If there are n agents, any subset of at least t agents must be able to recover the secret.
- Any subset of $<t$ agent must not be able to gain any information about the secret

Example: $n=4, t=3$

t-out-of- n threshold secret-sharing scheme

Secret Sharing

- Agents can be different servers connected over the Internet

Secret Sharing

- Agents can be different servers connected over the Internet
- The "magic boxes" can be distributed algorithms

Secret Sharing

- Agents can be different servers connected over the Internet
- The "magic boxes" can be distributed algorithms

- The system remains secure if $<t$ servers are compromised

Secret Sharing

- Agents can be different servers connected over the Internet
- The "magic boxes" can be distributed algorithms

- The system remains secure if $<t$ servers are compromised
- The system remains operational (the secret can be recovered) if $\leq n-t$ servers are unavailable

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

What's the address of www.my-bank.com?

DNS Server

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

What's the address of www.my-bank.com?
Try the following IPv6 address: [90:00:: d]
DNS Server

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

An attacker can tamper with DNS responses and convince the client that www.my-bank.com resides on a malicious server

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

An attacker can tamper with DNS responses and convince the client that www.my-bank.com resides on a malicious server

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

An attacker can tamper with DNS responses and convince the client that www.my-bank.com resides on a malicious server

To prevent this, DNSSEC is used to authenticate DNS mappings

DNSSEC

The Domain Name System is the system responsible for converting human-readable domain names into IP addresses

An attacker can tamper with DNS responses and convince the client that www.my-bank.com resides on a malicious server

To prevent this, DNSSEC is used to authenticate DNS mappings
Who can be trusted with the master cryptographic keys to the system?

DNSSEC

DNSSEC is managed by the Internet Corporation for Assigned Names and Numbers (ICANN)

The master key is split into 7 pieces and distributed on smart cards to 7 geographically diverse people

At least five key-holding members of this fellowship would have to meet at a secure data center in the United States to reboot [DNSSEC] in case of a very unlikely system collapse.
"If you round up five of these guys, they can decrypt [the root key] should the West Coast fall in the water and the East Coast get hit by a nuclear bomb"

- Richard Lamb, program manager for DNSSEC at ICANN.

DNSSEC

DNSSEC is managed by the Internet Corporation for Assigned Names and Numbers (ICANN)

The master key is split into 7 pieces and distributed on smart cards to 7 geographically diverse people

At least five key-holding members of this fellowship would have to meet at a secure data center in the United States to reboot [DNSSEC] in case of a very unlikely system collapse.
"If you round up five of these guys, they can decrypt [the root key] should the West Coast fall in the water and the East Coast get hit by a nuclear bomb"

- Richard Lamb, program manager for DNSSEC at ICANN.

Choosing a movie with secret preferences

Alice and Bob want to decide on a movie to watch

Choosing a movie with secret preferences

Alice and Bob want to decide on a movie to watch

Each of Alice and Bob has their own preferences...
However, they don't want to reveal that they like a movie unless the other person also likes it

Choosing a movie with secret preferences

Alice and Bob want to decide on a movie to watch

Each of Alice and Bob has their own preferences...
However, they don't want to reveal that they like a movie unless the other person also likes it

- They vote on one movie at a time until they find a movie that they both like
- Voting is done using a secure 2-party computation protocol

Choosing a movie with secret preferences

Alice and Bob want to decide on a movie to watch

Each of Alice and Bob has their own preferences...
However, they don't want to reveal that they like a movie unless the other person also likes it

- They vote on one movie at a time until they find a movie that they both like
- Voting is done using a secure 2-party computation protocol

Alice and Bob are honest (they follow the protocol) but curious

Choosing a movie with secret preferences

They will use some cards with two different faces, say hearts and spades

Choosing a movie with secret preferences

They will use some cards with two different faces, say hearts and spades
They will place 5 cards in a row on a table

Choosing a movie with secret preferences

They will use some cards with two different faces, say hearts and spades
They will place 5 cards in a row on a table

The middle card is face up and is always a hearts card

Choosing a movie with secret preferences

They will use some cards with two different faces, say hearts and spades
They will place 5 cards in a row on a table

The middle card is face up and is always a hearts card
Each of Alice and Bob has a hearts card and a spades card
回

Choosing a movie with secret preferences

If Alice likes the movie, she will place her two cards face down in the order
 Otherwise she will place her two cards face down in the order
\square ®

Choosing a movie with secret preferences

If Alice likes the movie, she will place her two cards face down in the order \square Otherwise she will place her two cards face down in the order \square

Choosing a movie with secret preferences

If Alice likes the movie, she will place her two cards face down in the order \square Otherwise she will place her two cards face down in the order

If Bob likes the movie, he will place his two cards face down in the order

Otherwise he will place his two cards face down in the order

Choosing a movie with secret preferences

If Alice likes the movie, she will place her two cards face down in the order \square Otherwise she will place her two cards face down in the order

If Bob likes the movie, he will place his two cards face down in the order

Otherwise he will place his two cards face down in the order

Choosing a movie with secret preferences

Possible configurations:

Choosing a movie with secret preferences

Possible configurations:

Choosing a movie with secret preferences

Possible configurations:

There are three hearts in a row if and only if both Alice and Bob like the movie

Choosing a movie with secret preferences

Possible configurations:

Yes
Yes

No

No

There are three hearts in a row if and only if both Alice and Bob like the movie This holds (in a modular sense) even if any rotations of the cards is considered!

Choosing a movie with secret preferences

Alice and Bob pile up the cards, all face down, ensuring that their order is preserved

Choosing a movie with secret preferences

Alice and Bob pile up the cards, all face down, ensuring that their order is preserved
Alice and Bob take turns cutting the deck (i.e., they perform a rotation)

Choosing a movie with secret preferences

Alice and Bob pile up the cards, all face down, ensuring that their order is preserved
Alice and Bob take turns cutting the deck (i.e., they perform a rotation)
Alice and Bob reveal the cards and watch the movie if and only if there are 3 consecutive hearts (in a modular fashion), otherwise they "pass"

Choosing a movie with secret preferences

Alice and Bob pile up the cards, all face down, ensuring that their order is preserved
Alice and Bob take turns cutting the deck (i.e., they perform a rotation)
Alice and Bob reveal the cards and watch the movie if and only if there are 3 consecutive hearts (in a modular fashion), otherwise they "pass"

Observation: If they end up not watching the movie, all possible "pass" configurations are equiprobable

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

In the movie selection problem:

- $n=2$
- $s_{1}, s_{2} \in\{$ pass, watch $\}$
- $f\left(s_{1}, s_{2}\right)= \begin{cases}\text { watch } & \text { if } s_{1}=s_{2}=\text { watch } \\ \text { pass } & \text { otherwise }\end{cases}$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

In the movie selection problem:

- $n=2$
- $s_{1}, s_{2} \in\{0,1\}$
- $f\left(s_{1}, s_{2}\right)= \begin{cases}1 & \text { if } s_{1}=s_{2}=1 \\ 0 & \text { otherwise }\end{cases}$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

In the movie selection problem:

- $n=2$
- $s_{1}, s_{2} \in\{0,1\}$
- $f\left(s_{1}, s_{2}\right)=\left\{\begin{array}{ll}1 & \text { if } s_{1}=s_{2}=1 \\ 0 & \text { otherwise }\end{array}=s_{1} \wedge s_{2}\right.$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

In the movie selection problem:

- $n=2$
- $s_{1}, s_{2} \in\{0,1\}$
- $f\left(s_{1}, s_{2}\right)=\left\{\begin{array}{ll}1 & \text { if } s_{1}=s_{2}=1 \\ 0 & \text { otherwise }\end{array}=s_{1} \wedge s_{2}\right.$

Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

- There are n agents (parties) $1,2, \ldots, n$
- The i-th agent has a secret information s_{i}
- The agents wish to jointly compute some function $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
- No information about $s_{1}, s_{2}, \ldots, s_{n}$ should be revealed

In the movie selection problem:

- $n=2$
- $s_{1}, s_{2} \in\{0,1\}$

- $f\left(s_{1}, s_{2}\right)=\left\{\begin{array}{ll}1 & \text { if } s_{1}=s_{2}=1 \\ 0 & \text { otherwise }\end{array}=s_{1} \wedge s_{2}\right.$

What about arbitrary circuits?

Zero Knowledge Proofs

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Really? Show it to me!

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Then I don't believe you really have a solution

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Hey, Charlie!
Alice has a solution to this Sudoku instance

Zero Knowledge Proofs

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Prove it!

Zero Knowledge Proofs

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zero Knowledge Proofs

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

Zero Knowledge Proofs

$G_{2}=\left(V_{2}, E_{2}\right)$

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

Zero Knowledge Proofs

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)

Zero Knowledge Proofs

$G_{2}=\left(V_{2}, E_{2}\right)$

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)
- Is not known to be NP-Complete

Zero Knowledge Proofs

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)
- Is not known to be NP-Complete
- Is a candidate problem to be in the class NP-Intermediate

Zero Knowledge Proofs

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)
- Is not known to be NP-Complete
- Is a candidate problem to be in the class NP-Intermediate

$$
N P \text {-Intermediate }=N P \backslash P
$$

- If NP-Intermediate $\neq \emptyset$ then $\mathrm{P} \neq \mathrm{NP}$.

Zero Knowledge Proofs

Alice knows an isomorphism π between G_{1} and G_{2}

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)
- Is not known to be NP-Complete
- Is a candidate problem to be in the class NP-Intermediate

$$
N P \text {-Intermediate }=N P \backslash P
$$

- If NP-Intermediate $\neq \emptyset$ then $\mathrm{P} \neq \mathrm{NP}$.

Zero Knowledge Proofs

Alice knows an isomorphism π between G_{1} and G_{2}

Alice can use a Zero Knowledge protocol to convince bob that G_{1} and G_{2} are isomorphic without revealing π

Graph isomorphism problem

G_{1} is isomorphic to G_{2} iff \exists bijection $\pi: V_{1} \rightarrow V_{2}$ s.t. $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$.

- Is in NP (the certificate is π)
- Is not known to be NP-Complete
- Is a candidate problem to be in the class NP-Intermediate

$$
N P \text {-Intermediate }=N P \backslash P
$$

- If NP-Intermediate $\neq \emptyset$ then $\mathrm{P} \neq \mathrm{NP}$.

Basic definitions

Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

- Alice and Bob have a shared, secret key

Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

- Alice and Bob have a shared, secret key
- The key must be shared securely in advance, and must be kept secret (before, during, and after Bob and Alice's interaction)

Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

- Alice and Bob have a shared, secret key
- The key must be shared securely in advance, and must be kept secret (before, during, and after Bob and Alice's interaction)
- Messages are encrypted and decrypted using the same key

Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

- Alice and Bob do not need to share any secret information

Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

- Alice and Bob do not need to share any secret information
- Messages are encrypted using only public information (public keys) and decrypted with private keys (which are not shared!)

Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

- Alice and Bob do not need to share any secret information
- Messages are encrypted using only public information (public keys) and decrypted with private keys (which are not shared!)
- Anybody can encrypt messages for a given recipient

Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

- Alice and Bob do not need to share any secret information
- Messages are encrypted using only public information (public keys) and decrypted with private keys (which are not shared!)
- Anybody can encrypt messages for a given recipient

For now, we will only be concerned with private-key cryptography

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.
\mathcal{C} denotes the set of all possible ciphertexts

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.
\mathcal{C} denotes the set of all possible ciphertexts

$E \operatorname{Enc}_{k}(m)$ denotes an execution of Enc with inputs k and m

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.
\mathcal{C} denotes the set of all possible ciphertexts

$E \operatorname{Enc}_{k}(m)$ denotes an execution of Enc with inputs k and m
- Dec is a deterministic algorithm that takes as input a key $k \in \mathcal{K}$ and a ciphertext $c \in \mathcal{C}$ and outputs a message $m \in \mathcal{M}$

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.
\mathcal{C} denotes the set of all possible ciphertexts

$E \operatorname{Enc}_{k}(m)$ denotes an execution of Enc with inputs k and m
- Dec is a deterministic algorithm that takes as input a key $k \in \mathcal{K}$ and a ciphertext $c \in \mathcal{C}$ and outputs a message $m \in \mathcal{M}$

$\operatorname{Dec}_{k}(c)$ denotes an execution of Dec with inputs k and c

Private-key cryptography

A private-key encryption scheme consists of three algorithms:

- Gen is a randomized algorithm that outputs a key from some finite set \mathcal{K} (key space) according to some probability distribution

- Enc is a (possibly randomized) algorithm that takes as input a key $k \in \mathcal{K}$ and a message (or plaintext) m from some set \mathcal{M} (message space) and outputs a ciphertext c obtained by encrypting m with key k.
\mathcal{C} denotes the set of all possible ciphertexts

$E \operatorname{Enc}_{k}(m)$ denotes an execution of Enc with inputs k and m
- Dec is a deterministic algorithm that takes as input a key $k \in \mathcal{K}$ and a ciphertext $c \in \mathcal{C}$ and outputs a message $m \in \mathcal{M}$

$\operatorname{Dec}_{k}(c)$ denotes an execution of Dec with inputs k and c
Perfect correctness: $\forall k \in \mathcal{K}, m \in \mathcal{M}$ if c can be output by $\operatorname{Enc}_{k}(m)$ then $\operatorname{Dec}_{k}(c)=m$

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)
- The method was only known only to the sender and the recipient

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)
- The method was only known only to the sender and the recipient

This means that if the encryption/decryption algorithm(s) were leaked to an adversary, the honest parties needed to come up with a new scheme

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)
- The method was only known only to the sender and the recipient

This means that if the encryption/decryption algorithm(s) were leaked to an adversary, the honest parties needed to come up with a new scheme

Coming up with (secure) encryption schemes is hard!

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)
- The method was only known only to the sender and the recipient

This means that if the encryption/decryption algorithm(s) were leaked to an adversary, the honest parties needed to come up with a new scheme

Coming up with (secure) encryption schemes is hard!

Kerckhoffs' principle: all parts of an encryption scheme should be public, except the key
The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

Kerckhoffs' principle

Historically, encryption has been performed by devising some clever method to encrypt m into a cyphertext c (and vice-versa)

- No key (we can think of a fixed key as being hardcoded in the algorithm)
- The method was only known only to the sender and the recipient

This means that if the encryption/decryption algorithm(s) were leaked to an adversary, the honest parties needed to come up with a new scheme

Coming up with (secure) encryption schemes is hard!

Kerckhoffs' principle: all parts of an encryption scheme should be public, except the key
The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

If the key is leaked, it is easy to replace it

No security through obscurity

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure
- Some of these mistakes are really subtle (we will see some of them in the course)

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure
- Some of these mistakes are really subtle (we will see some of them in the course)

Encryption schemes whose details are public:

- Have undergone public scrutiny by experts and no flaws have been found

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure
- Some of these mistakes are really subtle (we will see some of them in the course)

Encryption schemes whose details are public:

- Have undergone public scrutiny by experts and no flaws have been found
- Can be standardized

No security through obscurity

But...
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure
- Some of these mistakes are really subtle (we will see some of them in the course)

Encryption schemes whose details are public:

- Have undergone public scrutiny by experts and no flaws have been found
- Can be standardized
- Parties only need to share a key (and not the exact details of the secret scheme).

No security through obscurity

But. . .
...surely keeping both the scheme and the key secret is more secure than just keeping the key secret. . . right?

Don't roll your own encryption!

- It's really easy to make mistakes that will render an encryption scheme insecure
- Some of these mistakes are really subtle (we will see some of them in the course)

Encryption schemes whose details are public:

- Have undergone public scrutiny by experts and no flaws have been found
- Can be standardized
- Parties only need to share a key (and not the exact details of the secret scheme).
- No need for Bob to implement Alice's weird scheme on his own (Bob can use public, vetted, implementations of well-known schemes)

