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How do we build a CPA-secure encryption scheme?

• For EAV-security we had to rely on PRGs

• For CPA-security we need a new cryptographic primitive: pseudorandom functions (PRFs)
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(Pseudo-)Random Functions

What does it mean for a function f : {0, 1}∗ → {0, 1}∗ to be random?

The question is ill-posed!

• It does not make sense to say that a fixed function is random

• Just like it does not make sense to say that 0010110 is
random, or that the number 4 is random

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

xkcd.com
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Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k ∈ {0, 1}∗ and x ∈ {0, 1}∗, and computes F (k, x)

We are usually interested in keyed function in which:

• The key has some fixed length ℓkey

• The second input has some fixed length ℓin

• The output has some fixed length ℓout

These quantities are
actually functions of the
security parameter!

(n)

(n)

(n)

Simplifying assumption (can be removed): F is length-preserving

ℓkey(n) = ℓin(n) = ℓout(n) = n
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Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

How many distinct tables?

...

2n rows





We have 2n choices
per row

(choices per row)#rows = (2n)2
n
= 2n·2

n

For n = 4 there 264 functions

How big is Funcn?
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Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Funcn

By the principle of deferred decisions, we can equivalently think of f :

• As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0, 1}n)

• As a function whose outputs are decided lazily: whenever we need to evaluate f(x):

• If f(x) was never evaluated before with input x:

• Return a binary string chosen u.a.r. from {0, 1}n

• Otherwise, return the previously chosen string for input x
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Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

How big is the support of this distribution?

There can be at most as many functions Fk as keys k ∈ {0, 1}n =⇒ at most 2n functions!

For n = 4 there are 24 = 16 possible choices. . . out of 264 possible functions!

We can only sample a tiny fractions of the functions in Funcn!

(out of 2n·2
n

)
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Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

• D needs to guess whether O is evaluating Fk or f

• There is an oracle O that can be queried with a string x ∈ {0, 1}n

• O either always answers with Fk(x), or it always answers with f(x)
Ox

Fk(x)
or

f(x)• D can query O many times



Distinguisher
DO

Evaluates
Fk

“World 1”:

k is chosen u.a.r.
in {0, 1}n

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

“World 1”:

k is chosen u.a.r.
in {0, 1}n

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

k is chosen u.a.r.
in {0, 1}n

DFk(·)(1n)

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
DO

Evaluates
f

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions



Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions

Denotes the kind of oracle
D is interacting with



Distinguisher
D

...
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Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions

Denotes the kind of oracle
D is interacting with

D wants to tell “World 0”
apart from “World 1”
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Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Funcn



Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom
functions?

• F (k, x) = 1n

• F (k, x) = k

• F (k, x) = k ∨ x

• F (k, x) = k ⊕ x

• F (k, x) = k ∧ x
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PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

expansion factor ℓ(n) = n · L

⟨x⟩ = binary
encoding of x
with n bits

Proof that G is a PRG? Security reduction (“breaking G implies breaking F”)

• Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)

• Use D to build a distinguisher A for F (with non negligible gap)

• This contradicts the fact that F is a PRF (i.e., no such D can exist)

(for L = O(poly(n)))
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• Suppose that G is not a PRG, then there is some D such that:
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• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible
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PRFs and PRGs
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PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

Fk(⟨i⟩) returns the i-th group of bits (counting from 0) of G(k)

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

Caveat: To construct the table in polynomial time we need t(n) = O(log n)

ℓin(n) = t(n), ℓout(n) = n

=⇒ F has short inputs
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�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:
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The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n.

Imagine the following complete binary
tree of height n

G

. . .

0 1

0 1

0 1 0 1 0 1 1

0 1
G

G

G G G

G

G G

G

G

G

Interpret the key k of F (k, x) as the seed of the root of the tree

k

Interpret the binary digits of x as a path in the tree

Interpret the output of the leaf as the output of F (k, x)

G

G

G

G(s) = G0(s) ∥G1(s)

G1(k)

G0(G1(k))

G1(G0(G1(k)))

= G1(G1(G0(G1(k))))

0 1 0 1 0 1 0 1 0 1 0 1 0 1

F (k, 1011)
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The Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won’t see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don’t have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just ℓ(n) = n+ 1

In fact, we can build a PRG with expansion factor n+ p(n) for any polynomial p(n)
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Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Call G(s) and interpret the first n bits x1x2 . . . xn of the output as a new seed
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Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Call G(s) and interpret the first n bits x1x2 . . . xn of the output as a new seed
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Increasing the expansion factor from n+ 1 to 2n

Increasing the expansion factor (length-doubling)

G′• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Repeat the previous idea for n levels

• The i-th intermediate level outputs n+ 1 bits

• n bits are used as a seed for the next level

• The (n+ 1)-th bit yi will be part of the output
of the whole construction

• The last level outputs n+ 1 bits x1x2 . . . xnyn

• The final output is x1x2 . . . xnynyn−1 . . . y1

y1y2ynx1 xn

Overall expansion factor: ℓ(n) = n+ n = 2n

. . . . . .



Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

Algorithm bG(s): (here s ∈ {0, 1}n)
• t0 ← s
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Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Note that: H0
n is the output distribution of bG(s) for a seed s choosen u.a.r. from {0, 1}n

H
p(n)
n is a string of length p(n) + n chosen u.a.r. from {0, 1}n+p(n)

We prove that if there exists a polynomial-time distinguisher bD (with non-negligible gap) for bG, then
there is a also a distinguisher D for G

Let D be a distinguisher such that:
�� Prs[ bD( bG(s))]− Prr[ bD(r)]

�� = ε(n) for some non-negligible ε(n)
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j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)
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j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

If w is a uniform string in {0, 1}n:
Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

• Both w and σ′
j are chosen u.a.r., therefore tj∗ is a uniform string in {0, 1}n+j∗

• The distribution of tp(n) is exactly Hj∗
n

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[ bD(t) = 1]
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Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

t = 2n



Keyed permutations

A keyed permutation is a keyed function F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n) such that:

• ℓin(n) = ℓout(n) (this quantity is called the block length); and

• For every k ∈ {0, 1}ℓkey(n), the function Fk(x) = F (k, x) is a permutation



Keyed permutations

A keyed permutation is efficient if:

• There is a polynomial-time algorithm that computes F (x) given x; and

• There is a polynomial-time algorithm that computes F−1(y) given y

A keyed permutation is a keyed function F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n) such that:

• ℓin(n) = ℓout(n) (this quantity is called the block length); and

• For every k ∈ {0, 1}ℓkey(n), the function Fk(x) = F (k, x) is a permutation



Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Permn



Pseudorandom permutations, formal definition

Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can
distinguish it from a random permutation

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Permn



Pseudorandom permutations

Recall that (asymptotically) almost no function in Funcn is a permutation

• As soon as ℓin(n) ≥ n, a PRP is indistinguishable (in polynomial time, with non-negligible gap)
from PRF

• Since a PRF is indistinguishable from a random function, this implies that PRPs with ℓin(n) ≥ n
are also indistinguishable from random functions!

Nevertheless:



Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage
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Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)



Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ε such that:

�� Pr[DFk(·),F−1
k (·)(1n) = 1]− Pr[Df(·),f−1(·)(1n) = 1]

�� ≤ ε(n)



Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ε such that:

�� Pr[DFk(·),F−1
k (·)(1n) = 1]− Pr[Df(·),f−1(·)(1n) = 1]

�� ≤ ε(n)



Distinguisher
D

...

Evaluates
Fk

Output (0 or 1)

“World 1”: k is chosen u.a.r. in {0, 1}n

“World 0”: f is chosen u.a.r. in Permn

DFk(·),F−1(·)(1n)

Df(·),f−1(·)(1n)

Strong pesudorandom permutations

D wants to tell “World 0”
apart from “World 1”

Evaluates
F−1
k...

Distinguisher
D

...

Evaluates
f

Evaluates
f−1
k...

Denotes the kind of oracle
D is interacting with

Output (0 or 1)


