Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

e For EAV-security we had to rely on PRGs

Pseudorandom Functions

How do we build a CPA-secure encryption scheme?
e For EAV-security we had to rely on PRGs

e For CPA-security we need a new cryptographic primitive: pseudorandom functions (PRFs)

(Pseudo-)Random Functions

What does it mean for a function f: {0,1}* — {0,1}* to be random?

(Pseudo-)Random Functions

What does it mean for a function f: {0,1}* — {0,1}* to be random?

The question is ill-posed!

e It does not make sense to say that a fixed function is random

(Pseudo-)Random Functions

What does it mean for a function f: {0,1}* — {0,1}* to be random?

The question is ill-posed!

int getRandomNumber()

return 4. // chosen by fair dice roll.
/ Quaranteed to be random.

e |t does not make sense to say that a fixed function is random

e Just like it does not make sense to say that 0010110 is 3

random, or that the number 4 is random

(Pseudo-)Random Functions

What does it mean for a function f: {0,1}* — {0,1}* to be random?

The question is ill-posed!

int getRandomNumber()

return 4. // chosen by fair dice roll.
/ Quaranteed to be random.

e |t does not make sense to say that a fixed function is random

e Just like it does not make sense to say that 0010110 is 3

random, or that the number 4 is random

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*

This function has two inputs. The first input is called the key

Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*
This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k€ {0,1}* and z € {0,1}*, and computes F'(k,)

Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*
This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k€ {0,1}* and z € {0,1}*, and computes F'(k,)

We are usually interested in keyed function in which:
e The key has some fixed length ¢,
e The second input has some fixed length 7,

e The output has some fixed length £,,;

Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*
This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k€ {0,1}* and z € {0,1}*, and computes F'(k,)

We are usually interested in keyed function in which:

These quantities are
actually functions of the
security parameter!

e The key has some fixed length Zj., (n)

e The second input has some fixed length ¢;,,(n)

e The output has some fixed length £,,; (n)

Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*
This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k€ {0,1}* and z € {0,1}*, and computes F'(k,)

We are usually interested in keyed function in which:

These quantities are
actually functions of the
security parameter!

e The key has some fixed length Zj., (n)

e The second input has some fixed length ¢;,,(n)

e The output has some fixed length £,,; (n)

Simplifying assumption (can be removed): F' is length-preserving

gk:ey (n) — gzn (n> — gout (n) —n

Number of functions

Let Func,, be the set of all functions f: {0,1}" — {0,1}" How big is Func,?

Number of functions

Let Func,, be the set of all functions f: {0,1}" — {0,1}"

Think of the function as a huge table:

2™ rows

\

00...000 10...011
00...001 01...010
00...010 00...110
11...111 10...001

How big is Func,

?

Number of functions

Let Func,, be the set of all functions f: {0,1}" — {0,1}"

Think of the function as a huge table:

2™ rows

How many distinct tables?

\

00...000 10...011
00...001 01...010
00...010 00...110
11...111 10...001

How big is Func,

?

Number of functions
Let Func,, be the set of all functions f: {0,1}" — {0,1}" How big is Func,?

Think of the function as a huge table:

) We have 2™ choices
00...000 | 10...011 4 per row
00...001 01...010
2™ rows g 00...010 00...110
\ 11...111 10...001

How many distinct tables?

Number of functions

Let Func,, be the set of all functions f: {0,1}" — {0,1}"

Think of the function as a huge table:

(00...000 | 10...011 4
00...001 | 01...010
2™ rows g 00...010 00...110
11...111 | 10...001

How many distinct tables?

(choices per row)#rows

— (2n)2” — 2n-2”

How big is Func,

We have 2™ choices

per row

?

Number of functions
Let Func,, be the set of all functions f: {0,1}" — {0,1}" How big is Func,?

Think of the function as a huge table:

) We have 2™ choices
00...000 | 10...011 4 per row
00...001 01...010
2™ rows g 00...010 00...110
\ 11...111 10...001

How many distinct tables?
(choices per row)#™ows = (27)2" = gn2"

For n = 4 there 25¢ functions

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Func,

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Func,

By the principle of deferred decisions, we can equivalently think of f:

e As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0,1}")

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Func,

By the principle of deferred decisions, we can equivalently think of f:

e As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0,1}")

e As a function whose outputs are decided lazily: whenever we need to evaluate f(x):

e If f(x) was never evaluated before with input x:

e Return a binary string chosen u.a.r. from {0,1}"

e Otherwise, return the previously chosen string for input x

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"

e Evaluate the function F'(k,x) for different choices of x, while k stays the same

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

Back to keyed functions

We will typically use efficient keyed functions as follows:

e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

How big is the support of this distribution?

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

How big is the support of this distribution?

There can be at most as many functions Fj, as keys k € {0,1}" = at most 2" functions!

(out of 272")

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

How big is the support of this distribution?

There can be at most as many functions Fj, as keys k € {0,1}" = at most 2" functions!

n-2"
For n = 4 there are 2% = 16 possible choices. .. out of 25 possible functions! (out of 2=)

Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

How big is the support of this distribution?
There can be at most as many functions Fj, as keys k € {0,1}" = at most 2" functions!

n-2"
For n = 4 there are 2% = 16 possible choices. .. out of 25 possible functions! (out of 2=)

We can only sample a tiny fractions of the functions in Func,,!

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

e There is an oracle O that can be queried with a string z € {0,1}"

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

e There is an oracle O that can be queried with a string x € {0,1}" O

f(z)

e O either always answers with Fj(x), or it always answers with f(x)

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

e There is an oracle O that can be queried with a string x € {0,1}" O

f(z)

e O either always answers with Fj(x), or it always answers with f(x)

e D can query O many times

Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

e There is an oracle O that can be queried with a string x € {0,1}" O
e O either always answers with F}(x), or it always answers with f(z) F ()
e D can query O many times f(();)

e [needs to guess whether O is evaluating F}, or f

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O DI

in {0,1}"
Evaluates
Fy.

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O n > DI
in {0,1}" <
Evaluates >
Fy,
-

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O n > DI
in {0,1}" <
Evaluates >
Fy,
-

Output (0 or 1)

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O n > DI
in {0,1}" <
Evaluates >
F. B
> Output (0 or 1) DO (17)
>

“World 0":

f is chosen u.a.r.
in Func,, Evaluates

f

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O n > DI
in {0,1}" <
Evaluates >
F. B
> Output (0 or 1) DO (17)
>

“World 0":

<
O >
f is chosen u.a.r. <
. >
in Func,, Evaluates
/ <
>

Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O m > DISEITE By
in {0,1}" <
Evaluates >
Fy. B
> Output (0 or 1) DO (17)
>
“World 0":
O m >
f is chosen u.a.r. <
in Func,, Evaluates >
/ <
> Output (0 or 1) DIO(1m)
>

“World 1":

k 1s chosen u.a.r.
in {0,1}"

“World 0":

f is chosen u.a.r.
in Func,

Defining pseudorandom functions

O

Evaluates
Ey

Distinguisher

Output (0 or 1)

Evaluates

f

Denotes the kind of oracle
D is interacting with

)

Output (0 or 1) DO (17)

“World 1":

k 1s chosen u.a.r.
in {0,1}"

“World 0":

f is chosen u.a.r.
in Func,

Defining pseudorandom functions

O

Evaluates
Ey

Distinguisher

D wants to tell “World 0"
apart from “World 1"

Output (0 or 1)

Evaluates

f

Denotes the kind of oracle
D is interacting with

)

Output (0 or 1) DO (1m)

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function £ such that:

| Pr[DF*O)(1™) = 1] — Pr[D/V(1™) = 1] | < e(n)

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function £ such that:

| Pr[DF*O)(1™) = 1] — Pr[D/V(1™) = 1] | < e(n)

b

Probability over the randomness of the
distinguisher and the choice of &

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function £ such that:

| Pr[DF*O)(1™) = 1] — Pr[D/V(1™) = 1] | < e(n)

/ .

Probability over the randomness of the Probability over the randomness of
distinguisher and the choice of & the distinguisher and the uniform
choice of f € Func,

Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom
functions?

o F(k,z)=1"

o Fk,x)=F

o Fk,x)=kVux
o Fk,o)=kANx

o Flkx)=kdx

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

G(s):
o Return F,(0...000) || F;(0...001)

expansion factor /(n) = 2n

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

G(k): (x) :.binary
o Return F((0)) || ()| . [Fe((L) e

expansion factor /(n) =n - L (for L = O(poly(n)))

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

G(k): (x) :.binary
o Return Fi((0)) I| Fk (1) | ... [E((L)) encoding of
expansion factor /(n) =n - L (for L = O(poly(n)))

Proof that G is a PRG? Security reduction (“breaking G implies breaking F")
e Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)
e Use D to build a distinguisher A for ' (with non negligible gap)

e This contradicts the fact that F' is a PRF (i.e., no such D can exist)

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

D) [@) -+ 1 2((L)))

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible
e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

D) [@) -+ 1 2((L)))

Pr[AF()(17) = 1] = Pr[D(G(k)) = 1]

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible
e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

D) [@) -+ 1 2((L)))

Pr[AF()(17) = 1] = Pr[D(G(k)) = 1] Pr[A/0) (1) = 1] = Pr[D(r) = 1]

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

Random string

DC@(0) [@) |- [®((L))) - Ln
v/ in {0,1}

Pr[AF()(17) = 1] = Pr[D(G(k)) = 1] Pr[A/) (1) = 1] = Pr[D(r) = 1]

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

Random string

DC@(0) [@) |- [®((L))) - Ln
v/ in {0,1}

Pr[AF()(17) = 1] = Pr[D(G(k)) = 1] Pr[A/ (1) = 1] = Pr[D(r) = 1]

| Pr[AT O (1m) = 1] — Pr[A/O(1™) = 1] | = | Pr[D(G(K))] — Pr[D(r)] | = (n)

PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

Random string

D(2(0) (1) - 1 2((L))) ,/ in {0,111
Pr[AF()(17) = 1] = Pr[D(G(k)) = 1] Pr[A/ (1) = 1] = Pr[D(r) = 1]
| Pr[AT O (1m) = 1] — Pr[A/O(1™) = 1] | = | Pr[D(G(K))] — Pr[D(r)] | = (n)

e Therefore F is not a PRF. § [

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor £(n) = n - 2t(")

G(k) =11011010010010110000101001011110

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor £(n) = n - 2t(")

Divide the output of G(k) into 24" “chunks” of n bits each

G(k) =[11011010010010110000f101001011110

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()

A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010

Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011

100 0000

k) =11101/101001001011/000010100101(1110

G(k) ‘ 101 1010

110 0101

111 1110

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()
A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010
Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011
100 0000
k) =11101/101001001011/000010100101(1110
G(k) ‘ 101 | [1010
| | 110 | [0101
F.((i)) returns the i-th group of bits (counting from 0) of G(k) 111 1110

lin(n) =t(n), lbour(n) =n

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()
A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010
Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011
100 0000
k) =11101/101001001011/000010100101(1110
G(k) ‘ 101 | [1010
| | 110 | [0101
F.((i)) returns the i-th group of bits (counting from 0) of G(k) 111 1110

lin(n) =t(n), lbour(n) =n

Caveat: To construct the table in polynomial time we need t(n) = O(logn)

PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()
A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010
Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011
100 0000
k) =11101/101001001011/000010100101(1110
G(k) ‘ 101 | [1010
| | 110 | [0101
F.((i)) returns the i-th group of bits (counting from 0) of G(k) 111 1110

lin(n) =t(n), lbour(n) =n

Caveat: To construct the table in polynomial time we need ¢t(n) = O(logn) == I has short inputs

PRFs and PRGs

Proof of security: G(k) =11011010010010110000101001011110

e Suppose that F' is not a PRF, then there is A such that

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n)

PRFs and PRGs

Proof of security: G(k) =[t101/t01001001011000010100101]1110

e Suppose that F' is not a PRF, then there is A such that

x F(z)

| Pr[AF() (1) = 1] — Pr[AfO) (1) = 1] | = e(n) for non-negligible £(n) 000 1101

001 1010

. . . . 010 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

101 1010

110 0101

111 1110

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(K)) = 1] = Pr[AF()(17) = 1]

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(K)) = 1] = Pr[AF()(17) = 1]

e Pr[D(r) = 1] = Pr[A/0)(17) = 1]

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(k)) = 1] = Pr{APC (1) = 1] |
» = |Pr[D(G(k))] — Pr[D(r)]| = £(n) non negligible

e Pr[D(r) = 1] = Pr[A/0)(17) = 1]

PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(k)) = 1] = Pr{APC (1) = 1] |
» = |Pr[D(G(k))] — Pr[D(r)]| = £(n) non negligible

e Pr[D(r) = 1] = Pr[A/0)(17) = 1])
—> (G is not a PRG gD

he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)

he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)

Imagine the following complete binary
tree of height n

0 G 1
Yy Yy
0 G 1 0 G 1
Y Yy
G G G G
0 v/\vl 0 v/\'l 0 y/\yl , \'1
G

G G G G G G
01 Oy 7yl Oy 7yl 07yl Oy7y1 Oy 01

he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
' : : 1 Y
(O_JG% (_OJ%
G G G G
0 1 0 1 0 1 1
Y e T
G G G G G G o G
031 Oyl Oyl Oyl Oy vl Oy 3! 0yl

Interpret the key k of F'(k,x) as the seed of the root of the tree

he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
'ﬁ 0 G 1 G1(k)
(o_/g GoGi(k)) 0 LG 1
G G G | Gi(Go(Gi(R)) | G
0 1 0 1 0 1 1
Ty Y i
G G G G G G o G
Oy =y Oy 7yl Oy 1 Oy~ 1 Oyl Oyl Oy =yl

Interpret the key k of F'(k,x) as the seed of the root of the tree

Interpret the binary digits of x as a path in the tree

he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
'ﬁ 0 G 1 G1(k)
(O_JGQ, GoGi(k)) 0 LG 1
G G G | Gi(Go(Gi(R)) | G
0 1 0 1 0 1 1
Ty Y i
G G G G G G o G
Oy =y Oy 7yl Oy 1 Oy~ 1 Oyl Oyl Oy =yl

Interpret the key k of F'(k,x) as the seed of the root of the tree
Interpret the binary digits of x as a path in the tree
Interpret the output of the leaf as the output of F(k, x) F(k,1011) = G1(G1(Go(G1(k))))

he Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

he Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

he Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just £(n) =n + 1

In fact, we can build a PRG with expansion factor n + p(n) for any polynomial p(n)

Increasing the expansion factor

An easy case: increasing the expansion factor by 1

e Start from a PRG G with expansion factor /(n) =n + 1

W

Increasing the expansion factor

An easy case: increasing the expansion factor by 1
e Start from a PRG G with expansion factor /(n) =n + 1
e Call G(s) and interpret the first n bits x1x5 ...z, of the output as a new seed

e Let the last bit of G(s) be y

W

G G(s) = x1x913 ... TRY

WUy v Y

Increasing the expansion factor

An easy case: increasing the expansion factor by 1
e Start from a PRG G with expansion factor /(n) =n + 1
e Call G(s) and interpret the first n bits x1x5 ...z, of the output as a new seed
e Let the last bit of G(s) be y

e Return G(z122...2,) ||y

i
¢ v
G

G(s) = x1x913 ... TRY

Increasing the expansion factor

An easy case: increasing the expansion factor by 1
e Start from a PRG G with expansion factor /(n) =n + 1
e Call G(s) and interpret the first n bits x1x5 ...z, of the output as a new seed
e Let the last bit of G(s) be y

e Return G(z122...2,) ||y

|
¢ v
G

G(s) = x1x913 ... TRY

A | vV V vY Overall expansion factor /(n) =n + 2

Increasing the expansion factor (length-doubling)

Increasing the expansion factor from n + 1 to 2n

e Start from a PRG G with expansion factor /(n) =n + 1
e Repeat the previous idea for n levels

e The i-th intermediate level outputs n + 1 bits
e 1 bits are used as a seed for the next level

e The (n+ 1)-th bit y; will be part of the output
of the whole construction

The last level outputs n + 1 bits 125 ... 2,y,
e The final output is 122 ... 2 YnYn_1...Y1

Overall expansion factor: {(n) =n+n =2n

S

;
G

G/

vy

G

vy

G

W
L

11K

Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

Algorithm a(s): (here s € {0,1}")) si-1
® ip<s lu .
e Fori=1,2,...,p(n): o
e Interpret ¢;_1 as s;_1||o;_1 where |s;_1| =n and |o;_1| =i —1 lll o l
o t; < G(si—1)|loi—1 e
e Return) E

Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

ti—1
~ Si—1 O;—1
Algorithm G(s): (here s € {0,1}") —_— =
»tos !
e Fori=1,2,...,p(n): G
o Interpret tz’—l as Si_1||0'¢_1 where |Sz’—1| — n and |Ui—1| =7—1 lll . ll =
Yyvvyy
o ti <+ G(si—1)||0i-1 ——— ,
e Return) - T

Theorem: If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define H/ to be the distribution on strings of length n + p(n) output by the following process:

e Choose t; u.a.r. from {0, 1}t

e Run G starting from iteration j + 1 of the for loop and returns its output

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define H/ to be the distribution on strings of length n + p(n) output by the following process:

e Choose t; u.a.r. from {0, 1}t

e Run G starting from iteration j + 1 of the for loop and returns its output

Note that: H? is the output distribution of G(s) for a seed s choosen u.a.r. from {0,1}"

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define H/ to be the distribution on strings of length n + p(n) output by the following process:

e Choose t; u.a.r. from {0, 1}t

e Run G starting from iteration j + 1 of the for loop and returns its output

Note that: H? is the output distribution of G(s) for a seed s choosen u.a.r. from {0,1}"
12 s a string of length p(n) 4+ n chosen u.a.r. from {0,1}"*P(")

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define H/ to be the distribution on strings of length n + p(n) output by the following process:

e Choose t; u.a.r. from {0, 1}t

e Run G starting from iteration 5 + 1 of the for loop and returns its output
Note that: H? is the output distribution of G(s) for a seed s choosen u.a.r. from {0,1}"
12 s a string of length p(n) 4+ n chosen u.a.r. from {0,1}"*P(")

We prove that if there exists a polynomial-time distinguisher D (with non-negligible gap) for G, then
there is a also a distinguisher D for GG

Increasing the expansion factor to n + p(n)

Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:
Define H% to be the distribution on strings of length n 4 p(n) output by the following process:
e Choose t; u.a.r. from {0,1}"*J

e Run G starting from iteration j + 1 of the for loop and returns its output

Note that: H? is the output distribution of G(s) for a seed s choosen u.a.r. from {0,1}"
12 s a string of length p(n) 4+ n chosen u.a.r. from {0,1}"*P(")

We prove that if there exists a polynomial-time distinguisher D (with non-negligible gap) for G, then
there is a also a distinguisher D for GG

Let D be a distinguisher such that:
| Pr, [D(G(s))] = Pr,[D(r)] | = e(n) for some non-negligible £(n)

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

Algorithm D(w): (here w € {0,1}"*1)
e Choose j u.a.r.in {1,2,...,p(n)}
e Choose ¢/ u.a.r.in {0,1}7~"
e Set t; = w0} and run G from iteration j to compute

e Run ﬁ(tp(n)) and copy its output

tp(n)

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

Algorithm D(w): (here w € {0,1}"*1)

e Choose j u.a.r.in {1,2,...,p(n)}

e Choose ¢/ u.a.r.in {0,1}7~"

e Set t; = w0} and run G from iteration j to compute tp(n)

e Run ﬁ(tp(n)) and copy its output

Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* N

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/
Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* _ o

If w is a uniform string in {0, 1}":

e Both w and o’ are chosen u.a.r., therefore ¢;. is a uniform string in {0, 1yt

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/
Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* _ o

If w is a uniform string in {0, 1}":
e Both w and o’ are chosen u.a.r., therefore ¢;. is a uniform string in {0, 1yt

e The distribution of ¢, is exactly Hj

Pr,[D(r) =1|j=j*]=Pr D(t) =1]

t<—H$;,* [

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/

Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* N

If w is the output of G(s) on some seed s choosen u.a.r. from {0,1}":

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/
Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* _ o

If w is the output of G(s) on some seed s choosen u.a.r. from {0,1}":

e Define ¢;«_1 = s||o; and notice that ¢;-_1 is a uniform string in {0,1}"+7"~1

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/
Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* _ o

If w is the output of GG(s) on some seed s choosen u.a.r. from {0, 1}":
e Define tj- _; = s||o’; and notice that tj«_; is a uniform string in {0, 1yntim—1

e Imagine running the j*-th iteration of G. We would have tj = G(s)|lo; = wl|o;

Increasing the expansion factor to n + p(n)

Consider the following distinguisher D’ for G-

ti—1
Algorithm Dw): (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
e Choose ¢/ u.a.r.in {0,1}7~" =
e Set t; = w||o; and run G from iteration j to compute 2,y L
e Run ﬁ(tp(n)) and copy its output \ u u \VL,V—V/
Fix j* € {1,2,...,p(n)} and consider what happens when D chooses j = j* _ o

If w is the output of G(s) on some seed s choosen u.a.r. from {0,1}":

e Define ¢;«_1 = s||o; and notice that ¢;-_1 is a uniform string in {0,1}"+7"~1

e Imagine running the j*-th iteration of G. We would have tj = G(s)|lo; = wl|o;

e The distribution of ,,) is exactly Hi !

Pr,[D(G(s)) =1 j =j*] =Pr, -1 [D(t) = 1]

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r)=1]j=j=Pr, - [D(t)=1 Pr[D(G(s)) =1]j=j7]=Pr

t<—H¥'L* [

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r)=1]j=j=Pr, - [D(t)=1 Pr[D(G(s)) =1]j=j7]=Pr

t<—H¥'L* [

Increasing the expansion factor to n + p(n)

We have shown that:

Pr[D(r) =1]j =] =Pr, - [Dt) =1 Pr[D(G(s) =1]j=*] = Pr, o]
p(n) p(n)
PD(r) = 1]= Y Pr[D(r) =1]j =] -Prlj = j*] = (L > P D0 =1l

Increasing the expansion factor to n + p(n)

We have shown that:

PrD(r) =1]j =] =Pr, - [D) =1] PrD(G(s) =1|j =] = Pr,_s
p(n) p(n)
PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1
p(n)

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r) =1|j=j*|=Pr, ,,-[Dt)=1] Pr[D(G(s)) =1]|j =] =Pr, . [D(t) =1]
p(n) p(n)
PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1
p(n) 1 p(n)

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r) =1|j=j*|=Pr, ,,-[Dt)=1] Pr[D(G(s)) =1]|j =] =Pr, . [D(t) =1]
p(n) p(n)
PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1

Increasing the expansion factor to n + p(n)

We have shown that:

Pro[D(r) =1|j =] =Pr_p- (D) =1] Pr[D(G(s)) =1]j =" = Pr,_yy+[D(t) = 1]
p(n) p(n)
Pr{D() =1]= 3 PrlD(r) =11 =5 - Prli=J] == > Pr [D(5)=1]
p(n) O R
PHD(G(s)) = 1] = 3. PrD(G(s) =114 =FIPeli =57 === 3 Pr [D()=1

We can now bound:

| Pr[D(G(s)) = 1] — Pr,[D(r) = 1] |

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r)=1|j=j]=Pr, ,~[Dt)=1 Pr[D(G(s) =1|j=j]=Pr, ,-1[D(t)
p(n) p(n)
PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1
p(n) O R
PHD(G(s)) = 1] = 3. PrD(G(s) =114 =FIPeli =57 === 3 Pr [D()=1

We can now bound:

p(n) p(n)—1
PP =1 PrlD =1 | =| o (3 P D=1 3 P (D)=

Increasing the expansion factor to n + p(n)

We have shown that:

Pr,[D(r) =1|j=j*] =Pr, ,-[Dt)=1 Pr[D(G(s)) =1|j=j*] =Pr, .
p(n) p(n)

PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1

p(n) , Pl R
PrD(G(s) =11 = > PrD(G(9) =11 =j1Prlj =] = o5 3. Pr [D(®) =
We can now bound:

| p(n) R p(n)—-1 R
| Pry[D(G(s)) =1] = Pr,[D(r) =1]| = | o) (Z t P;j*[D(w =1] — Z t(_PbI[’J [D(t)
1 ~ ~
51| BP0 = 1= BP0 =)

Increasing the expansion factor to n + p(n)

We have shown that:

Pr.[D(r) =1]j=j=Pr,_,~[D(t)=1] PrJD(G(s)) =1|j=j*]=Pr,_,--[D(t) =1]
p(n) p(n)

PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1

p(n) Pl ~
Pr[D(G(s)) = 1] = Z PrD(G(s)) = 1]j =j"Prlj =5 = o) Z WP;j*[D(t) = 1]
We can now bound:

1 p(n) R p(n) -1 ~
| Pry[D(G(s)) = 1] = Pr,.[D(r) = 1] | = | o) (Z t P;j*[D(t) =1] — Z WP;J [D(t) = 1]) '
1 ~ ~
= s |, B PO =1 Py D0 =1

Increasing the expansion factor to n + p(n)

We have shown that:

Pr.[D(r) =1]j=j=Pr,_,~[D(t)=1] PrJD(G(s)) =1|j=j*]=Pr,_,--[D(t) =1]
p(n) p(n)
PD(r) =1]= Y Pr{D(r) = 1] j =] -Prlj = j*] = ﬁ > Pr (D=1
p(n) Pl ~
Pr[D(G(s)) = 1] = Z PrD(G(s)) = 1]j =j"Prlj =5 = o) Z WP;j*[D(t) = 1]
We can now bound:
1 p(n) R p(n) -1 ~
| Pry[D(G(s)) = 1] = Pr,.[D(r) = 1] | = | o) (Z t P;j*[D(t) =1] — Z WP;J [D(t) = 1]) '
1 ~ ~
= s |, B PO =1 Py D0 =1
= —&s | Pro[D(r) = 1] = Pry[D(G(s)) = 1] | = =4

Increasing the expansion factor to n + p(n)

We have shown that:

Pr.[D(r) =1]j=j=Pr,_,~[D(t)=1] PrJD(G(s)) =1|j=j*]=Pr,_,--[D(t) =1]
p(n) P ~

PrD(r) = 1] = > PrD(r)=1|j=j] -Prj=j"] = o) > tf;a [D(t) = 1]

p(n) Pl ~
PrlD(G(s)) = 1] = Z PrD(G(s)) =1]j=j"1Prj=7"] = o) Z t%P;,j*[D(t) = 1]
We can now bound:

1 p(n) R p(n) -1 ~
| Pry[D(G(s)) = 1] = Pr,.[D(r) = 1] | = | o) (Z t P;j*[D(t) =1] — Z WP;J [D(t) = 1]) '
N]ﬁ TS D(t) = 1] - s D) =1 negll\ilgitble!

&5+ | Pr,[D(r) = 1] = Pr[D(G(s)) = 1] | = % éD

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

00...000 10...011
00...001 01...010

2n
. 00...010 00...110

Fows

11...111 10...001

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

R
(00...000 | 10...011 4 — 2" choices

00...001 01...010
. 00...010 00...110

on
Fows

11...111 10...001

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

R
(00...000 | 10...011 4 — 2" choices

00...001 01...010 “ ~ 927 _1 choices
{ 00...010 00...110

on
Fows

11...111 10...001

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

R
(00...000 | 10...011 4 — 2" choices

00...001 01...010 “ ~ 927 _1 choices
{ 00...010 00...110

on
Fows

11...111 | 10...001 “ only 1 choice

Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

on
Fows

00...000 | 10...011 4 — 2" choices

00...001 | 01...010 “ —~ 27 _1 choices

00...010 | 00...110 _ Perm,,| = 2" - (2" — 1)
_ | = (2"

11...111 | 10...001 “ only 1 choice

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

|Perm,, |

I
n— 00 |Func,,|

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

Perm,, n)|
n— 00 ‘Funcn’ 7 — 00 2n2”

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

i |Perma| . (2m)! .t

= ~ m
n—r00 \Funcn] n—oo 2N2" t—oo tt

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

. |Perm 27! t! V2t - tt /et

lim | | — lim @)t _ lim — — lim 2t - ¢ /e

n—oo |Func,| n—yoo 2n2" 500t T oo tt
t=2"

t
. L ¢
Stirling’s approximation: t! ~ /2wt (—)

e

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

, Perm on)| £ gttt

lim | a — lim Q — lim - — lim V2t -t'/e — lim V27t

n—oo |Func,| n—yo0 QN2 oo $t S m Sm
t =27

t
. L ¢
Stirling’s approximation: t! ~ /2wt (—)

e

Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==

What's the (asymptotic) proportion of functions in Func,, that are also permutations (i.e., invertible)?

, Perm o) | t! \/ Ctt /et vV
lim | a = lim g = lim — = lim 2mt-t/e = lim 2mt =0
n—oo |Func,| n—oo 212 t—oo 1t oo tt t—oo et
t=2"

t
. L ¢
Stirling’s approximation: t! ~ /2wt (—)

Asymptotically, almost no function in Func,, is a permutation!

Keyed permutations

A keyed permutation is a keyed function F : {0, 1}kes(?) 5 £0, 1}4in(n) — L0, 1}fout (") such that:

o lin(n) = Lloyut(n) (this quantity is called the block length); and

o For every k € {0,1}%<s(™) the function Fj,(z) = F(k,z) is a permutation

Keyed permutations
A keyed permutation is a keyed function F : {0, 1}kes(?) 5 £0, 1}4in(n) — {0, 1}fout (") such that:
o lin(n) = Lloyut(n) (this quantity is called the block length); and

o For every k € {0,1}%<s(™) the function Fj,(z) = F(k,z) is a permutation

A keyed permutation is efficient if:
e There is a polynomial-time algorithm that computes F(z) given x; and

e There is a polynomial-time algorithm that computes F~1(y) given y

Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ¢ such that:

| Pr{DPO(17) = 1] - Pr[DFO (1) = 1] | < e(n)
Probability over the randomness of the Probability over the randomness of
distinguisher and the choice of k the distinguisher and the uniform

choice of f € Perm,,

Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ¢ such that:

| Pr{DPO(17) = 1] - Pr[DFO (1) = 1] | < e(n)
Probability over the randomness of the Probability over the randomness of
distinguisher and the choice of k the distinguisher and the uniform

choice of f € Perm,,

Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can
distinguish it from a random permutation

Pseudorandom permutations

Recall that (asymptotically) almost no function in Func,, is a permutation

Nevertheless:

e As soon as /;,(n) > n, a PRP is indistinguishable (in polynomial time, with non-negligible gap)
from PRF

e Since a PRF is indistinguishable from a random function, this implies that PRPs with ¢;,(n) > n
are also indistinguishable from random functions!

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are

indistinguishable from random permutation even if the adversary

has oracle access to both the permutation and its inverse

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are

indistinguishable from random permutation even if the adversary

has oracle access to both the permutation and its inverse

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ¢ such that:

| Pr[DFOF O (1) = 1] — Pr[DI O T O (17) = 1] | < e(n)

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are

indistinguishable from random permutation even if the adversary

has oracle access to both the permutation and its inverse

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ¢ such that:

| Pr[DFOETO (17) = 1) — Pr[DIOST O (17) = 1] | < ¢(n)

Evaluates
F.

Strong pesudorandom permutations
“World 1": k is chosen u.a.r. in {0,1}"

| Distinguisher

D wants to tell “World 0"
apart from “World 1"

DFk(')aF_l(')(]_n)

» Output (0 or 1)

“World 0": f is chosen u.a.r. in Perm,,

Evaluates

f

| Distinguisher

>
‘_
| Evaluates
¢ —1
. Fy
‘_
‘_
Evaluates
¢ f—l
k

Denotes the kind of oracle
D is interacting with

)

DIOLITC) (1)
» Output (0 or 1)

