
When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

With a definition in place, we can check if a proposed scheme meets the definition...

When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

With a definition in place, we can check if a proposed scheme meets the definition...

... and provide a formal proof!

When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

With a definition in place, we can check if a proposed scheme meets the definition...

... and provide a formal proof!

On the flip side, one can conclusively show that an encryption scheme is insecure

When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

With a definition in place, we can check if a proposed scheme meets the definition...

... and provide a formal proof!

On the flip side, one can conclusively show that an encryption scheme is insecure

The historic ciphers from the previous lectures are intuitively “insecure”. Can we prove that formally?

When is an encryption scheme secure?

Another benefit of formal definitions is modularity :

• A designer can replace an encryption scheme with another (that satisfies the same security definition)

• The security of the overall application is unaffected

When is an encryption scheme secure?

A security definition consists of two components:

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• What is the scheme trying to protect against?

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• What is the scheme trying to protect against?

• From the attacker’s point of view: what constitutes a successful attack?

E.g: Should figuring out the length of the plaintext be considered a successful attack?

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• A threat model

• What is the scheme trying to protect against?

• From the attacker’s point of view: what constitutes a successful attack?

• What is the attacker allowed to do?

E.g: Should figuring out the length of the plaintext be considered a successful attack?

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• A threat model

• What is the scheme trying to protect against?

• From the attacker’s point of view: what constitutes a successful attack?

• What is the attacker allowed to do?

E.g., can the attacker see an encrypted version of a plaintext of
choice?

E.g: Should figuring out the length of the plaintext be considered a successful attack?

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• A threat model

• What is the scheme trying to protect against?

• From the attacker’s point of view: what constitutes a successful attack?

• What is the attacker allowed to do?

E.g., can the attacker see an encrypted version of a plaintext of
choice?

E.g: Should figuring out the length of the plaintext be considered a successful attack?

Threat models

One can define several different threat models depending on the environment in which the encryption
scheme is going to be used

• A threat model only specifies what the abilities of the adversary are

• It says nothing about the strategy of the adversary, i.e., on how these abilities are used

Threat models

One can define several different threat models depending on the environment in which the encryption
scheme is going to be used

• A threat model only specifies what the abilities of the adversary are

• It says nothing about the strategy of the adversary, i.e., on how these abilities are used

This means that an encryption scheme that is secure w.r.t. a threat model will be able to resist all
attacks that fall within that model

Threat models

One can define several different threat models depending on the environment in which the encryption
scheme is going to be used

• A threat model only specifies what the abilities of the adversary are

• It says nothing about the strategy of the adversary, i.e., on how these abilities are used

This means that an encryption scheme that is secure w.r.t. a threat model will be able to resist all
attacks that fall within that model

There are several standard threat models:

• Ciphertext-only attack (COA, EAV)

• Known-plaintext attack (KPA)

• Chosen-plaintext attack (CPA)

• Chosen-ciphertext attack (CCA)

Threat models

One can define several different threat models depending on the environment in which the encryption
scheme is going to be used

• A threat model only specifies what the abilities of the adversary are

• It says nothing about the strategy of the adversary, i.e., on how these abilities are used

This means that an encryption scheme that is secure w.r.t. a threat model will be able to resist all
attacks that fall within that model

There are several standard threat models:

• Ciphertext-only attack (COA, EAV)

• Known-plaintext attack (KPA)

• Chosen-plaintext attack (CPA)

• Chosen-ciphertext attack (CCA)

In
cr
ea
si
n
g
p
ow

er

Threat models

One can define several different threat models depending on the environment in which the encryption
scheme is going to be used

• A threat model only specifies what the abilities of the adversary are

• It says nothing about the strategy of the adversary, i.e., on how these abilities are used

This means that an encryption scheme that is secure w.r.t. a threat model will be able to resist all
attacks that fall within that model

There are several standard threat models:

• Ciphertext-only attack (COA, EAV)

• Known-plaintext attack (KPA)

• Chosen-plaintext attack (CPA)

• Chosen-ciphertext attack (CCA)

In
cr
ea
si
n
g
p
ow

er

Ciphertext-only attacks

• It observes a ciphertext (or multiple ciphertexts) and attempts to determine information about the
underlying plaintext (or plaintexts).

Insecure channel

The adversary is an eavesdropper

Ciphertext-only attacks

• It observes a ciphertext (or multiple ciphertexts) and attempts to determine information about the
underlying plaintext (or plaintexts).

Most basic type of attack (weakest threat model)

Insecure channel

The adversary is an eavesdropper

Ciphertext-only attacks

• It observes a ciphertext (or multiple ciphertexts) and attempts to determine information about the
underlying plaintext (or plaintexts).

Most basic type of attack (weakest threat model)

It is the attack type that we have been implicitly considering in our discussion about historic ciphers

Insecure channel

The adversary is an eavesdropper

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

• All “HELLO” and handshake messages of (encrypted) network protocols

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

• All “HELLO” and handshake messages of (encrypted) network protocols

• Embargoed documents that are published at a certain point in time (e.g., quarterly-earnings reports)

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

• All “HELLO” and handshake messages of (encrypted) network protocols

• Most Enigma messages would start with “ANX”
(“AN” is German for “TO” and “X” was used as a space)

• Embargoed documents that are published at a certain point in time (e.g., quarterly-earnings reports)

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Known-plaintext attacks

The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

• All “HELLO” and handshake messages of (encrypted) network protocols

• Most Enigma messages would start with “ANX”
(“AN” is German for “TO” and “X” was used as a space)

• Messages that were a continuation of a previous one would start with “FORT” (short for Fortsetzung)

• Embargoed documents that are published at a certain point in time (e.g., quarterly-earnings reports)

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF

The U.S. cryptanalysts believed that AF meant Midway Island, but they were not 100% sure

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

They sent a fake unencrypted message from Midway Island

m = We are out of fresh water

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

They sent a fake unencrypted message from Midway Island

m = We are out of fresh water

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = AFMSDIASDHIADLAX

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = AFMSDIASDHIADLAX

m = AF is short on water

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

The adversary modifies/injects traffic and observes Bob response

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

The adversary modifies/injects traffic and observes Bob response

Many protocols close a connection or request a retransmission when a bad message is received

Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

Being able to know whether a ciphertext is valid enables “Padding oracle” attacks:

When is an encryption scheme secure?

A security definition consists of two components:

• A security guarantee

• A threat model

• What is the scheme trying to protect against?

• From the attacker’s point of view: what constitutes a successful attack?

• What is the attacker allowed to do?

E.g., can the attacker see an encrypted version of a plaintext of
choice?

E.g: Should figuring out the length of the plaintext be considered a successful attack?

Security guarantees

What should a secure encryption scheme guarantee?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 1 (inf.): It should be impossible for an
attacker to recover the key

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 1 (inf.): It should be impossible for an
attacker to recover the key

Is it a “good” definition?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 1 (inf.): It should be impossible for an
attacker to recover the key

Is it a “good” definition?

What about the following private-key encryption scheme?

• Gen returns a random key

• Enck(m) = m

• Deck(c) = c

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 2 (inf.): It should be impossible for an
attacker to recover the plaintext from the ciphertext

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 2 (inf.): It should be impossible for an
attacker to recover the plaintext from the ciphertext

Is it a “good” definition?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 2 (inf.): It should be impossible for an
attacker to recover the plaintext from the ciphertext

Is it a “good” definition?

What about an encryption scheme that only changes the last character of the plaintext?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 3 (inf.): It should be impossible for an
attacker to recover any character of the plaintext from the ciphertext

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 3 (inf.): It should be impossible for an
attacker to recover any character of the plaintext from the ciphertext

Is it a “good” definition?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 3 (inf.): It should be impossible for an
attacker to recover any character of the plaintext from the ciphertext

Is it a “good” definition?

What about an encryption scheme where:

• M ⊂ {A, . . . , Z,−}∗ is the set of all “spelled-out” natural numbers, in English

FORTY-TWO ∈ M, KITTEN ̸∈ M

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 3 (inf.): It should be impossible for an
attacker to recover any character of the plaintext from the ciphertext

Is it a “good” definition?

What about an encryption scheme where:

• M ⊂ {A, . . . , Z,−}∗ is the set of all “spelled-out” natural numbers, in English

• Enck(m) =

(
A∥fk(m) if m ≥ 100

B∥fk(m) if m < 100
, for some fk(·) ?

FORTY-TWO ∈ M, KITTEN ̸∈ M

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 4 (inf.): It should be impossible for an attacker
to compute any function of the plaintext from the ciphertext

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 4 (inf.): It should be impossible for an attacker
to compute any function of the plaintext from the ciphertext

Is it a “good” definition?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 4 (inf.): It should be impossible for an attacker
to compute any function of the plaintext from the ciphertext

Is it a “good” definition?

What about f(m) = |m|?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 4 (inf.): It should be impossible for an attacker
to compute any function of the plaintext from the ciphertext

Is it a “good” definition?

What about f(m) = |m|?

What about f(m) = 42?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

• What do we mean by information?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

• What do we mean by information?

• What does it mean to leak additional information?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

• What do we mean by information?

• What does it mean to leak additional information?

• How do we capture the attacker’s prior knowledge about the plaintext?

Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

• What do we mean by information?

• What does it mean to leak additional information?

• How do we capture the attacker’s prior knowledge about the plaintext?

Shannon’s Treatment

Messages come from a probability distribution over the message space M

Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

M is a random variable over M

Pr[M = m] probability that the plaintext is m

Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

M is a random variable over M

K is a random variable over the key space K and is distributed
according to the output distribution of Gen

Pr[M = m] probability that the plaintext is m

Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

M is a random variable over M

K is a random variable over the key space K and is distributed
according to the output distribution of Gen

A message m and a key k are chosen independently from M and K,
respectively, and c ← Enck(m) is computed.

Pr[M = m] probability that the plaintext is m

Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

M is a random variable over M

K is a random variable over the key space K and is distributed
according to the output distribution of Gen

A message m and a key k are chosen independently from M and K,
respectively, and c ← Enck(m) is computed.

C is a random variable (over C) denoting the resulting ciphertext.

Pr[M = m] probability that the plaintext is m

Example 0

The adversary knows that the message is going to be either ATTACK or
RETREAT

Moreover, he believes that the probability of attack is 70%

Example 0

The adversary knows that the message is going to be either ATTACK or
RETREAT

Moreover, he believes that the probability of attack is 70%

Pr[M = ATTACK] = 0.7 Pr[M = RETREAT] = 0.3

Example 0

The adversary knows that the message is going to be either ATTACK or
RETREAT

Moreover, he believes that the probability of attack is 70%

Pr[M = ATTACK] = 0.7 Pr[M = RETREAT] = 0.3

a priori probability

Example 0

The adversary knows that the message is going to be either ATTACK or
RETREAT

Moreover, he believes that the probability of attack is 70%

Pr[M = ATTACK] = 0.7 Pr[M = RETREAT] = 0.3

a priori probability

Gen outputs a binary string of length 3 chosen uniformly at random (u.a.r.):

Pr[K = 011] = 1
8

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

Lower-case for plaintexts

K = {0, . . . , 25}

Upper-case for ciphertexts

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m] = Pr[C = B ∧M = a] + Pr[C = B ∧M = b]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m] = Pr[C = B ∧M = a] + Pr[C = B ∧M = b]

= Pr[C = B | M = a] · Pr[M = a] + Pr[C = B | M = b] · Pr[M = b]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m] = Pr[C = B ∧M = a] + Pr[C = B ∧M = b]

= Pr[C = B | M = a] · Pr[M = a] + Pr[C = B | M = b] · Pr[M = b]

= Pr[K = 1] · Pr[M = a] + Pr[K = 0] · Pr[M = b]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m] = Pr[C = B ∧M = a] + Pr[C = B ∧M = b]

= Pr[C = B | M = a] · Pr[M = a] + Pr[C = B | M = b] · Pr[M = b]

= Pr[K = 1] · Pr[M = a] + Pr[K = 0] · Pr[M = b] = 1
26 · 7

10 + 1
26 · 3

10

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

What is the probability that the ciphertext is B?

K is distributed uniformly over K

Pr[C = B] =
P

m∈M Pr[C = B ∧M = m] = Pr[C = B ∧M = a] + Pr[C = B ∧M = b]

= Pr[C = B | M = a] · Pr[M = a] + Pr[C = B | M = b] · Pr[M = b]

= Pr[K = 1] · Pr[M = a] + Pr[K = 0] · Pr[M = b] = 1
26 · 7

10 + 1
26 · 3

10 = 1
26

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

= Pr[C = B | M = a] · 7/10
1/26

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

= Pr[C = B | M = a] · 7/10
1/26

= Pr[K = 1] · 7/10
1/26

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

= Pr[C = B | M = a] · 7/10
1/26

= Pr[K = 1] · 7/10
1/26 = 1

26 · 7/10
1/26

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

= Pr[C = B | M = a] · 7/10
1/26

= Pr[K = 1] · 7/10
1/26 = 1

26 · 7/10
1/26 = 7

10

Example 1

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗

The adversary has the following a priori distribution over M:

Pr[M = a] = 0.7

K = {0, . . . , 25}

Pr[M = b] = 0.3

K is distributed uniformly over K

What is the probability that the plaintext is a if the adversary has observed the ciphertext B?

Pr[M = a | C = B] = Pr[C = B | M = a] · Pr[M=a]
Pr[C=B]

= Pr[C = B | M = a] · 7/10
1/26

= Pr[K = 1] · 7/10
1/26 = 1

26 · 7/10
1/26 = 7

10

a posteriori probability

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] =

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] = Pr[C = DQQ | M = kim] Pr[M = kim]

+Pr[C = DQQ | M = ann] Pr[M = ann]

+Pr[C = DQQ | M = boo] Pr[M = boo]

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] = Pr[C = DQQ | M = kim] Pr[M = kim]

+Pr[C = DQQ | M = ann] Pr[M = ann]

+Pr[C = DQQ | M = boo] Pr[M = boo]

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] = Pr[C = DQQ | M = ann] Pr[M = ann] + Pr[C = DQQ | M = boo] Pr[M = boo]

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] = Pr[C = DQQ | M = ann] Pr[M = ann] + Pr[C = DQQ | M = boo] Pr[M = boo]

= Pr[K = 3] · 0.2 + Pr[K = 2] · 0.3

Example 2

Consider a shift cipher:

M = {a, . . . , z}∗ C = {A, . . . , Z}∗ K = {0, . . . , 25}

K is distributed uniformly over K

The adversary has the following a priori distribution over M:

Pr[M = kim] = 0.5 Pr[M = ann] = 0.2 Pr[M = boo] = 0.3

What is the probability that the ciphertext is DQQ?

Pr[C = DQQ] = Pr[C = DQQ | M = ann] Pr[M = ann] + Pr[C = DQQ | M = boo] Pr[M = boo]

= Pr[K = 3] · 0.2 + Pr[K = 2] · 0.3

= 1
26 · 0.2 + 1

26 · 0.3 = 1
52

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

All the a priori information
known by the adversary
about the plaintexts

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

All the a priori information
known by the adversary
about the plaintexts

The knowledge the adversary
has about m after observing c

A posteriori probability

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

The adversary learns nothing new

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Idea: Two occurrences of the same characters in the plaintext must produce the same characters in the
ciphertext

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

This is a valid choice since:

Pr[C = XX] ≥ Pr[C = XX ∧M = aa]

= Pr[C = XX | M = aa] Pr[M = aa]

= Pr[K = 23] Pr[M = aa] > 0

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

Pr[M = ab]Pr[M = ab | C = XX]

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

Pr[M = ab]Pr[M = ab | C = XX] = 1
2

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

Pr[M = ab]Pr[M = ab | C = XX] = 1
20 =

Example

Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]

Pr[M = aa] = Pr[M = ab] = 1
2Probability distribution:

Plaintext: m = ab

Ciphertext: c = XX

Pr[M = ab]Pr[M = ab | C = XX] = 1
20 = ̸=

□

Another definition

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

Another definition

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

Random key!

The probability is taken over the possible choices of K

Another definition

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

The above definition requires no underlying distribution over the message space M

Random key!

The probability is taken over the possible choices of K

Another definition

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

Intuition: the distribution of the ciphertexts does not depend on the plaintext

The above definition requires no underlying distribution over the message space M

Random key!

The probability is taken over the possible choices of K

Another definition

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

Intuition: the distribution of the ciphertexts does not depend on the plaintext

The above definition requires no underlying distribution over the message space M

• If the distribution of the ciphertexts obtained when m is encrypted is identical to the distribution
obtained when m′ is encrypted, then it is impossible to tell m and m′ apart when observing c

Random key!

The probability is taken over the possible choices of K

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Pr[EncK(aa) = CC]

Pr[EncK(ab) = CC]

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Pr[EncK(aa) = CC] = Pr[K = 2] = 1
26

Pr[EncK(ab) = CC]

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Pr[EncK(aa) = CC] = Pr[K = 2] = 1
26

Pr[EncK(ab) = CC] = 0

Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Pr[EncK(aa) = CC] = Pr[K = 2] = 1
26

Pr[EncK(ab) = CC] = 0

̸=

□

Relating the two definitions

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

How do the two definitions compare?

Relating the two definitions

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

How do the two definitions compare?

Which one is “better”?

Relating the two definitions

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

How do the two definitions compare?

Which one is “better”?

Relating the two definitions

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

They are equivalent!

⇐
⇒

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c]Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c] = Pr[EncK(m) = c] · Pr[M=m]
Pr[C=c]Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c] = Pr[EncK(m) = c] · Pr[M=m]
Pr[C=c]Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c] = Pr[EncK(m) = c] · Pr[M=m]
Pr[C=c]

Pr[EncK(m) = c] = Pr[C = c]

Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c] = Pr[EncK(m) = c] · Pr[M=m]
Pr[C=c]

Pr[EncK(m) = c] = Pr[C = c]

Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

This does not depend on the choice of m!

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof of equivalence

⇐
= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c] = Pr[EncK(m) = c] · Pr[M=m]
Pr[C=c]

Pr[EncK(m) = c] = Pr[C = c]

Pr[M = m] = Pr[M = m | C = c]

Pick the uniform distribution over M and any c s.t. Pr[C = c] ̸= 0. For an arbitrary m:

This does not depend on the choice of m!

= Pr[EncK(m′) = c] (repeating the same argument for m′)

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

Pr[C = c] =
P

m′∈M Pr[C = c | M = m′] · Pr[M = m′]

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

Pr[C = c] =
P

m′∈M Pr[C = c | M = m′] · Pr[M = m′] =
P

m′∈M Pr[EncK(m′) = c] · Pr[M = m′]

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

= Pr[EncK(m) = c] ·Pm′∈M Pr[M = m′]

Pr[C = c] =
P

m′∈M Pr[C = c | M = m′] · Pr[M = m′] =
P

m′∈M Pr[EncK(m′) = c] · Pr[M = m′]

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

= Pr[EncK(m) = c] ·Pm′∈M Pr[M = m′]

Pr[C = c] =
P

m′∈M Pr[C = c | M = m′] · Pr[M = m′]

= Pr[EncK(m) = c]

=
P

m′∈M Pr[EncK(m′) = c] · Pr[M = m′]

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

= Pr[EncK(m) = c] ·Pm′∈M Pr[M = m′]

Pr[C = c] =
P

m′∈M Pr[C = c | M = m′] · Pr[M = m′]

= Pr[EncK(m) = c] = Pr[C = c | M = m]

=
P

m′∈M Pr[EncK(m′) = c] · Pr[M = m′]

We start by showing that Pr[C = c] = Pr[C = c | M = m]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We have shown that: Pr[C = c] = Pr[C = c | M = m]

Pr[M = m | C = c]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We have shown that: Pr[C = c] = Pr[C = c | M = m]

Pr[M = m | C = c] = Pr[C = c | M = m] · Pr[M=m]
Pr[C=c]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We have shown that: Pr[C = c] = Pr[C = c | M = m]

Pr[M = m | C = c] = Pr[C = c] · Pr[M=m]
Pr[C=c]= Pr[C = c | M = m] · Pr[M=m]

Pr[C=c]

Proof of equivalence

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We have shown that: Pr[C = c] = Pr[C = c | M = m]

Pr[M = m | C = c] = Pr[C = c] · Pr[M=m]
Pr[C=c] = Pr[M = m]

□

= Pr[C = c | M = m] · Pr[M=m]
Pr[C=c]

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext

b′ guess about b

Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext

b′ guess about b
if b′ = b

if b′ ̸= b

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

PrivKeav
A,Π

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

PrivKeav
A,Π

We are dealing with private-key
encryption schemes

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

PrivKeav
A,Π

We are considering COA attacks, i.e.,
security against eavesdroppers

We are dealing with private-key
encryption schemes

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

PrivKeav
A,Π

We are considering COA attacks, i.e.,
security against eavesdroppers

The algorithm A used
by the adversary

We are dealing with private-key
encryption schemes

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

PrivKeav
A,Π

We are considering COA attacks, i.e.,
security against eavesdroppers

The considered
encryption scheme

The algorithm A used
by the adversary

We are dealing with private-key
encryption schemes

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

• A chooses two messages m0,m1 ∈ M

• A random key k is generated (by running Gen)

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by running
Enck(mb), and it is given to A

• A outputs a guess b′ ∈ {0, 1} about b

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

• A chooses two messages m0,m1 ∈ M

• A random key k is generated (by running Gen)

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by running
Enck(mb), and it is given to A

A knows neither k nor b!

• A outputs a guess b′ ∈ {0, 1} about b

Perfect indistinguishability

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

• A chooses two messages m0,m1 ∈ M

• A random key k is generated (by running Gen)

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by running
Enck(mb), and it is given to A

A knows neither k nor b!

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

We write PrivKeav
A,Π = 1 (resp. PrivKeav

A,Π = 0) to denote that the output of the experiment is 1 (resp. 0)

Perfect indistinguishability

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Perfect indistinguishability

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Informally, any adversary A that tries to correctly guess which of two plaintexts corresponds to a given
ciphertext cannot perform better than randomly guessing.

(even if the two candidate plaintexts are chosen by the adversary)

Perfect indistinguishability

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Informally, any adversary A that tries to correctly guess which of two plaintexts corresponds to a given
ciphertext cannot perform better than randomly guessing.

(even if the two candidate plaintexts are chosen by the adversary)

If Pr[PrivKeav
A,Π = 1] = 1

2 + ε for some ε > 0, the scheme is not perfectly indistinguishable

Perfect indistinguishability

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Informally, any adversary A that tries to correctly guess which of two plaintexts corresponds to a given
ciphertext cannot perform better than randomly guessing.

(even if the two candidate plaintexts are chosen by the adversary)

If Pr[PrivKeav
A,Π = 1] = 1

2 + ε for some ε > 0, the scheme is not perfectly indistinguishable

Advantage of A

Perfect indistinguishability: Example

Consider the Vigenère cipher Π with:

M = {a, b, . . . , z}2 K = {A, . . . , Z} ∪ {A, . . . , Z}2 C = {A,B, . . . , Z}2

Where the key is selected as follows:

• Pick a key length ℓ uniformly at random in {1, 2}

• Pick a key k uniformly at random in {A, . . . , Z}ℓ

Perfect indistinguishability: Example

Consider the Vigenère cipher Π with:

Is Π perfectly indistinguishable?

M = {a, b, . . . , z}2 K = {A, . . . , Z} ∪ {A, . . . , Z}2 C = {A,B, . . . , Z}2

Where the key is selected as follows:

• Pick a key length ℓ uniformly at random in {1, 2}

• Pick a key k uniformly at random in {A, . . . , Z}ℓ

Perfect indistinguishability: Example

Consider the Vigenère cipher Π with:

Is Π perfectly indistinguishable?

M = {a, b, . . . , z}2 K = {A, . . . , Z} ∪ {A, . . . , Z}2 C = {A,B, . . . , Z}2

We need to devise a “distinguisher”, i.e., an algorithm A that wins the PrivKeav
A,Π experiment with

probability greater than 1
2

Where the key is selected as follows:

• Pick a key length ℓ uniformly at random in {1, 2}

• Pick a key k uniformly at random in {A, . . . , Z}ℓ

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1]

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

• When b = 0, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the two characters of the key are equal

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

• When b = 0, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the two characters of the key are equal

Pr[PrivKeav
A,Π = 1 | b = 0] = 1

2 + 1
2 · 1

26

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

• When b = 0, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the two characters of the key are equal

Pr[PrivKeav
A,Π = 1 | b = 0] = 1

2 + 1
2 · 1

26

• When b = 1, PrivKeav
A,Π = 1 ⇐⇒

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

• When b = 0, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the two characters of the key are equal

Pr[PrivKeav
A,Π = 1 | b = 0] = 1

2 + 1
2 · 1

26

• When b = 1, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the key k = k1k2 satisfies k1 ̸= k2 + 1 (mod 26)

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

• When b = 0, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the two characters of the key are equal

Pr[PrivKeav
A,Π = 1 | b = 0] = 1

2 + 1
2 · 1

26

• When b = 1, PrivKeav
A,Π = 1 ⇐⇒ ℓ = 1 or ℓ = 2 and the key k = k1k2 satisfies k1 ̸= k2 + 1 (mod 26)

Pr[PrivKeav
A,Π = 1 | b = 1] = 1

2 + 1
2 · 25

26

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

= 1
2 · (12 + 1

2 · 1
26) +

1
2 · (12 + 1

2 · 25
26)

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

= 1
2 · (12 + 1

2 · 1
26) +

1
2 · (12 + 1

2 · 25
26) = 3

4 = 1
2 + 1

4 > 1
2

Algorithm A:

• Output m0 = aa, m1 = ab

• Upon receiving the challenge ciphertext c = c(1)c(2):

Perfect indistinguishability: Example

• If c(1) = c(2) output b′ = 0

• Otherwise (i..e, c(1) ̸= c(2)) output b′ = 1

Pr[PrivKeav
A,Π = 1] = 1

2 Pr[PrivK
eav
A,Π = 1 | b = 0]+ 1

2 Pr[PrivK
eav
A,Π = 1 | b = 1]

= 1
2 · (12 + 1

2 · 1
26) +

1
2 · (12 + 1

2 · 25
26) = 3

4 = 1
2 + 1

4 > 1
2

Advantage of A

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

A private key encryption scheme is perfectly secret if and only if it is perfectly indistinguishable.

Perfect secrecy & perfect indistinguishability

⇐
⇒

⇐
⇒

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

= 1
2 · Pr[EncK(m0) ∈ C0] + 1

2 · Pr[EncK(m1) ∈ C1]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

= 1
2 · Pr[EncK(m0) ∈ C0] + 1

2 · Pr[EncK(m1) ∈ C1]

= 1
2 ·Pc∈C0

Pr[EncK(m0) = c] + 1
2 ·Pc∈C1

Pr[EncK(m1) = c]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

= 1
2 · Pr[EncK(m0) ∈ C0] + 1

2 · Pr[EncK(m1) ∈ C1]

= 1
2 ·Pc∈C0

Pr[EncK(m0) = c] + 1
2 ·Pc∈C1

Pr[EncK(m0) = c]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

= 1
2 · Pr[EncK(m0) ∈ C0] + 1

2 · Pr[EncK(m1) ∈ C1]

= 1
2 ·Pc∈C0

Pr[EncK(m0) = c] + 1
2 ·Pc∈C1

Pr[EncK(m0) = c]

= 1
2 ·Pc∈C Pr[EncK(m0) = c]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Partition C into C0, C1, where Ci is the set of ciphertexts for which A guesses b′ = i

Fix any algorithm A, and let m0,m1 be the messages output by A

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

= 1
2 · Pr[EncK(m0) ∈ C0] + 1

2 · Pr[EncK(m1) ∈ C1]

= 1
2 ·Pc∈C0

Pr[EncK(m0) = c] + 1
2 ·Pc∈C1

Pr[EncK(m0) = c]

= 1
2 ·Pc∈C Pr[EncK(m0) = c] = 1

2

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Algorithm A:

• Output m0,m1

• Upon receiving the challenge ciphertext c

• If c = c∗ output b′ = 0

• Otherwise output a b′ chosen u.a.r. in {0, 1}

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = Pr[b′ = 0 ∧ EncK(m0) = c∗] + Pr[b′ = 0 ∧ EncK(m0) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = Pr[b′ = 0 ∧ EncK(m0) = c∗] + Pr[b′ = 0 ∧ EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + Pr[b′ = 0 | EncK(m0) ̸= c∗] · Pr[EncK(m0) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = Pr[b′ = 0 ∧ EncK(m0) = c∗] + Pr[b′ = 0 ∧ EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + Pr[b′ = 0 | EncK(m0) ̸= c∗] · Pr[EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + 1
2 · Pr[EncK(m0) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = Pr[b′ = 0 ∧ EncK(m0) = c∗] + Pr[b′ = 0 ∧ EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + Pr[b′ = 0 | EncK(m0) ̸= c∗] · Pr[EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + 1
2 · (1− Pr[EncK(m0) = c∗])

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = Pr[b′ = 0 ∧ EncK(m0) = c∗] + Pr[b′ = 0 ∧ EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + Pr[b′ = 0 | EncK(m0) ̸= c∗] · Pr[EncK(m0) ̸= c∗]

= Pr[EncK(m0) = c∗] + 1
2 · (1− Pr[EncK(m0) = c∗])

= 1
2 + 1

2 Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 1 | b = 1] = Pr[b′ = 1 ∧ EncK(m1) = c∗] + Pr[b′ = 1 ∧ EncK(m1) ̸= c∗]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 1 | b = 1] = Pr[b′ = 1 ∧ EncK(m1) = c∗] + Pr[b′ = 1 ∧ EncK(m1) ̸= c∗]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 1 | b = 1] = Pr[b′ = 1 ∧ EncK(m1) = c∗] + Pr[b′ = 1 ∧ EncK(m1) ̸= c∗]

= Pr[b′ = 1 | EncK(m1) ̸= c∗] · Pr[EncK(m1) ̸= c∗]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 1 | b = 1] = Pr[b′ = 1 ∧ EncK(m1) = c∗] + Pr[b′ = 1 ∧ EncK(m1) ̸= c∗]

= Pr[b′ = 1 | EncK(m1) ̸= c∗] · Pr[EncK(m1) ̸= c∗]

= 1
2 · Pr[EncK(m1) ̸= c∗]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[b′ = 0 | b = 0] = 1
2 + 1

2 · Pr[EncK(m0) = c∗]

Pr[b′ = 1 | b = 1] = 1
2 · Pr[EncK(m1) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[PrivKeav
A,Π = 1] = 1

4 + 1
4 · Pr[EncK(m0) = c∗] + 1

4 · Pr[EncK(m1) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[PrivKeav
A,Π = 1] = 1

4 + 1
4 · Pr[EncK(m0) = c∗] + 1

4 · Pr[EncK(m1) ̸= c∗]

̸= 1
4 + 1

4 · Pr[EncK(m1) = c∗] + 1
4 · Pr[EncK(m1) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[PrivKeav
A,Π = 1] = 1

4 + 1
4 · Pr[EncK(m0) = c∗] + 1

4 · Pr[EncK(m1) ̸= c∗]

̸= 1
4 + 1

4 · Pr[EncK(m1) = c∗] + 1
4 · Pr[EncK(m1) ̸= c∗]

Proof of equivalence

Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

NOT

NOT

Pick m0,m1 ∈ M, c∗ ∈ C s.t. Pr[EncK(m0) = c∗] ̸= Pr[EncK(m1) = c∗]

Pr[PrivKeav
A,Π = 1] = 1

2 · Pr[b′ = 0 | b = 0] + 1
2 · Pr[b′ = 1 | b = 1]

Pr[PrivKeav
A,Π = 1] = 1

4 + 1
4 · Pr[EncK(m0) = c∗] + 1

4 · Pr[EncK(m1) ̸= c∗]

̸= 1
4 + 1

4 · Pr[EncK(m1) = c∗] + 1
4 · Pr[EncK(m1) ̸= c∗]

= 1
4 + 1

4 = 1
2

□

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Recap: Equivalent definitions

