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When is an encryption scheme secure?

We are after a formal definition:

If you don’t understand what you want to achieve, how can
you possibly know when (or if) you have achieved it?

With a definition in place, we can check if a proposed scheme meets the definition...

... and provide a formal proof!

On the flip side, one can conclusively show that an encryption scheme is insecure

The historic ciphers from the previous lectures are intuitively “insecure”. Can we prove that formally?



When is an encryption scheme secure?

Another benefit of formal definitions is modularity :

• A designer can replace an encryption scheme with another (that satisfies the same security definition)

• The security of the overall application is unaffected
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Ciphertext-only attacks

• It observes a ciphertext (or multiple ciphertexts) and attempts to determine information about the
underlying plaintext (or plaintexts).

Most basic type of attack (weakest threat model)

It is the attack type that we have been implicitly considering in our discussion about historic ciphers

Insecure channel

The adversary is an eavesdropper
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The adversary learns one or more plaintext/ciphertext pairs (outside of the adversary’s control)
generated using some key.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

• Not all encrypted messages are secret (or they are only secret for a limited amount of time)

Is it realistic? How can the adversary learn the plaintext/ciphertext pairs?

• All “HELLO” and handshake messages of (encrypted) network protocols

• Most Enigma messages would start with “ANX”
(“AN” is German for “TO” and “X” was used as a space)

• Messages that were a continuation of a previous one would start with “FORT” (short for Fortsetzung)

• Embargoed documents that are published at a certain point in time (e.g., quarterly-earnings reports)

E.g., it is trivial to recover the key of a shift/Vigenère cipher if we know even a single
plaintext-ciphertext pair (and then use the key to decrypt any other ciphertext)



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF



Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF

The U.S. cryptanalysts believed that AF meant Midway Island, but they were not 100% sure
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Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn the ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside the adversary’s control) produced using the same key

c = AFMSDIASDHIADLAX

m = AF is short on water
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The adversary modifies/injects traffic and observes Bob response

Many protocols close a connection or request a retransmission when a bad message is received



Chosen-ciphertext attack

The adversary can learn the ciphertexts corresponding to one or more plaintexts of its choice

and

the plaintexts corresponding to one or more ciphertexts of its choice

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
(outside its control) produced using the same key

How can the adversary learn (some information about) the plaintexts of the desired ciphertext?

Being able to know whether a ciphertext is valid enables “Padding oracle” attacks:
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What should a secure encryption scheme guarantee?

Candidate definition 1 (inf.): It should be impossible for an
attacker to recover the key

Is it a “good” definition?

What about the following private-key encryption scheme?

• Gen returns a random key

• Enck(m) = m

• Deck(c) = c
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Candidate definition 2 (inf.): It should be impossible for an
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Is it a “good” definition?

What about an encryption scheme that only changes the last character of the plaintext?
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Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 3 (inf.): It should be impossible for an
attacker to recover any character of the plaintext from the ciphertext

Is it a “good” definition?

What about an encryption scheme where:

• M ⊂ {A, . . . , Z,−}∗ is the set of all “spelled-out” natural numbers, in English

• Enck(m) =

(
A∥fk(m) if m ≥ 100

B∥fk(m) if m < 100
, for some fk(·) ?

FORTY-TWO ∈ M, KITTEN ̸∈ M
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Security guarantees

What should a secure encryption scheme guarantee?

Candidate definition 4 (inf.): It should be impossible for an attacker
to compute any function of the plaintext from the ciphertext

Is it a “good” definition?

What about f(m) = |m|?

What about f(m) = 42?
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What should a secure encryption scheme guarantee?

Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Is it a “good” definition? Maybe...

• What do we mean by information?

• What does it mean to leak additional information?

• How do we capture the attacker’s prior knowledge about the plaintext?
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Shannon’s Treatment

Messages come from a probability distribution over the message space M

The distribution is known to the adversary and captures all the information
the adversary has about the possible messages that can be sent

M is a random variable over M

K is a random variable over the key space K and is distributed
according to the output distribution of Gen

A message m and a key k are chosen independently from M and K,
respectively, and c ← Enck(m) is computed.

C is a random variable (over C) denoting the resulting ciphertext.

Pr[M = m] probability that the plaintext is m
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Example 0

The adversary knows that the message is going to be either ATTACK or
RETREAT

Moreover, he believes that the probability of attack is 70%

Pr[M = ATTACK] = 0.7 Pr[M = RETREAT] = 0.3

a priori probability

Gen outputs a binary string of length 3 chosen uniformly at random (u.a.r.):

Pr[K = 011] = 1
8
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K = {0, . . . , 25}

Upper-case for ciphertexts
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Example 1
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Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,
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Candidate definition 5 (inf.): Regardless of any information an attacker
already has, a ciphertext should leak no additional information about the

underlying plaintext.

Perfect secrecy

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

The adversary learns nothing new
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Idea: Two occurrences of the same characters in the plaintext must produce the same characters in the
ciphertext
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Are shift ciphers perfectly secure?

Our intuition says “no”... can we prove that formally?

• We need to prove that shift ciphers do not satisfy Shannon’s definition

• We need to find a probability distribution over M, a plaintext m, and a ciphertext c such that:

Pr[C = c] ̸= 0 and Pr[M = m | C = c] ̸= Pr[M = m]
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Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

What about the following definition of perfect secrecy?

Intuition: the distribution of the ciphertexts does not depend on the plaintext

The above definition requires no underlying distribution over the message space M

• If the distribution of the ciphertexts obtained when m is encrypted is identical to the distribution
obtained when m′ is encrypted, then it is impossible to tell m and m′ apart when observing c

Random key!

The probability is taken over the possible choices of K
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Another definition: Example

Are shift ciphers perfectly secure according to this new definition?

Hopefully they are not...

We would like to find two messages m,m′ and a ciphertext c such that:

Pr[EncK(m) = c] ̸= Pr[EncK(m′) = c]

m = aa m′ = ab c = CCChoose:

Pr[EncK(aa) = CC] = Pr[K = 2] = 1
26

Pr[EncK(ab) = CC] = 0

̸=

□
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How do the two definitions compare?

Which one is “better”?

Relating the two definitions

Definition: An encryption scheme (Gen,Enc,Dec) with message space
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∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

⇐

Consider an arbitrary distribution over M, any m ∈ M, and any c s.t. Pr[C = c] ̸= 0.

We only need to consider Pr[M = m] > 0 (otherwise the thesis is trivially true)

We have shown that: Pr[C = c] = Pr[C = c | M = m]

Pr[M = m | C = c] = Pr[C = c] · Pr[M=m]
Pr[C=c] = Pr[M = m]

□

= Pr[C = c | M = m] · Pr[M=m]
Pr[C=c]



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext

b′ guess about b



Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk
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c ← Enck(mb)challenge ciphertext

b′ guess about b
if b′ = b

if b′ ̸= b
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Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message space M,

we denote the previous experiment by PrivKeav
A,Π

• A chooses two messages m0,m1 ∈ M

• A random key k is generated (by running Gen)

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by running
Enck(mb), and it is given to A

A knows neither k nor b!

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

We write PrivKeav
A,Π = 1 (resp. PrivKeav

A,Π = 0) to denote that the output of the experiment is 1 (resp. 0)
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Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Informally, any adversary A that tries to correctly guess which of two plaintexts corresponds to a given
ciphertext cannot perform better than randomly guessing.

(even if the two candidate plaintexts are chosen by the adversary)

If Pr[PrivKeav
A,Π = 1] = 1

2 + ε for some ε > 0, the scheme is not perfectly indistinguishable

Advantage of A
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Is Π perfectly indistinguishable?

M = {a, b, . . . , z}2 K = {A, . . . , Z} ∪ {A, . . . , Z}2 C = {A,B, . . . , Z}2

We need to devise a “distinguisher”, i.e., an algorithm A that wins the PrivKeav
A,Π experiment with

probability greater than 1
2

Where the key is selected as follows:

• Pick a key length ℓ uniformly at random in {1, 2}

• Pick a key k uniformly at random in {A, . . . , Z}ℓ
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Pr[PrivKeav
A,Π = 1] =

1

2
∀A

∀ probability distribution over M, ∀m ∈ M, c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

∀m,m′ ∈ M, c ∈ C:
Pr[EncK(m) = c] = Pr[EncK(m′) = c]

A private key encryption scheme is perfectly secret if and only if it is perfectly indistinguishable.

Perfect secrecy & perfect indistinguishability

⇐
⇒

⇐
⇒
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Fix any algorithm A, and let m0,m1 be the messages output by A
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Algorithm A:

• Output m0,m1

• Upon receiving the challenge ciphertext c

• If c = c∗ output b′ = 0

• Otherwise output a b′ chosen u.a.r. in {0, 1}
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□



Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution over M,

every message m ∈ M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈ M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Recap: Equivalent definitions


