When is an encryption scheme secure?

Definition: An encryption scheme (Gen, Enc, Dec) with message space
\mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M}, every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\operatorname{Pr}[C=c] \neq 0$:

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Definition: A private key encryption scheme $\Pi=(G e n, E n c, D e c)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$
\operatorname{Pr}\left[\operatorname{Priv}_{\mathcal{A}, \Pi}^{e a v}=1\right]=\frac{1}{2}
$$

Is there a secure encryption scheme?

All the encryption schemes we have seen so fare are not secure according to our formal definitions
Is there a secure encryption scheme?

Is there a secure encryption scheme?

All the encryption schemes we have seen so fare are not secure according to our formal definitions
Is there a secure encryption scheme?

To all whom it may concern:

Be it known that I, Gilbert S. Vernam, residing at Brooklyn, in the county of Kings and State of New York, have invent-
5 ed certain Improvements in Secret Signaling Systems, of which the following is a specification.

This invention relates to signaling systems and especially to telegraph systems.
0 Its object is to insure secrecy in the transmission of messages and, further, to provide a system in which messages may be transmitted and received in plain characters

Gilbert Vernam or it well-known code but in which the sigmission over the line that they are unintelligible to anyone intercepting them.

Vernam Cipher

- Patented in 1917 by Gilbert Vernam with no proof of security (Shannon's definition of perfect secrecy is from 1949)
- Also called one-time pad
- Shannon subsequently proved that the cipher is perfectly secret
- \oplus denotes the bitwise exclusive or (XOR) operator

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Vernam Cipher

For an integer $\ell>0$, the Vernam cipher is defined as follows:

- $\mathcal{M}=\{0,1\}^{\ell}, \quad \mathcal{C}=\{0,1\}^{\ell}, \quad \mathcal{K}=\{0,1\}^{\ell}$

Vernam Cipher

For an integer $\ell>0$, the Vernam cipher is defined as follows:

- $\mathcal{M}=\{0,1\}^{\ell}, \quad \mathcal{C}=\{0,1\}^{\ell}, \quad \mathcal{K}=\{0,1\}^{\ell}$
- Gen: return a key k chosen uniformly at random from \mathcal{K}, i.e., $\operatorname{Pr}[K=k]=2^{-\ell} \forall k$

Vernam Cipher

For an integer $\ell>0$, the Vernam cipher is defined as follows:

- $\mathcal{M}=\{0,1\}^{\ell}, \quad \mathcal{C}=\{0,1\}^{\ell}, \quad \mathcal{K}=\{0,1\}^{\ell}$
- Gen: return a key k chosen uniformly at random from \mathcal{K}, i.e., $\operatorname{Pr}[K=k]=2^{-\ell} \forall k$

- $\operatorname{Enc}_{k}(m): \quad$ return $c:=k \oplus m$

Vernam Cipher

For an integer $\ell>0$, the Vernam cipher is defined as follows:

- $\mathcal{M}=\{0,1\}^{\ell}, \quad \mathcal{C}=\{0,1\}^{\ell}, \quad \mathcal{K}=\{0,1\}^{\ell}$
- Gen: return a key k chosen uniformly at random from \mathcal{K}, i.e., $\operatorname{Pr}[K=k]=2^{-\ell} \forall k$

- $\operatorname{Enc}_{k}(m): \quad$ return $c:=k \oplus m$

- $\operatorname{Dec}_{k}(c): \quad$ return $m:=k \oplus c$

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

$\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right)=\operatorname{Dec}_{k}(k \oplus m)$
(definition of $E n c_{k}$)

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

$$
\begin{aligned}
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) & =\operatorname{Dec}_{k}(k \oplus m) \\
& =k \oplus(k \oplus m)
\end{aligned}
$$

(definition of $E \mathrm{Enc}_{k}$)
(definition of Dec_{k})

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

$$
\begin{aligned}
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) & =\operatorname{Dec}_{k}(k \oplus m) \\
& =k \oplus(k \oplus m) \\
& =(k \oplus k) \oplus m
\end{aligned}
$$

(definition of $E n c_{k}$)
(definition of Dec_{k})
(associativity of \oplus)

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

$$
\begin{aligned}
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) & =\operatorname{Dec}_{k}(k \oplus m) \\
& =k \oplus(k \oplus m) \\
& =(k \oplus k) \oplus m \\
& =\underbrace{00 \ldots 0}_{\ell \text { times }} \oplus m
\end{aligned}
$$

(definition of $E n c_{k}$)
(definition of Dec_{k})
(associativity of \oplus)
(definition of \oplus)

Vernam Cipher

Is it correct?

$$
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) \stackrel{?}{=} m
$$

$$
\begin{aligned}
\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(m)\right) & =\operatorname{Dec}_{k}(k \oplus m) \\
& =k \oplus(k \oplus m) \\
& =(k \oplus k) \oplus m \\
& =\underbrace{00 \ldots 0}_{\ell \text { times }} \oplus m \\
& =m
\end{aligned}
$$

(definition of $E \mathrm{Enc}_{k}$)
(definition of Dec_{k})
(associativity of \oplus)
(definition of \oplus)
(definition of \oplus)

Example

Alice wants to send a message $m=001010$ of $\ell=6$ bits to Bob. Alice and Bob agreed to use a Vernam cipher and have already exchanged a key $k=101101$

What is the ciphertext c ?

$$
\begin{array}{rllllll}
m=0 & 0 & 1 & 0 & 1 & 0 \\
k=1 & 0 & 1 & 1 & 0 & 1 \\
\hline c=1 & 0 & 0 & 1 & 1 & 1
\end{array}
$$

Example

Alice wants to send a message $m=001010$ of $\ell=6$ bits to Bob. Alice and Bob agreed to use a Vernam cipher and have already exchanged a key $k=101101$

What is the ciphertext c ?

$$
\begin{array}{llllllll}
m=0 & 0 & 1 & 0 & 1 & 0
\end{array} \quad \oplus
$$

Bob receives the ciphetext $c=110101$ from Alice. Alice and Bob have agreed to use a Vernam cipher with key $k=000110$

What is the plaintext m ?

$$
\begin{array}{lllllllll}
c=1 & 1 & 0 & 1 & 0 & 1
\end{array} \quad \oplus \quad=
$$

Encoding

- The historic ciphers were defined over the Latin alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$
- The Vernam cipher is defined over the binary alphabet $\{0,1\}$

Encoding

- The historic ciphers were defined over the Latin alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$
- The Vernam cipher is defined over the binary alphabet $\left\{\begin{array}{ll}0, & 1\end{array}\right\}$

How do we send messages using the Latin (or any other) alphabet?

Encoding

- The historic ciphers were defined over the Latin alphabet $\{\mathrm{a}, \ldots, \mathrm{z}\}$
- The Vernam cipher is defined over the binary alphabet $\left\{\begin{array}{ll}0, & 1\end{array}\right\}$

How do we send messages using the Latin (or any other) alphabet?

- We can always encode the symbols in the message alphabet in binary on Alice's side (before encryption)...
- ... and decode them on Bob's side (after decryption)

Encoding

Decimal - Binary - Octal - Hex - ASCII
 Conversion Chart

Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII

0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	
1	00000001	001	01	SOH	33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
2	00000010	002	02	STX	34	00100010	042	22	-	66	01000010	102	42	B	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	\#	67	01000011	103	43	C	99	01100011	143	63	c
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	\%	69	01000101	105	45	E	101	01100101	145	65	e
6	00000110	006	06	ACK	38	00100110	046	26	\&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	,	71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	OA	LF	42	00101010	052	2 A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	0B	VT	43	00101011	053	2 B	+	75	01001011	113	4B	K	107	01101011	153	6 B	k
12	00001100	014	0 C	FF	44	00101100	054	2 C	,	76	01001100	114	4C	L	108	01101100	154	6 C	1
13	00001101	015	OD	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6 D	m
14	00001110	016	OE	so	46	00101110	056	2E	.	78	01001110	116	4 E	N	110	01101110	156	6 E	n
15	00001111	017	0 F	SI	47	00101111	057	2 F	1	79	01001111	117	4 F	0	111	01101111	157	6 F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	v	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	w	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	x	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
26	00011010	032	1A	SUB	58	00111010	072	3 A	:	90	01011010	132	5A	z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3 B	;	91	01011011	133	5B	[123	01111011	173	7B	\{
28	00011100	034	1 C	FS	60	00111100	074	3 C	<	92	01011100	134	5C	1	124	01111100	174	7 C	1
29	00011101	035	1D	GS	61	00111101	075	3 D	=	93	01011101	135	5D]	125	01111101	175	7D	\}
30	00011110	036	1E	RS	62	00111110	076	3 E	>	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
31	00011111	037	1 F	US	63	00111111	077	3 F	?	95	01011111	137	5 F		127	01111111	177	7F	DEL

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M}, every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\operatorname{Pr}[C=c] \neq 0$:

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Definition: A private key encryption scheme $\Pi=(G e n, E n c, D e c)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$
\operatorname{Pr}\left[\operatorname{Priv} K_{\mathcal{A}, \Pi}^{e a v}=1\right]=\frac{1}{2}
$$

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M}, every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\operatorname{Pr}[C=c] \neq 0$:

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Definition: A private key encryption scheme $\Pi=(G e n, E n c, D e c)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$
\operatorname{Pr}\left[\operatorname{Priv} K_{\mathcal{A}, \Pi}^{e a v}=1\right]=\frac{1}{2}
$$

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$:

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\operatorname{Pr}[K \oplus m=c]
$$

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$:

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right] & =\operatorname{Pr}[K \oplus m=c] \\
& =\operatorname{Pr}[K=c \oplus m]
\end{aligned}
$$

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$:

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right] & =\operatorname{Pr}[K \oplus m=c] \\
& =\operatorname{Pr}[K=c \oplus m]=2^{-\ell}
\end{aligned}
$$

Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
\operatorname{Pr}\left[E n c_{K}(m)=c\right]=\operatorname{Pr}\left[E n c_{K}\left(m^{\prime}\right)=c\right]
$$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$:

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right] & =\operatorname{Pr}[K \oplus m=c] \\
=\operatorname{Pr}[K=c \oplus m]=2^{-\ell} & =\operatorname{Pr}\left[K=c \oplus m^{\prime}\right] \\
& =\operatorname{Pr}\left[K \oplus m^{\prime}=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]
\end{aligned}
$$

Caveats \& Limitations of One-time Pad

- The key must be (at least) as long as the message

Caveats \& Limitations of One-time Pad

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult

Caveats \& Limitations of One-time Pad

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely
(e.g., how would you handle full-disk encryption?)

Caveats \& Limitations of One-time Pad

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely

> (e.g., how would you handle full-disk encryption?)

- The bits of the key must be generated independently and uniformly at random

Caveats \& Limitations of One-time Pad

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely
(e.g., how would you handle full-disk encryption?)
- The bits of the key must be generated independently and uniformly at random
- The key must never be reused (not even partially!)

You should never re-use a one-time pad. It's like toilet paper; if you re-use it, things get messy.

- Michael Rabin

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$
$c_{1} \oplus c_{2}=\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right)$

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$
$c_{1} \oplus c_{2}=\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right)$
$=m_{1} \oplus(k \oplus k) \oplus m_{2}$
(commutativity + associativity)

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$

$$
\begin{aligned}
c_{1} \oplus c_{2} & =\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right) & & \\
& =m_{1} \oplus(k \oplus k) \oplus m_{2} & & \text { (commutativity }+ \text { associativity) } \\
& =m_{1} \oplus 0 \ldots 0 \oplus m_{2} & & \text { (definition of } \oplus)
\end{aligned}
$$

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$

$$
\begin{aligned}
c_{1} \oplus c_{2} & =\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right) & & \\
& =m_{1} \oplus(k \oplus k) \oplus m_{2} & & \text { (commutativity }+ \text { associativity) } \\
& =m_{1} \oplus 0 \ldots 0 \oplus m_{2} & & \text { (definition of } \oplus) \\
& =m_{1} \oplus m_{2} & & \text { (definition of } \oplus)
\end{aligned}
$$

The adversary learns $m_{1} \oplus m_{2}$

Caveats \& Limitations of One-time Pad

What happens if a key is reused?

- $c_{1}=\operatorname{Enc}_{k}\left(m_{1}\right)$
- $c_{2}=\operatorname{Enc}_{k}\left(m_{2}\right)$

The adversary can compute $c_{1} \oplus c_{2}$

$$
\begin{aligned}
c_{1} \oplus c_{2} & =\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right) & & \\
& =m_{1} \oplus(k \oplus k) \oplus m_{2} & & \text { (commutativity }+ \text { associativity) } \\
& =m_{1} \oplus 0 \ldots 0 \oplus m_{2} & & \text { (definition of } \oplus) \\
& =m_{1} \oplus m_{2} & & \text { (definition of } \oplus)
\end{aligned}
$$

The adversary learns $m_{1} \oplus m_{2}$ Do we care?

Caveats \& Limitations of One-time Pad

- Frequency analysis!
(e.g., e $\oplus \mathrm{e}=0 \ldots 0$)

Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII

01000000	100	40	@
01000001	101	41	A
01000010	102	42	B
01000011	103	43	C
01000100	104	44	D
01000101	105	45	E
01000110	106	46	F
01000111	107	47	G
01001000	110	48	H
01001001	111	49	I
01001010	112	4 A	J
01001011	113	4 B	K
01001100	114	4 C	L
01001101	115	4 D	M
01001110	116	4 E	N
01001111	117	4 F	O
01010000	120	50	P
01010001	121	51	Q
01010010	122	52	R
01010011	123	53	S
01010100	124	54	T
01010101	125	55	U
01010110	126	56	V
01010111	127	57	W
01011000	130	58	X
01011001	131	59	Y
01011010	132	5 A	Z
01011011	133	5 B	I
01011100	134	5 C	I
01011101	135	5 D	l
01011110	136	5 E	n
01011111	137	5 F	-
0			

01100000	140	60	\cdot
01100001	141	61	a
01100010	142	62	b
01100011	143	63	c
01100100	144	64	d
01100101	145	65	e
01100110	146	66	f
01100111	147	67	g
01101000	150	68	h
01101001	151	69	i
01101010	152	6 A	j
01101011	153	6 B	k
01101100	154	6 C	l
01101101	155	6 D	m
01101110	156	6 E	n
01101111	157	6 F	o
01110000	160	70	p
01110001	161	71	q
01110010	162	72	r
01110011	163	73	s
01110100	164	74	t
01110101	165	75	u
01110110	166	76	v
01110111	167	77	w
01111000	170	78	x
01111001	171	79	y
01111010	172	7 A	z
01111011	173	7 B	\{
01111100	174	7 C	l
0111101	175	7 D	$\mathrm{\}}$
01111110	176	7 E	\sim
01111111	177	7 F	DEL
0			
0			

Caveats \& Limitations of One-time Pad

- Frequency analysis!
(e.g., e $\oplus \mathrm{e}=0 \ldots 0$)
- Patterns in the ASCII encoding
- The encoding of all letters starts with $01 .$.
- The encoding of a space starts with $00 \ldots$.

Decima	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	-
33	010000	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
34	00100010	042	22	*	66	01000010	102	42	B	98	01100010	142	62	b
35	00100011	043	23	\#	67	01000011	103	43	C	99	01100011	143	63	c
36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
37	00100101	045	25	\%	69	01000101	105	45	E	101	01100101	145	65	e
38	00100110	046	26	\&	70	01000110	106	46	F	102	01100110	146	66	f
39	00100111	047	27	,	71	01000111	107	47	G	103	01100111	147	67	g
40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	68	h
41	00101001	051	29)	73	01001001	111	49	I	105	01101001	151	69	i
42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
43	00101011	053	2B	+	75	01001011	113	4B	K	107	01101011	153	6 B	k
44	00101100	054	2 C	,	76	01001100	114	4 C	L	108	01101100	154	6C	I
45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6 D	m
46	00101110	056	2E	.	78	01001110	116	4E	N	110	01101110	156	6 E	n
47	00101111	057	2 F	1	79	01001111	117	4F	0	111	01101111	157	6 F	0
48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
56	00111000	070	38	8	88	01011000	130	58	X	120	01111000	170	78	x
57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
58	00111010	072	3 A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	\{
60	00111100	074	3C	$<$	92	01011100	134	5 C	1	124	01111100	174	7 C	I
61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	\}
62	00111110	076	3E	$>$	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
63	00111111	077	3F	?	95	01011111	137	5F		127	01111111	177	7F	DEL

Caveats \& Limitations of One-time Pad

- Frequency analysis! (e.g., e $\oplus \mathrm{e}=0 \ldots 0$)
- Patterns in the ASCII encoding
- The encoding of all letters starts with $01 .$.
- The encoding of a space starts with 00 ...
- Trivial to identify the exclusive-or of letter and space!

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	-
33	0tuout	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
34	00100010	042	22	*	66	01000010	102	42	B	98	01100010	142	62	b
35	00100011	043	23	\#	67	01000011	103	43	C	99	01100011	143	63	c
36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
37	00100101	045	25	\%	69	01000101	105	45	E	101	01100101	145	65	e
38	00100110	046	26	\&	70	01000110	106	46	F	102	01100110	146	66	f
39	00100111	047	27	'	71	01000111	107	47	G	103	01100111	147	67	g
40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	68	h
41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6 A	j
43	00101011	053	2B	+	75	01001011	113	4B	K	107	01101011	153	6 B	k
44	00101100	054	2 C	,	76	01001100	114	4C	L	108	01101100	154	6 C	1
45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6 D	m
46	00101110	056	2 E	.	78	01001110	116	4E	N	110	01101110	156	6 E	n
47	00101111	057	2 F	1	79	01001111	117	4 F	0	111	01101111	157	6 F	0
48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	「
51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
56	00111000	070	38	8	88	01011000	130	58	X	120	01111000	170	78	x
57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
58	00111010	072	3 A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	\{
60	00111100	074	3 C	$<$	92	01011100	134	5C	1	124	01111100	174	7 C	I
61	00111101	075	3D	$=$	93	01011101	135	5D]	125	01111101	175	7D	\}
62	00111110	076	3E	>	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
63	00111111	077	3 F	?	95	01011111	137	5F	-	127	01111111	177	7F	DEL

Caveats \& Limitations of One-time Pad

- Alice buys an item from the adversary for $5.20 €$

Caveats \& Limitations of One-time Pad

- Alice buys an item from the adversary for $5.20 €$
- Alice makes a wire transfer from her bank's website

Caveats \& Limitations of One-time Pad

- Alice buys an item from the adversary for $5.20 €$
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form

PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend
$m=\underbrace{010100000100000101011001}_{\text {PAY }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{0000000100000100}_{\text {AMOUNT (520) }}$

Caveats \& Limitations of One-time Pad

- Alice buys an item from the adversary for $5.20 €$
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form

PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend
$m=\underbrace{010100000100000101011001}_{\text {PAY }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{0000000100000100}_{\text {AMOUNT }(520)}$

- The message is encrypted with a one-time pad

Caveats \& Limitations of One-time Pad

- Alice buys an item from the adversary for $5.20 €$
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend

- The message is encrypted with a one-time pad

Caveats \& Limitations of One-time Pad

$$
\begin{aligned}
& m=\underbrace{010100000100000101011001}_{\text {PAY }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{0000000100000100}_{\text {AMOUNT }(520)} \\
& c=\underbrace{0011011000101010000110101}_{\text {PAY }} \underbrace{11010001 \ldots 10001101}_{\text {IBAN }} \underbrace{1011111010010010}_{\text {AMOUNT }}
\end{aligned}
$$

Caveats \& Limitations of One-time Pad

$$
\begin{aligned}
& m=\underbrace{010100000100000101011001}_{\text {PAY }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{0000000100000100}_{\text {AMOUNT }(520)} \\
& c=\underbrace{0011011000101010000110101}_{\text {PAY }} \underbrace{11010001 \ldots 10001101}_{\text {IBAN }} \underbrace{1011111010010010}_{\text {AMOUNT }}
\end{aligned}
$$

Caveats \& Limitations of One-time Pad

Caveats \& Limitations of One-time Pad

$$
\begin{aligned}
& m=\underbrace{010100000100000101011001}_{\text {PAY }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{0000000100000100}_{\text {PAY }} \\
& c=\underbrace{0011011000101010000110101}_{\text {AMOUNT (520) }} \underbrace{11010001 \ldots 10001101}_{\text {IBAN }} \underbrace{1011111010010010}_{\text {AMOUNT }} \\
& \underbrace{001}_{c^{\prime}}=\underbrace{0011011000101010000110101}_{\text {PAY }} \underbrace{11010001 \ldots 10001101}_{\text {PAY }} \underbrace{0011111010010010}_{\text {IBAN }} \\
& m^{\prime}=\underbrace{010100000100000101011001}_{\text {AMOUNT }} \underbrace{01001001 \ldots 00110010}_{\text {IBAN }} \underbrace{1000000100000100}_{\text {AMOUNT (33028) }}
\end{aligned}
$$

Caveats \& Limitations of One-time Pad

$c=\underbrace{0011011000101010000110101}_{\text {PAY }} \underbrace{11010001 \ldots 10001101}_{\text {IBAN }} \underbrace{1011111010010010}_{\text {plaintext }}$

One-time pad in practice

The "red phone": a symbol of the Moscow-Washington hotline

- Actually consisted of two full-duplex telegraph lines, with teletype terminals at the endpoints
- Text-only: speech can be easily misinterpreted
- Text is encrypted using one-time pad
- Keys were exchanged via the embassies, using trusted couriers with briefcases containing sheets of paper with random characters

One-time pad in practice

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using Shannon's definition:

- Pick the uniform distribution of \mathcal{M}, any $m \in \mathcal{M}$, and $c=m$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

Using Shannon's definition:

- Pick the uniform distribution of \mathcal{M}, any $m \in \mathcal{M}$, and $c=m$

$$
\operatorname{Pr}[M=m \mid C=c]
$$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

Using Shannon's definition:

- Pick the uniform distribution of \mathcal{M}, any $m \in \mathcal{M}$, and $c=m$

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[C=c \mid M=m] \cdot \frac{\operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}
$$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

Using Shannon's definition:

- Pick the uniform distribution of \mathcal{M}, any $m \in \mathcal{M}$, and $c=m$

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[C=c \mid M=m] \cdot \frac{\operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}=0
$$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!
Using Shannon's definition:

- Pick the uniform distribution of \mathcal{M}, any $m \in \mathcal{M}$, and $c=m$

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[C=c \mid M=m] \cdot \frac{\operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}=0 \quad \neq \operatorname{Pr}[M=m]
$$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

Using the alternative definition:

For any $m^{\prime} \neq m$ and $c=m$:

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\operatorname{Pr}[K=00 \ldots 0]=0
$$

The all-zeros key (Alice's version of OTP)

- Alice notices that, when $k=\underbrace{000 \ldots 0}_{\ell \text { times }}$:

$$
\operatorname{Enc}_{k}(m)=k \oplus m=m
$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K}=\{0,1\}^{\ell} \backslash\{000 \ldots 0\}$

Is this modified one-time pad cipher perfectly secret?
No!

Using the alternative definition:

For any $m^{\prime} \neq m$ and $c=m$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\operatorname{Pr}[K=00 \ldots 0]=0 \\
& \operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=\operatorname{Pr}\left[K=m^{\prime} \oplus c\right] \neq 0
\end{aligned}
$$

Limitations of Perfect Secrecy

The Vernam cipher is perfectly secret, but...

Limitations of Perfect Secrecy

The Vernam cipher is perfectly secret, but. . .
... keys are long and difficult to share/store

Limitations of Perfect Secrecy

The Vernam cipher is perfectly secret, but. . .
... keys are long and difficult to share/store

Is there a perfectly secure cipher that uses short keys?

Limitations of Perfect Secrecy

The Vernam cipher is perfectly secret, but. . .
... keys are long and difficult to share/store

Is there a perfectly secure cipher that uses short keys?

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Proof:

We prove the contrapositive statement:
If $|\mathcal{K}|<|\mathcal{M}|$ then the encryption scheme is not perfectly secret.

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Proof:

We prove the contrapositive statement:
If $|\mathcal{K}|<|\mathcal{M}|$ then the encryption scheme is not perfectly secret.

In particular, we argue that there must exist some m^{\prime} for which:

$$
\operatorname{Pr}\left[M=m^{\prime}\right] \neq \operatorname{Pr}\left[\mathcal{M}=m^{\prime} \mid C=c\right]
$$

Limitations of Perfect Secrecy

$m \bullet \longrightarrow \cdot c$

denotes that the plaintext m can be encrypted to the ciphertext c (using a suitable key)

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Limitations of Perfect Secrecy
Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$
\begin{gathered}
\left|\mathcal{M}_{c}\right| \leq|\mathcal{K}|<|\mathcal{M}| \\
\Downarrow \\
\mathcal{M} \backslash \mathcal{M}_{c} \neq \emptyset
\end{gathered}
$$

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$
\begin{gathered}
\left|\mathcal{M}_{c}\right| \leq|\mathcal{K}|<|\mathcal{M}| \\
\Downarrow \\
\mathcal{M} \backslash \mathcal{M}_{c} \neq \emptyset
\end{gathered}
$$

Pick any $m^{\prime} \in \mathcal{M} \backslash \mathcal{M}_{c}$

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$
\begin{gathered}
\left|\mathcal{M}_{c}\right| \leq|\mathcal{K}|<|\mathcal{M}| \\
\Downarrow \\
\mathcal{M} \backslash \mathcal{M}_{c} \neq \emptyset
\end{gathered}
$$

Pick any $m^{\prime} \in \mathcal{M} \backslash \mathcal{M}_{c}$

- $\operatorname{Pr}\left[M=m^{\prime}\right]>0$

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$
\begin{gathered}
\left|\mathcal{M}_{c}\right| \leq|\mathcal{K}|<|\mathcal{M}| \\
\Downarrow \\
\mathcal{M} \backslash \mathcal{M}_{c} \neq \emptyset
\end{gathered}
$$

Pick any $m^{\prime} \in \mathcal{M} \backslash \mathcal{M}_{c}$

- $\operatorname{Pr}\left[M=m^{\prime}\right]>0$
- $\operatorname{Pr}\left[M=m^{\prime} \mid C=c\right]=0$

Limitations of Perfect Secrecy

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_{c} denote all messages $m \in \mathcal{M}$ such that $m=\operatorname{Dec}_{k}(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$
\begin{gathered}
\left|\mathcal{M}_{c}\right| \leq|\mathcal{K}|<|\mathcal{M}| \\
\Downarrow \\
\mathcal{M} \backslash \mathcal{M}_{c} \neq \emptyset
\end{gathered}
$$

Pick any $m^{\prime} \in \mathcal{M} \backslash \mathcal{M}_{c}$

- $\operatorname{Pr}\left[M=m^{\prime}\right]>0$
- $\left.\operatorname{Pr}\left[M=m^{\prime} \mid C=c\right]=0 \quad\right\}$

$$
\Longrightarrow \operatorname{Pr}\left[M=m^{\prime}\right] \neq \operatorname{Pr}\left[\mathcal{M}=m^{\prime} \mid C=c\right]
$$

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M}=\{0,1\}^{\ell}$ and $\mathcal{K} \subseteq\{0,1\}^{*}$ is such that $\max _{k \in \mathcal{K}}|k| \geq \ell$, where $|k|$ denotes the number of bits of k

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M}=\{0,1\}^{\ell}$ and $\mathcal{K} \subseteq\{0,1\}^{*}$ is such that $\max _{k \in \mathcal{K}}|k| \geq \ell$, where $|k|$ denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length ℓ (over the binary alphabet) then it must require the use of at least one key with length at least ℓ.

Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K}, then $|\mathcal{K}| \geq|\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M}=\{0,1\}^{\ell}$ and $\mathcal{K} \subseteq\{0,1\}^{*}$ is such that $\max _{k \in \mathcal{K}}|k| \geq \ell$, where $|k|$ denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length ℓ (over the binary alphabet) then it must require the use of at least one key with length at least ℓ.

Proof:

If all keys have length at most $\ell^{\prime}<\ell$ then the encryption scheme cannot be perfectly secret. Indeed:

$$
|\mathcal{K}| \leq \sum_{i=0}^{\ell^{\prime}}\left|\{0,1\}^{i}\right|=\sum_{i=0}^{\ell^{\prime}} 2^{i}=2^{\ell^{\prime}+1}-1 \leq 2^{\ell}-1<2^{\ell}=|\mathcal{M}|
$$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0$)

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad\left(\right.$ i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$$
\begin{aligned}
\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]= & \operatorname{Pr}\left[b^{\prime}=0 \mid \operatorname{Enc}_{K}\left(m_{0}\right)=c\right] \operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{0}\right)=c\right] \\
& +\operatorname{Pr}\left[b^{\prime}=0 \mid \operatorname{Enc}_{K}\left(m_{0}\right) \neq c\right] \operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{0}\right) \neq c\right]
\end{aligned}
$$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad\left(\right.$ i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$$
\begin{aligned}
\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]= & 1 \cdot \varepsilon \\
& +\operatorname{Pr}\left[b^{\prime}=0 \mid \operatorname{Enc}_{K}\left(m_{0}\right) \neq c\right] \operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{0}\right) \neq c\right]
\end{aligned}
$$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\quad 1 \cdot \varepsilon$

$$
+\frac{1}{2} \cdot(1-\varepsilon)
$$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$
$\operatorname{Pr}\left[\operatorname{PrivK}{ }_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \operatorname{Pr}[b=0]+\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \operatorname{Pr}[b=1]$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$
$\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$
$\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{A}, \Pi}^{\text {eav }}=1\right]=\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}+\frac{\varepsilon}{4} \quad$ Advantage $!$

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0$)

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$
$\operatorname{Pr}\left[\operatorname{Priv} K_{\mathcal{A}, \Pi}^{\text {eav }}=1\right]=\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}+\frac{\varepsilon}{4} \quad$ Advantage!
Note: ε can be tiny!

A concrete attack

The proof of the theorem shows that there are some $m, m^{\prime} \in \mathcal{M}, c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_{c} \quad$ (i.e., $\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\varepsilon$ for some $\varepsilon>0$)
- $m^{\prime} \notin \mathcal{M}_{c} \quad$ (i.e., $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]=0\right)$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}

- Output $b^{\prime}=0$ if $\bar{c}=c$
- Otherwise output a random guess $b^{\prime} \in\{0,1\}$

$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$
Running time?
$\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}+\frac{\varepsilon}{4} \quad$ Advantage $!$
Note: ε can be tiny!

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$
The proof of the theorem shows that there are $m, m^{\prime} \in \mathcal{M}$ such that:
There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m^{\prime}

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$
The proof of the theorem shows that there are $m, m^{\prime} \in \mathcal{M}$ such that:
There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m^{\prime}

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon \text { for some } \varepsilon>0
$$

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$
The proof of the theorem shows that there are $m, m^{\prime} \in \mathcal{M}$ such that:
There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m^{\prime}

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon \text { for some } \varepsilon>0
$$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$

- Upon receiving the challenge ciphertext \bar{c}
- If $\bar{c} \in \mathcal{C}_{m^{\prime}}$, output a random guess $b^{\prime} \in\{0,1\}$
- Otherwise output $b^{\prime}=0$

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$
The proof of the theorem shows that there are $m, m^{\prime} \in \mathcal{M}$ such that:
There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m^{\prime}

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon \text { for some } \varepsilon>0
$$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$

Running time?

- Upon receiving the challenge ciphertext \bar{c}
- If $\bar{c} \in \mathcal{C}_{m^{\prime}}$, output a random guess $b^{\prime} \in\{0,1\}$
- Otherwise output $b^{\prime}=0$

Another concrete attack

Let $\mathcal{C}_{m^{\prime}}$ be the set of all ciphertexts c^{\prime} such that $\operatorname{Dec}_{k}\left(c^{\prime}\right)=m^{\prime}$ for some $k \in \mathcal{K}$
The proof of the theorem shows that there are $m, m^{\prime} \in \mathcal{M}$ such that:
There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m^{\prime}

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon \text { for some } \varepsilon>0
$$

Distinguisher \mathcal{A} :

- Output $m_{0}=m$ and $m_{1}=m^{\prime}$
- Upon receiving the challenge ciphertext \bar{c}
- If $\bar{c} \in \mathcal{C}_{m^{\prime}}$, output a random guess $b^{\prime} \in\{0,1\}$
- Otherwise output $b^{\prime}=0$

Running time?
Can be exponential: we need to check all keys to decide if $\bar{c} \in C_{m^{\prime}}$

Advantage?

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}}$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random
- With probability $\varepsilon, c \notin \mathcal{C}_{m^{\prime}}$ and $b^{\prime}=0$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random
$\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random
- With probability $\varepsilon, c \notin \mathcal{C}_{m^{\prime}}$ and $b^{\prime}=0$
$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=(1-\varepsilon) \cdot \frac{1}{2}+\varepsilon \cdot 1=\frac{1}{2}+\frac{\varepsilon}{2}$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random $\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random
- With probability $\varepsilon, c \notin \mathcal{C}_{m^{\prime}}$ and $b^{\prime}=0$
$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=(1-\varepsilon) \cdot \frac{1}{2}+\varepsilon \cdot 1=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[\operatorname{PrivK} \mathrm{K}_{\mathcal{A}, \Pi}^{\text {eav }}=1\right]=\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \operatorname{Pr}[b=0]+\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \operatorname{Pr}[b=1]$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random $\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random
- With probability $\varepsilon, c \notin \mathcal{C}_{m^{\prime}}$ and $b^{\prime}=0$
$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=(1-\varepsilon) \cdot \frac{1}{2}+\varepsilon \cdot 1=\frac{1}{2}+\frac{\varepsilon}{2}$

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{PrivK}{ }_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right] & =\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \operatorname{Pr}[b=0]+\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \operatorname{Pr}[b=1] \\
& =\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}
\end{aligned}
$$

Another concrete attack: advantage?

If $b=1$, then $m_{1}=m^{\prime}$ was encrypted and $\bar{c} \in \mathcal{C}_{m^{\prime}} \quad \Longrightarrow b^{\prime}$ is chosen uniformly at random $\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=\frac{1}{2}$

If $b=0$, then $m_{0}=m$ was encrypted:

- With probability $1-\varepsilon, \bar{c} \in \mathcal{C}_{m^{\prime}}$ and b^{\prime} is chosen uniformly at random
- With probability $\varepsilon, c \notin \mathcal{C}_{m^{\prime}}$ and $b^{\prime}=0$
$\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right]=(1-\varepsilon) \cdot \frac{1}{2}+\varepsilon \cdot 1=\frac{1}{2}+\frac{\varepsilon}{2}$
$\operatorname{Pr}\left[\operatorname{PrivK}{ }_{\mathcal{A}, \Pi}^{\text {eav }}=1\right]=\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \operatorname{Pr}[b=0]+\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \operatorname{Pr}[b=1]$ $=\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}+\frac{\varepsilon}{4} \quad$ Advantage!

Another concrete attack: advantage?

$\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon$ for some $\varepsilon>0$
$\operatorname{Pr}\left[\operatorname{Priv} \mathrm{K}_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\frac{1}{2}+\frac{\varepsilon}{4}$

How big is ε ?

Another concrete attack: advantage?

$\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon$ for some $\varepsilon>0$
$\operatorname{Pr}\left[\operatorname{Priv} \mathrm{K}_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\frac{1}{2}+\frac{\varepsilon}{4}$
How big is ε ?

If keys are just one bit shorter than the messages then there is a pair of messages m, m^{\prime} for which $\varepsilon \geq \frac{1}{2}$

See, e.g., Theorem 17.9 in "A Course in Cryptography" (3rd edition) by Rafael Pass and Abhi Shelat for a proof.

Another concrete attack: advantage?

$\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \in \mathcal{C}_{m^{\prime}}\right]=1-\varepsilon$ for some $\varepsilon>0$
$\operatorname{Pr}\left[\operatorname{Priv} K_{\mathcal{A}, \Pi}^{\mathrm{eav}}=1\right]=\frac{1}{2}+\frac{\varepsilon}{4} \quad \geq 62.5 \%$
How big is ε ?

If keys are just one bit shorter than the messages then there is a pair of messages m, m^{\prime} for which $\varepsilon \geq \frac{1}{2}$

The advantage is is at least $\frac{1}{8}$!

See, e.g., Theorem 17.9 in "A Course in Cryptography" (3rd edition) by Rafael Pass and Abhi Shelat for a proof.

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}|<|\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}|<|\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

No private-key encryption scheme can handle arbitrarily long messages and be perfectly secret (recall that \mathcal{K} is a finite set).

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}|<|\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

No private-key encryption scheme can handle arbitrarily long messages and be perfectly secret (recall that \mathcal{K} is a finite set).

Individuals occasionally claim they have developed a radically new encryption scheme that is "unbreakable" and achieves the security of the one-time pad without using keys as long as what is being encrypted. [...] Anyone making such claims either knows very little about cryptography or is blatantly lying.

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:
$1 \& 2 \Longrightarrow$ perfect secrecy.

Pick any pair of messages $m, m^{\prime} \in \mathcal{M}$ and any $c \in \mathcal{C}$.

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

$1 \& 2 \Longrightarrow$ perfect secrecy.

Pick any pair of messages $m, m^{\prime} \in \mathcal{M}$ and any $c \in \mathcal{C}$.
Let k (resp. k^{\prime}) the unique key such that $\operatorname{Enc}_{k}(m)=c\left(\right.$ resp. $\left.\operatorname{Enc}_{k^{\prime}}\left(m^{\prime}\right)=c\right)$.

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

$1 \& 2 \Longrightarrow$ perfect secrecy.

Pick any pair of messages $m, m^{\prime} \in \mathcal{M}$ and any $c \in \mathcal{C}$.
Let k (resp. k^{\prime}) the unique key such that $\operatorname{Enc}_{k}(m)=c\left(\right.$ resp. $\left.\operatorname{Enc}_{k^{\prime}}\left(m^{\prime}\right)=c\right)$.

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\operatorname{Pr}[K=k]=\frac{1}{|\mathcal{K}|}
$$

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

$1 \& 2 \Longrightarrow$ perfect secrecy.

Pick any pair of messages $m, m^{\prime} \in \mathcal{M}$ and any $c \in \mathcal{C}$.
Let k (resp. k^{\prime}) the unique key such that $\operatorname{Enc}_{k}(m)=c\left(\right.$ resp. $\left.\operatorname{Enc}_{k^{\prime}}\left(m^{\prime}\right)=c\right)$.

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m)=c\right]=\operatorname{Pr}[K=k]=\frac{1}{|\mathcal{K}|}=\operatorname{Pr}\left[K=k^{\prime}\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{\prime}\right)=c\right]
$$

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $E n c_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 2$.
Fix any $m^{*} \in \mathcal{M}, c \in \mathcal{C}$ such that $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 2$.
Fix any $m^{*} \in \mathcal{M}, c \in \mathcal{C}$ such that $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$
For each $m_{i} \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$
$\left(\right.$ since $\left.\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{i}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0\right)$

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 2$.
Fix any $m^{*} \in \mathcal{M}, c \in \mathcal{C}$ such that $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$
For each $m_{i} \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$
(since $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{i}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$)
Let K_{i} be the set of keys k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 2$.
Fix any $m^{*} \in \mathcal{M}, c \in \mathcal{C}$ such that $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$
For each $m_{i} \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$
(since $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{i}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$)
Let K_{i} be the set of keys k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$

- For all $m_{i},\left|K_{i}\right| \geq 1$
- Each key k belongs to at most one set K_{i} (otherwise two plaintexts encrypt to the same ciphertexts with the same key)

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 2$.
Fix any $m^{*} \in \mathcal{M}, c \in \mathcal{C}$ such that $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$
For each $m_{i} \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$
(since $\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{i}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m^{*}\right)=c\right] \neq 0$)
Let K_{i} be the set of keys k such that $\operatorname{Enc}_{k}\left(m_{i}\right)=c$

- For all $m_{i},\left|K_{i}\right| \geq 1$
- Each key k belongs to at most one set K_{i} (otherwise two
\Longrightarrow For all $m_{i},\left|K_{i}\right|=1$ plaintexts encrypt to the same ciphertexts with the same key)

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 1$.
For each key $k_{i} \in \mathcal{K}$ (resp. k_{j}), there is a unique set K_{i} (resp. K_{j}) containing k_{i} (resp. k_{j}).

Shannon's Theorem

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Proof:

perfect secrecy $\Longrightarrow 1$.
For each key $k_{i} \in \mathcal{K}$ (resp. k_{j}), there is a unique set K_{i} (resp. K_{j}) containing k_{i} (resp. k_{j}).
$\operatorname{Pr}\left[K=k_{i}\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{i}\right)=c\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{j}\right)=c\right]=\operatorname{Pr}\left[K=k_{j}\right]$

Proof of security of One-Time pad, revisited

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Theorem: The one-time pad encryption scheme is perfectly secret.
Proof:

Proof of security of One-Time pad, revisited

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Theorem: The one-time pad encryption scheme is perfectly secret.
Proof:

- $\mathcal{M}=\mathcal{K}=\mathcal{C}$ therefore $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$

Proof of security of One-Time pad, revisited

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M}=\mathcal{K}=\mathcal{C}$ therefore $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}}=\frac{1}{|\mathcal{K}|}$

Proof of security of One-Time pad, revisited

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $E n c_{k}(m)=c$.

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M}=\mathcal{K}=\mathcal{C}$ therefore $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}}=\frac{1}{|\mathcal{K}|}$
- Given m and c, there is a unique key k such that $\operatorname{Enc}_{k}(m)=c$, namely $c \oplus m$ (recall that $\operatorname{Enc}_{k}(m)=k \oplus m$)

Proof of security of One-Time pad, revisited

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme with $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.
2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$ such that $\operatorname{Enc}_{k}(m)=c$.

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M}=\mathcal{K}=\mathcal{C}$ therefore $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}}=\frac{1}{|\mathcal{K}|}$
- Given m and c, there is a unique key k such that $\operatorname{Enc}_{k}(m)=c$, namely $c \oplus m$ (recall that $\operatorname{Enc}_{k}(m)=k \oplus m$)

The claim follows from Shannon's theorem.

