#### **Pseudorandom Functions**

How do we build a CPA-secure encryption scheme?

• For EAV-security we had to rely on PRGs

#### **Pseudorandom Functions**

How do we build a CPA-secure encryption scheme?

- For EAV-security we had to rely on PRGs
- For CPA-security we need a new cryptographic primitive: **pseudorandom functions** (PRFs)

What does it mean for a function  $f: \{0,1\}^* \to \{0,1\}^*$  to be random?

What does it mean for a function  $f: \{0,1\}^* \to \{0,1\}^*$  to be random?

The question is ill-posed!

• It does not make sense to say that a *fixed* function is random

What does it mean for a function  $f : \{0,1\}^* \to \{0,1\}^*$  to be random?

The question is ill-posed!

- It does not make sense to say that a *fixed* function is random
- Just like it does not make sense to say that 0010110 is random, or that the number 4 is random

| int getRandor  | nNumber()                    |
|----------------|------------------------------|
| ۶<br>return 4; | // chosen by fair dice roll. |
| }              | // guaranteed to be random.  |
|                | xkcd.com                     |

What does it mean for a function  $f : \{0,1\}^* \to \{0,1\}^*$  to be random?

The question is ill-posed!

- It does not make sense to say that a *fixed* function is random
- Just like it does not make sense to say that 0010110 is random, or that the number 4 is random

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

| int getRandor | nNumber()                                                   |
|---------------|-------------------------------------------------------------|
| ۲eturn 4;     | // chosen by fair dice roll.<br>// guaranteed to be random. |
| }             | // jourourourouro                                           |
|               | xkcd.com                                                    |

A keyed function is a function  $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ 

This function has two inputs. The first input is called the key

A keyed function is a function  $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ 

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input  $k \in \{0,1\}^*$  and  $x \in \{0,1\}^*$ , and computes F(k,x)

A keyed function is a function  $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ 

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input  $k \in \{0,1\}^*$  and  $x \in \{0,1\}^*$ , and computes F(k,x)

We are usually interested in keyed function in which:

- The key has some fixed length  $\ell_{key}$
- The second input has some fixed length  $\ell_{in}$
- The output has some fixed length  $\ell_{out}$

A keyed function is a function  $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ 

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input  $k \in \{0,1\}^*$  and  $x \in \{0,1\}^*$ , and computes F(k,x)

We are usually interested in keyed function in which:

- The key has some fixed length  $\ell_{key}(n)$ • The second input has some fixed length  $\ell_{in}(n)$ 
  - The output has some fixed length  $\ell_{out}(n)$

These quantities are actually functions of the security parameter!

A keyed function is a function  $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ 

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input  $k \in \{0,1\}^*$  and  $x \in \{0,1\}^*$ , and computes F(k,x)

We are usually interested in keyed function in which:

- The key has some fixed length  $\ell_{key}(n)$
- The second input has some fixed length  $\ell_{in}(n)$
- The output has some fixed length  $\ell_{out}(n)$

Simplifying assumption (can be removed): *F* is **length-preserving** 

$$\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n$$

These quantities are actually functions of the security parameter!

Let  $\mathsf{Func}_n$  be the set of all functions  $f:\{0,1\}^n\to\{0,1\}^n$ 

Let  $\operatorname{Func}_n$  be the set of all functions  $f: \{0,1\}^n \to \{0,1\}^n$ 

Think of the function as a huge table:

|            | x     | F(x)        |
|------------|-------|-------------|
| ſ          | 00000 | 10011       |
|            | 00001 | 01010       |
| $2^n$ rows | 00010 | 00110       |
|            | ÷     | -<br>-<br>- |
| l          | 11111 | 10001       |

Let  $\operatorname{Func}_n$  be the set of all functions  $f: \{0,1\}^n \to \{0,1\}^n$ 

Think of the function as a huge table:

|            | x     | F(x)  |
|------------|-------|-------|
| (          | 00000 | 10011 |
|            | 00001 | 01010 |
| $2^n$ rows | 00010 | 00110 |
|            | :     |       |
|            | 11111 | 10001 |

How many distinct tables?

Let  $\operatorname{Func}_n$  be the set of all functions  $f: \{0,1\}^n \to \{0,1\}^n$ 

Think of the function as a huge table:



How many distinct tables?

Let  $\operatorname{Func}_n$  be the set of all functions  $f: \{0,1\}^n \to \{0,1\}^n$ 

Think of the function as a huge table:



How many distinct tables?

(choices per row)<sup>$$\#$$
rows</sup> =  $(2^n)^{2^n} = 2^{n \cdot 2^n}$ 

Let  $\operatorname{Func}_n$  be the set of all functions  $f: \{0,1\}^n \to \{0,1\}^n$ 

Think of the function as a huge table:



How many distinct tables?

(choices per row)<sup>#rows</sup> = 
$$(2^n)^{2^n} = 2^{n \cdot 2^n}$$

For n = 4 there  $2^{64}$  functions

## Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set Func<sub>n</sub>

#### Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set Func<sub>n</sub>

By the *principle of deferred decisions*, we can **equivalently** think of f:

 As a function whose outputs are completely determined at sampling time (i.e., for each x, choose a random string f(x) in {0,1}<sup>n</sup>)

## Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set Func<sub>n</sub>

By the *principle of deferred decisions*, we can **equivalently** think of f:

- As a function whose outputs are completely determined at sampling time (i.e., for each x, choose a random string f(x) in  $\{0,1\}^n$ )
- As a function whose outputs are decided **lazily**: whenever we need to evaluate f(x):
  - If f(x) was never evaluated before with input x:
    - Return a binary string chosen u.a.r. from  $\{0,1\}^n$
  - Otherwise, return the previously chosen string for input x

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

Choosing k is equivalent to choosing a function  $F_k \in Func_n!$ 

Pick a uniform k. We now have a **distribution** over the functions in  $Func_n$ 

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

Choosing k is equivalent to choosing a function  $F_k \in \text{Func}_n$ ! Pick a uniform k. We now have a **distribution** over the functions in  $\text{Func}_n$ 

How big is the support of this distribution?

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

Choosing k is equivalent to choosing a function  $F_k \in \text{Func}_n$ ! Pick a uniform k. We now have a **distribution** over the functions in  $\text{Func}_n$ 

How big is the support of this distribution?

There can be at most as many functions  $F_k$  as keys  $k \in \{0,1\}^n \implies$  at most  $2^n$  functions!

(out of  $2^{n \cdot 2^n}$ )

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

Choosing k is equivalent to choosing a function  $F_k \in Func_n!$ 

Pick a uniform k. We now have a **distribution** over the functions in  $Func_n$ 

How big is the support of this distribution?

There can be at most as many functions  $F_k$  as keys  $k \in \{0,1\}^n \implies$  at most  $2^n$  functions!

(out of  $2^{n \cdot 2^n}$ )

For n = 4 there are  $2^4 = 16$  possible choices... out of  $2^{64}$  possible functions!

We will typically use efficient keyed functions as follows:

- Chose some key  $k \in \{0,1\}^n$
- Evaluate the function F(k, x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function  $F_k(x) = F(k, x)$

Choosing k is equivalent to choosing a function  $F_k \in \text{Func}_n$ ! Pick a uniform k. We now have a **distribution** over the functions in  $\text{Func}_n$ 

How big is the support of this distribution?

There can be at most as many functions  $F_k$  as keys  $k \in \{0,1\}^n \implies$  at most  $2^n$  functions!

For n = 4 there are  $2^4 = 16$  possible choices... out of  $2^{64}$  possible functions!

(out of  $2^{n \cdot 2^n}$ )

We can only sample a **tiny** fractions of the functions in  $Func_n!$ 

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \operatorname{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

**Workaround**: we give D oracle access to  $F_k$  and f and input  $1^n$ :

• There is an oracle  $\mathcal O$  that can be queried with a string  $x\in\{0,1\}^n$ 



**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

- There is an oracle  $\mathcal O$  that can be queried with a string  $x\in\{0,1\}^n$
- $\mathcal{O}$  either always answers with  $F_k(x)$ , or it always answers with f(x)



**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

- There is an oracle  $\mathcal O$  that can be queried with a string  $x\in\{0,1\}^n$
- $\mathcal{O}$  either always answers with  $F_k(x)$ , or it always answers with f(x)
- D can query  $\mathcal{O}$  many times



**Intuition:**  $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  is pseudorandom if no polynomial-time algorithm D can distinguish the function  $F_k$  (where k is chosen u.a.r.) from a random function  $f \in \text{Func}_n$ , except for a negligible probability.

**Caution!** What's the input to *D*?

- We cannot use an encoding of  $F_k$  and f as the input to D
- Such an encoding would be (super)exponential in n !
- D needs to run in a time that is polynomially bounded by the size of its input

- There is an oracle  $\mathcal O$  that can be queried with a string  $x\in\{0,1\}^n$
- $\mathcal{O}$  either always answers with  $F_k(x)$ , or it always answers with f(x)
- D can query  $\mathcal O$  many times
- D needs to guess whether  $\mathcal{O}$  is evaluating  $F_k$  or f


"World 1":

k is chosen u.a.r. in  $\{0,1\}^n$ 











"World 0":

f is chosen u.a.r. in Func<sub>n</sub>







f is chosen u.a.r. in Func<sub>n</sub>









# Defining pseudorandom functions (formal)

**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

# Defining pseudorandom functions (formal)

**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of k

## Defining pseudorandom functions (formal)

**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of k

Probability over the randomness of the distinguisher and the uniform choice of  $f \in Func_n$ 

# Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom functions?

- $F(k,x) = \mathbf{1}^n$
- F(k, x) = k
- $F(k, x) = k \lor x$
- $F(k, x) = k \wedge x$
- $F(k, x) = k \oplus x$

If we have a PRF F(k, x) we can use it to build a PRG G.

G(s): • Return  $F_s(0\ldots000) \, \| \, F_s(0\ldots001)$ 

expansion factor  $\ell(n)=2n$ 

If we have a PRF F(k, x) we can use it to build a PRG G.

G(k): $\langle x \rangle = \text{binary}$ • Return  $F_k(\langle 0 \rangle) || F_k(\langle 1 \rangle) || \dots || F_k(\langle L \rangle)$ encoding of xwith n bits

expansion factor  $\ell(n) = n \cdot L$ 

(for L = O(poly(n)))

If we have a PRF F(k, x) we can use it to build a PRG G.

• Return  $F_k(\langle 0 \rangle) || F_k(\langle 1 \rangle) || \dots || F_k(\langle L \rangle)$ • keturn  $F_k(\langle 0 \rangle) || F_k(\langle 1 \rangle) || \dots || F_k(\langle L \rangle)$ • keturn  $F_k(\langle 0 \rangle) || F_k(\langle 1 \rangle) || \dots || F_k(\langle L \rangle)$ 

expansion factor  $\ell(n) = n \cdot L$  (for L = O(poly(n)))

Proof that G is a PRG? Security reduction ("breaking G implies breaking F")

- Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)
- Use D to build a distinguisher  $\mathcal{A}$  for F (with non negligible gap)
- This contradicts the fact that F is a PRF (i.e., no such D can exist)

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

 $D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$ 

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

 $D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$ 

 $\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$ 

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

 $D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$ 

 $\Pr[\mathcal{A}^{F_k(\cdot)}(1^n) = 1] = \Pr[D(G(k)) = 1] \qquad \qquad \Pr[\mathcal{A}^{f(\cdot)}(1^n) = 1] = \Pr[D(r) = 1]$ 

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

$$D( \ \Phi(\langle \mathbf{0} \rangle) \| \ \Phi(\langle \mathbf{1} \rangle) \| \dots \| \ \Phi(\langle \mathbf{L} \rangle) )$$

$$\operatorname{Pr}[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \operatorname{Pr}[D(G(k)) = 1]$$

$$\operatorname{Pr}[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \operatorname{Pr}[D(r) = 1]$$

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

$$D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(1^n) = 1] = \Pr[D(G(k)) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(1^n) = 1] = \Pr[D(r) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(1^n) = 1] = \Pr[D(r) = 1]$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(1^n) = 1] = \Pr[D(r) = 1]$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(1^n) = 1] = \Pr[D(r) = 1]$$

$$\left| \operatorname{Pr}[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] \right| = \left| \operatorname{Pr}[D(G(k))] - \operatorname{Pr}[D(r)] \right| = \varepsilon(n)$$

• Return  $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$ 

• Suppose that G is not a PRG, then there is some D such that:

 $|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$  where  $\varepsilon(n)$  is not negligible

• We design a distinguisher  $\mathcal{A}$  for F.  $\mathcal{A}^{\Phi}$  has access to an oracle  $\Phi$  and returns:

$$D(\Phi(\langle \mathbf{0} \rangle) \| \Phi(\langle \mathbf{1} \rangle) \| \dots \| \Phi(\langle L \rangle))$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] \mid = \left| \Pr[D(G(k))] - \Pr[D(r)] \right| = \varepsilon(n)$$

• Therefore F is not a PRF.

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

Divide the output of G(k) into  $2^{t(n)}$  "chunks" of n bits each

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

Divide the output of G(k) into  $2^{t(n)}$  "chunks" of n bits each

| x   | $F_k(x)$ |
|-----|----------|
| 000 | 1101     |
| 001 | 1010     |
| 010 | 0100     |
| 011 | 1011     |
| 100 | 0000     |
| 101 | 1010     |
| 110 | 0101     |
| 111 | 1110     |

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

Divide the output of G(k) into  $2^{t(n)}$  "chunks" of n bits each

#### G(k) = 1101100010010110000101001011110

 $F_k(\langle i \rangle)$  returns the *i*-th group of bits (counting from 0) of G(k) $\ell_{in}(n) = t(n), \ \ell_{out}(n) = n$ 

| x   | $F_k(x)$ |
|-----|----------|
| 000 | 1101     |
| 001 | 1010     |
| 010 | 0100     |
| 011 | 1011     |
| 100 | 0000     |
| 101 | 1010     |
| 110 | 0101     |
| 111 | 1110     |

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

Divide the output of G(k) into  $2^{t(n)}$  "chunks" of n bits each

#### G(k) = 1101100010010110000101001011110

 $F_k(\langle i \rangle)$  returns the *i*-th group of bits (counting from 0) of G(k) $\ell_{in}(n) = t(n), \ \ell_{out}(n) = n$ 

**Caveat:** To construct the table in polynomial time we need  $t(n) = O(\log n)$ 

| x   | $F_k(x)$ |
|-----|----------|
| 000 | 1101     |
| 001 | 1010     |
| 010 | 0100     |
| 011 | 1011     |
| 100 | 0000     |
| 101 | 1010     |
| 110 | 0101     |
| 111 | 1110     |

If we have a PRF F(k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist  $\iff$  PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

A simple case: consider a PRG G(k) with expansion factor  $\ell(n) = n \cdot 2^{t(n)}$ 

Divide the output of G(k) into  $2^{t(n)}$  "chunks" of n bits each

#### G(k) = 1101100010010110000101001011110

 $F_k(\langle i \rangle)$  returns the *i*-th group of bits (counting from 0) of G(k) $\ell_{in}(n) = t(n), \ \ell_{out}(n) = n$ 

**Caveat:** To construct the table in polynomial time we need  $t(n) = O(\log n) \implies F$  has short inputs

| x   | $F_k(x)$ |
|-----|----------|
| 000 | 1101     |
| 001 | 1010     |
| 010 | 0100     |
| 011 | 1011     |
| 100 | 0000     |
| 101 | 1010     |
| 110 | 0101     |
| 111 | 1110     |

Proof of security:

G(k) = 11011010010010110000101001011110

• Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that

 $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 

Proof of security:

G(k) = 11011010010010110000101001011110

• Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that

 $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 

- Consider the following distinguisher D(w) for G:
  - D splits w into blocks, and builds a table as before

| x   | $F_k(x)$          |
|-----|-------------------|
| 000 | 1101              |
| 001 | 1010              |
| 010 | <mark>0100</mark> |
| 011 | 1011              |
| 100 | 0000              |
| 101 | 1010              |
| 110 | 0101              |
| 111 | 1110              |

Proof of security:

G(k) = 11011010010010110000101001011110

• Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that  $F_k(x)$ x $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 1101 000 001 1010 010 0100 • Consider the following distinguisher D(w) for G: 011 1011 • D splits w into blocks, and builds a table as before 100 0000 101 1010 • D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$  . Whenever  $\mathcal{A}$  queries 110 0101  $\Phi(x)$ , D answers with the output of the row labeled x in the table 111 1110

Proof of security:

G(k) = 11011010010010110000101001011110

• Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that  $F_k(x)$  $\boldsymbol{x}$  $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 1101 000 001 1010 010 0100 • Consider the following distinguisher D(w) for G: 011 1011 • D splits w into blocks, and builds a table as before 100 0000 101 1010 • D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$  . Whenever  $\mathcal{A}$  queries 110 0101  $\Phi(x)$ , D answers with the output of the row labeled x in the table 111 1110 • D returns the same output as  $\mathcal{A}$ 

Proof of security:

- Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that  $F_k(x)$  $\boldsymbol{x}$  $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 1101 000 1010 001 0100 010 • Consider the following distinguisher D(w) for G: 011 1011 • D splits w into blocks, and builds a table as before 100 0000 101 1010 • D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$  . Whenever  $\mathcal{A}$  queries 110 0101  $\Phi(x)$ , D answers with the output of the row labeled x in the table 111 1110 • D returns the same output as  $\mathcal{A}$
- $\Pr[D(G(k)) = 1] = \Pr[A^{F_k(\cdot)}(1^n) = 1]$
# PRFs and PRGs

Proof of security:

G(k) = 11011010010010110000101001011110

- Suppose that F is not a PRF, then there is  $\mathcal{A}$  such that  $F_k(x)$  $\boldsymbol{x}$  $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 1101 000 1010 001 0100 010 • Consider the following distinguisher D(w) for G: 011 1011 • D splits w into blocks, and builds a table as before 100 0000 101 1010 • D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$  . Whenever  $\mathcal{A}$  queries 110 0101  $\Phi(x)$ , D answers with the output of the row labeled x in the table 111 1110 • D returns the same output as  $\mathcal{A}$
- $\Pr[D(G(k)) = 1] = \Pr[A^{F_k(\cdot)}(1^n) = 1]$
- $\Pr[D(r) = 1] = \Pr[A^{f(\cdot)}(1^n) = 1]$

## PRFs and PRGs

Proof of security:

G(k) = 11011010010010110000101001011110

• Suppose that F is not a PRF, then there is  $\mathcal A$  such that

 $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 

- Consider the following distinguisher D(w) for G:
  - D splits w into blocks, and builds a table as before
  - D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$ . Whenever  $\mathcal{A}$  queries  $\Phi(x)$ , D answers with the output of the row labeled x in the table
  - $\bullet~D$  returns the same output as  ${\cal A}$

• 
$$\Pr[D(G(k)) = 1] = \Pr[A^{F_k(\cdot)}(1^n) = 1]$$
  
•  $\Pr[D(r) = 1] = \Pr[A^{f(\cdot)}(1^n) = 1]$ 

$$\implies |\Pr[D(G(k))] - \Pr[D(r)]| = \varepsilon(n) \text{ non negligible}$$

| x   | $F_k(x)$          |
|-----|-------------------|
| 000 | 1101              |
| 001 | 1010              |
| 010 | <mark>0100</mark> |
| 011 | 1011              |
| 100 | 0000              |
| 101 | 1010              |
| 110 | 0101              |
| 111 | 1110              |

## PRFs and PRGs

Proof of security:

G(k) = 11011010010010110000101001011110

 $F_k(x)$ 

1101

1010

0100

1011

0000

1010

0101

1110

 $\boldsymbol{x}$ 

000

001

010

011

100

101

110

111

Suppose that F is not a PRF, then there is A such that

 $|\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]| = \varepsilon(n)$  for non-negligible  $\varepsilon(n)$ 

- Consider the following distinguisher D(w) for G:
  - D splits w into blocks, and builds a table as before
  - D simulates the oracle  $\Phi$  and calls  $\mathcal{A}^{\Phi}$ . Whenever  $\mathcal{A}$  queries  $\Phi(x)$ , D answers with the output of the row labeled x in the table
  - D returns the same output as  $\mathcal{A}$

• 
$$\Pr[D(G(k)) = 1] = \Pr[A^{F_k(\cdot)}(1^n) = 1]$$
  
•  $\Pr[D(r) = 1] = \Pr[A^{f(\cdot)}(1^n) = 1]$   
 $\Rightarrow G \text{ is not a PRG}$   
 $\Rightarrow \Box$ 

Let G be a length-doubling PRG, i.e.,  $\ell(n) = 2n$ .

 $G(s) = G_0(s) \parallel G_1(s)$ 

Let G be a length-doubling PRG, i.e.,  $\ell(n) = 2n$ .

 $G(s) = G_0(s) \parallel G_1(s)$ 

Imagine the following complete binary tree of height  $\boldsymbol{n}$ 





Interpret the key k of  ${\cal F}(k,x)$  as the seed of the root of the tree



Interpret the key k of F(k, x) as the seed of the root of the tree Interpret the binary digits of x as a path in the tree



Interpret the key k of F(k, x) as the seed of the root of the tree Interpret the binary digits of x as a path in the tree Interpret the output of the leaf as the output of F(k, x)  $F(k, 1011) = G_1(G_1(G_0(G_1(k))))$ 

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just  $\ell(n) = n + 1$ 

In fact, we can build a PRG with expansion factor n + p(n) for any polynomial p(n)

An easy case: increasing the expansion factor by  $\boldsymbol{1}$ 

• Start from a PRG G with expansion factor  $\ell(n)=n+1$ 



An easy case: increasing the expansion factor by 1

- Start from a PRG G with expansion factor  $\ell(n)=n+1$
- Call G(s) and interpret the first n bits  $x_1x_2 \dots x_n$  of the output as a new seed
- Let the last bit of G(s) be y



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

An easy case: increasing the expansion factor by 1

- Start from a PRG G with expansion factor  $\ell(n)=n+1$
- Call G(s) and interpret the first n bits  $x_1x_2 \dots x_n$  of the output as a new seed
- Let the last bit of G(s) be y
- Return  $G(x_1x_2\ldots x_n) \parallel y$



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

An easy case: increasing the expansion factor by 1

- Start from a PRG G with expansion factor  $\ell(n)=n+1$
- Call G(s) and interpret the first n bits  $x_1x_2 \dots x_n$  of the output as a new seed
- Let the last bit of G(s) be y
- Return  $G(x_1x_2\ldots x_n) \parallel y$



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

Overall expansion factor  $\ell(n) = n + 2$ 

### Increasing the expansion factor (length-doubling)

#### Increasing the expansion factor from n+1 to 2n

- Start from a PRG G with expansion factor  $\ell(n)=n+1$
- Repeat the previous idea for n levels
- The *i*-th intermediate level outputs n+1 bits
  - n bits are used as a seed for the next level
  - The (n+1)-th bit  $y_i$  will be part of the output of the whole construction
- The last level outputs n+1 bits  $x_1x_2 \dots x_ny_n$
- The final output is  $x_1x_2 \dots x_ny_ny_{n-1} \dots y_1$

Overall expansion factor:  $\ell(n) = n + n = 2n$ 



Repeat the previous idea p(n) times

Algorithm  $\widehat{G}(s)$ : (here  $s \in \{0,1\}^n$ )

- $t_0 \leftarrow s$
- For i = 1, 2, ..., p(n):
  - Interpret  $t_{i-1}$  as  $s_{i-1} ||\sigma_{i-1}$  where  $|s_{i-1}| = n$  and  $|\sigma_{i-1}| = i-1$
  - $t_i \leftarrow G(s_{i-1}) \| \sigma_{i-1}$
- Return  $t_{p(n)}$



Repeat the previous idea p(n) times

Algorithm  $\widehat{G}(s)$ : (here  $s \in \{0,1\}^n$ )

- $t_0 \leftarrow s$
- For i = 1, 2, ..., p(n):
  - Interpret  $t_{i-1}$  as  $s_{i-1} ||\sigma_{i-1}$  where  $|s_{i-1}| = n$  and  $|\sigma_{i-1}| = i-1$

• 
$$t_i \leftarrow G(s_{i-1}) \| \sigma_{i-1}$$

• Return  $t_{p(n)}$ 



**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define  $H_n^j$  to be the distribution on strings of length n + p(n) output by the following process:

- Choose  $t_j$  u.a.r. from  $\{0,1\}^{n+j}$
- Run  $\widehat{G}$  starting from iteration j+1 of the for loop and returns its output

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define  $H_n^j$  to be the distribution on strings of length n + p(n) output by the following process:

- Choose  $t_j$  u.a.r. from  $\{0,1\}^{n+j}$
- Run  $\widehat{G}$  starting from iteration j+1 of the for loop and returns its output

Note that:  $H_n^0$  is the output distribution of  $\widehat{G}(s)$  for a seed s choosen u.a.r. from  $\{0,1\}^n$ 

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define  $H_n^j$  to be the distribution on strings of length n + p(n) output by the following process:

- Choose  $t_j$  u.a.r. from  $\{0,1\}^{n+j}$
- Run  $\widehat{G}$  starting from iteration j+1 of the for loop and returns its output

Note that:  $H_n^0$  is the output distribution of  $\widehat{G}(s)$  for a seed s choosen u.a.r. from  $\{0,1\}^n$  $H_n^{p(n)}$  is a string of length p(n) + n chosen u.a.r. from  $\{0,1\}^{n+p(n)}$ 

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define  $H_n^j$  to be the distribution on strings of length n + p(n) output by the following process:

- Choose  $t_j$  u.a.r. from  $\{0,1\}^{n+j}$
- Run  $\widehat{G}$  starting from iteration j+1 of the for loop and returns its output

Note that:  $H_n^0$  is the output distribution of  $\widehat{G}(s)$  for a seed s choosen u.a.r. from  $\{0,1\}^n$  $H_n^{p(n)}$  is a string of length p(n) + n chosen u.a.r. from  $\{0,1\}^{n+p(n)}$ 

We prove that if there exists a polynomial-time distinguisher  $\widehat{D}$  (with non-negligible gap) for  $\widehat{G}$ , then there is a also a distinguisher D for G

**Theorem:** If there exists a pseudorandom generator G with expansion factor n + 1 then, for any polynomial p,  $\hat{G}$  is a pseudorandom generator with expansion factor n + p(n).

Proof:

Define  $H_n^j$  to be the distribution on strings of length n + p(n) output by the following process:

- Choose  $t_j$  u.a.r. from  $\{0,1\}^{n+j}$
- Run  $\widehat{G}$  starting from iteration j+1 of the for loop and returns its output

Note that:  $H_n^0$  is the output distribution of  $\widehat{G}(s)$  for a seed s choosen u.a.r. from  $\{0,1\}^n$  $H_n^{p(n)}$  is a string of length p(n) + n chosen u.a.r. from  $\{0,1\}^{n+p(n)}$ 

We prove that if there exists a polynomial-time distinguisher  $\widehat{D}$  (with non-negligible gap) for  $\widehat{G}$ , then there is a also a distinguisher D for G

Let D be a distinguisher such that:

$$| \Pr_s[\widehat{D}(\widehat{G}(s))] - \Pr_r[\widehat{D}(r)] | = \varepsilon(n)$$
 for some non-negligible  $\varepsilon(n)$ 

Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_j$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_j$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, \dots, p(n)\}$  and consider what happens when D chooses  $j = j^*$ 



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is a uniform string in  $\{0, 1\}^n$ :

• Both w and  $\sigma'_j$  are chosen u.a.r., therefore  $t_{j^*}$  is a uniform string in  $\{0,1\}^{n+j^*}$ 



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is a uniform string in  $\{0, 1\}^n$ :

- Both w and  $\sigma'_j$  are chosen u.a.r., therefore  $t_{j^*}$  is a uniform string in  $\{0,1\}^{n+j^*}$
- The distribution of  $t_{p(n)}$  is exactly  $H_n^{j^*}$

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from  $\{0, 1\}^n$ :



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1,2,\ldots,p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from  $\{0, 1\}^n$ :

• Define  $t_{j^*-1} = s \| \sigma'_j$  and notice that  $t_{j^*-1}$  is a uniform string in  $\{0,1\}^{n+j^*-1}$ 



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1, 2, \dots, p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from  $\{0, 1\}^n$ :

- Define  $t_{j^*-1} = s \| \sigma'_j$  and notice that  $t_{j^*-1}$  is a uniform string in  $\{0,1\}^{n+j^*-1}$
- Imagine running the  $j^*$ -th iteration of  $\widehat{G}$ . We would have  $t_{j^*} = G(s) \|\sigma'_j = w\|\sigma'_j$



Consider the following distinguisher D' for G:

Algorithm D(w): (here  $w \in \{0,1\}^{n+1}$ )

- Choose j u.a.r. in  $\{1, 2, \ldots, p(n)\}$
- Choose  $\sigma'_{j}$  u.a.r. in  $\{0,1\}^{j-1}$
- Set  $t_j = w \| \sigma'_j$  and run  $\widehat{G}$  from iteration j to compute  $t_{p(n)}$
- Run  $\widehat{D}(t_{p(n)})$  and copy its output

Fix  $j^* \in \{1, 2, ..., p(n)\}$  and consider what happens when D chooses  $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from  $\{0, 1\}^n$ :

- Define  $t_{j^*-1} = s \| \sigma'_j$  and notice that  $t_{j^*-1}$  is a uniform string in  $\{0,1\}^{n+j^*-1}$
- Imagine running the  $j^*$ -th iteration of  $\widehat{G}$ . We would have  $t_{j^*} = G(s) \|\sigma'_j = w\|\sigma'_j$
- The distribution of  $t_{p(n)}$  is exactly  $H_n^{j^*-1}$

$$\Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$$



We have shown that:

We have shown that:

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}]$$

We have shown that:

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

We have shown that:

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}]$$
We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

We can now bound:

 $|\Pr_{s}[D(G(s)) = 1] - \Pr_{r}[D(r) = 1]|$ 

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\left| \Pr_{s}[D(G(s)) = 1] - \Pr_{r}[D(r) = 1] \right| = \left| \frac{1}{p(n)} \cdot \left( \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \right) \right|$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\left| \operatorname{Pr}_{s}[D(G(s)) = 1] - \operatorname{Pr}_{r}[D(r) = 1] \right| = \left| \frac{1}{p(n)} \cdot \left( \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \right) \right|$$

$$= \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t) = 1] - \operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t) = 1] \right|$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\left| \operatorname{Pr}_{s}[D(G(s)) = 1] - \operatorname{Pr}_{r}[D(r) = 1] \right| = \left| \frac{1}{p(n)} \cdot \left( \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \right) \right|$$

$$= \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t) = 1] - \operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t) = 1] \right|$$

$$= \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{r}[\widehat{D}(r) = 1] - \operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s)) = 1] \right|$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$|\operatorname{Pr}_{s}[D(G(s)) = 1] - \operatorname{Pr}_{r}[D(r) = 1] | = \left| \frac{1}{p(n)} \cdot \left( \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \right)$$

$$= \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t) = 1] - \operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t) = 1] \right|$$

$$= \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{r}[\widehat{D}(r) = 1] - \operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s)) = 1] \right| = \frac{\varepsilon(n)}{p(n)}$$

We have shown that:

 $\Pr_{r}[D(r) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \qquad \qquad \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] = \Pr_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t) = 1]$ 

$$\Pr_{r}[D(r) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{r}[D(r) = 1 \mid j = j^{*}] \cdot \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^{*}=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^{*}] \Pr[j = j^{*}] = \frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1]$$

$$|\operatorname{Pr}_{s}[D(G(s)) = 1] - \operatorname{Pr}_{r}[D(r) = 1]| = \left| \frac{1}{p(n)} \cdot \left( \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t) = 1] \right) \\ = \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t) = 1] - \operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t) = 1] \right| \left| \begin{array}{c} \operatorname{Not} \\ \operatorname{negligible!} \\ = \frac{1}{p(n)} \cdot \left| \operatorname{Pr}_{r}[\widehat{D}(r) = 1] - \operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s)) = 1] \right| = \frac{\varepsilon(n)}{p(n)} \right|$$

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

|       | x     | F(x)  |
|-------|-------|-------|
|       | 00000 | 10011 |
|       | 00001 | 01010 |
| $2^n$ | 00010 | 00110 |
| 0113  | ÷     | :     |
|       | 11111 | 10001 |

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

|            |                   | x     | F(x)  |               |
|------------|-------------------|-------|-------|---------------|
| $2^n$ rows |                   | 00000 | 10011 | $2^n$ choices |
|            |                   | 00001 | 01010 |               |
|            | $\left\{ \right.$ | 00010 | 00110 |               |
|            |                   | :     |       |               |
|            |                   | 11111 | 10001 |               |

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

|            | x     | F(x)                             |
|------------|-------|----------------------------------|
| $2^n$ rows | 00000 | 10011 $\checkmark$ $2^n$ choices |
|            | 00001 | 01010 $2^n - 1$ choices          |
|            | 00010 | 00110                            |
|            | ÷     |                                  |
|            | 11111 | 10001                            |

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

|            | x     | F(x)                               |
|------------|-------|------------------------------------|
| $2^n$ rows | 00000 | $10011$ $\checkmark$ $2^n$ choices |
|            | 00001 | 01010 $-2^n - 1$ choices           |
|            | 00010 | 00110                              |
|            | ÷     |                                    |
|            | 11111 | 10001 <b>•</b> only 1 choice       |

To achieve CPA-security we need one more ingredient: **pseudorandom permutations** (PRPs) **Informal:** A pseudorandom permutation is a pseudorandom function that is bijective

- Let  $\operatorname{Perm}_n$  denote the set of all permutations in  $\{0,1\}^n$ , i.e., the set of all functions  $F: \{0,1\}^n \to \{0,1\}^n$  that are bijective
- How big is  $Perm_n$ ?

Since a function  $F \in Perm_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 



Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}}$$

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}} = \lim_{t \to \infty} \frac{t!}{t^t}$$

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

What's the (asymptotic) proportion of functions in  $Func_n$  that are also permutations (i.e., invertible)?

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}} = \lim_{t \to \infty} \frac{t!}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t} \cdot t^t / e^t}{t^t}$$

Stirling's approximation:  $t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$ 

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

What's the (asymptotic) proportion of functions in  $Func_n$  that are also permutations (i.e., invertible)?

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}} = \lim_{t \to \infty} \frac{t!}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t} \cdot t^t / e^t}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t}}{e^t}$$

Stirling's approximation:  $t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$ 

Since a function  $F \in \text{Perm}_n$  is bijective, it must be **invertible** 

$$F^{-1}$$
 exists and  $F(x) = y \iff F^{-1}(y) = x$ 

What's the (asymptotic) proportion of functions in  $Func_n$  that are also permutations (i.e., invertible)?

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}} = \lim_{t \to \infty} \frac{t!}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t} \cdot t^t / e^t}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t}}{e^t} = 0$$

Stirling's approximation:  $t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$ 

Asymptotically, almost no function in  $Func_n$  is a permutation!

## Keyed permutations

A keyed permutation is a keyed function  $F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$  such that:

- $\ell_{in}(n) = \ell_{out}(n)$  (this quantity is called the **block length**); and
- For every  $k \in \{0,1\}^{\ell_{key}(n)}$ , the function  $F_k(x) = F(k,x)$  is a permutation

## Keyed permutations

A keyed permutation is a keyed function  $F : \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$  such that:

- $\ell_{in}(n) = \ell_{out}(n)$  (this quantity is called the **block length**); and
- For every  $k \in \{0,1\}^{\ell_{key}(n)}$ , the function  $F_k(x) = F(k,x)$  is a permutation

A keyed permutation is **efficient** if:

- There is a polynomial-time algorithm that computes F(x) given x; and
- There is a polynomial-time algorithm that computes  $F^{-1}(y)$  given y

## Pseudorandom permutations, formal definition

**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$  is a **pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of k

Probability over the randomness of the distinguisher and the uniform choice of  $f \in Perm_n$ 

## Pseudorandom permutations, formal definition

**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

$$\left| \operatorname{Pr}[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[D^{f(\cdot)}(\mathbf{1}^n) = 1] \right| \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of k

Probability over the randomness of the distinguisher and the uniform choice of  $f \in \text{Perm}_n$ 

**Intuitition:** a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can distinguish it from a random permutation

Recall that (asymptotically) almost no function in  $Func_n$  is a permutation

Nevertheless:

- As soon as ℓ<sub>in</sub>(n) ≥ n, a PRP is indistinguishable (in polynomial time, with non-negligible gap) from PRF
- Since a PRF is indistinguishable from a random function, this implies that PRPs with  $\ell_{in}(n) \ge n$  are also indistinguishable from random functions!

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **strong pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

 $\left| \Pr[D^{F_k(\cdot), F_k^{-1}(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot), f^{-1}(\cdot)}(\mathbf{1}^n) = 1] \right| \le \varepsilon(n)$ 

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



**Definition:** An efficient, length preserving, keyed function  $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **strong pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function  $\varepsilon$  such that:

 $|\Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1]| \le \varepsilon(n)$ 

"World 1": k is chosen u.a.r. in  $\{0,1\}^n$ 

