
Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

• For EAV-security we had to rely on PRGs

Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

• For EAV-security we had to rely on PRGs

• For CPA-security we need a new cryptographic primitive: pseudorandom functions (PRFs)

(Pseudo-)Random Functions

What does it mean for a function f : {0, 1}∗ → {0, 1}∗ to be random?

(Pseudo-)Random Functions

What does it mean for a function f : {0, 1}∗ → {0, 1}∗ to be random?

The question is ill-posed!

• It does not make sense to say that a fixed function is random

(Pseudo-)Random Functions

What does it mean for a function f : {0, 1}∗ → {0, 1}∗ to be random?

The question is ill-posed!

• It does not make sense to say that a fixed function is random

• Just like it does not make sense to say that 0010110 is
random, or that the number 4 is random xkcd.com

(Pseudo-)Random Functions

What does it mean for a function f : {0, 1}∗ → {0, 1}∗ to be random?

The question is ill-posed!

• It does not make sense to say that a fixed function is random

• Just like it does not make sense to say that 0010110 is
random, or that the number 4 is random

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

xkcd.com

Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k ∈ {0, 1}∗ and x ∈ {0, 1}∗, and computes F (k, x)

Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k ∈ {0, 1}∗ and x ∈ {0, 1}∗, and computes F (k, x)

We are usually interested in keyed function in which:

• The key has some fixed length ℓkey

• The second input has some fixed length ℓin

• The output has some fixed length ℓout

Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k ∈ {0, 1}∗ and x ∈ {0, 1}∗, and computes F (k, x)

We are usually interested in keyed function in which:

• The key has some fixed length ℓkey

• The second input has some fixed length ℓin

• The output has some fixed length ℓout

These quantities are
actually functions of the
security parameter!

(n)

(n)

(n)

Keyed Functions

A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k ∈ {0, 1}∗ and x ∈ {0, 1}∗, and computes F (k, x)

We are usually interested in keyed function in which:

• The key has some fixed length ℓkey

• The second input has some fixed length ℓin

• The output has some fixed length ℓout

These quantities are
actually functions of the
security parameter!

(n)

(n)

(n)

Simplifying assumption (can be removed): F is length-preserving

ℓkey(n) = ℓin(n) = ℓout(n) = n

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n How big is Funcn?

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n rows

How big is Funcn?

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

How many distinct tables?

...

2n rows

How big is Funcn?

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

How many distinct tables?

...

2n rows

We have 2n choices
per row

How big is Funcn?

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

How many distinct tables?

...

2n rows

We have 2n choices
per row

(choices per row)#rows = (2n)2
n
= 2n·2

n

How big is Funcn?

Number of functions

Let Funcn be the set of all functions f : {0, 1}n → {0, 1}n

Think of the function as a huge table:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

How many distinct tables?

...

2n rows

We have 2n choices
per row

(choices per row)#rows = (2n)2
n
= 2n·2

n

For n = 4 there 264 functions

How big is Funcn?

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Funcn

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Funcn

By the principle of deferred decisions, we can equivalently think of f :

• As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0, 1}n)

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Funcn

By the principle of deferred decisions, we can equivalently think of f :

• As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0, 1}n)

• As a function whose outputs are decided lazily: whenever we need to evaluate f(x):

• If f(x) was never evaluated before with input x:

• Return a binary string chosen u.a.r. from {0, 1}n

• Otherwise, return the previously chosen string for input x

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

How big is the support of this distribution?

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

How big is the support of this distribution?

There can be at most as many functions Fk as keys k ∈ {0, 1}n =⇒ at most 2n functions!

(out of 2n·2
n

)

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

How big is the support of this distribution?

There can be at most as many functions Fk as keys k ∈ {0, 1}n =⇒ at most 2n functions!

For n = 4 there are 24 = 16 possible choices. . . out of 264 possible functions!
(out of 2n·2

n

)

Back to keyed functions

We will typically use efficient keyed functions as follows:

• Chose some key k ∈ {0, 1}n

• Evaluate the function F (k, x) for different choices of x, while k stays the same

• Is is then convenient to define the single-input function Fk(x) = F (k, x)

Choosing k is equivalent to choosing a function Fk ∈ Funcn!

Pick a uniform k. We now have a distribution over the functions in Funcn

How big is the support of this distribution?

There can be at most as many functions Fk as keys k ∈ {0, 1}n =⇒ at most 2n functions!

For n = 4 there are 24 = 16 possible choices. . . out of 264 possible functions!

We can only sample a tiny fractions of the functions in Funcn!

(out of 2n·2
n

)

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

• There is an oracle O that can be queried with a string x ∈ {0, 1}n Ox

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

• There is an oracle O that can be queried with a string x ∈ {0, 1}n

• O either always answers with Fk(x), or it always answers with f(x)
Ox

Fk(x)
or

f(x)

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

• There is an oracle O that can be queried with a string x ∈ {0, 1}n

• O either always answers with Fk(x), or it always answers with f(x)
Ox

Fk(x)
or

f(x)• D can query O many times

Defining pseudorandom functions

Intuition: F : {0, 1}n × {0, 1}n → {0, 1}n is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fk (where k is chosen u.a.r.) from a random function
f ∈ Funcn, except for a negligible probability.

Caution! What’s the input to D?

• We cannot use an encoding of Fk and f as the input to D

• Such an encoding would be (super)exponential in n !

• D needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to Fk and f and input 1n:

• D needs to guess whether O is evaluating Fk or f

• There is an oracle O that can be queried with a string x ∈ {0, 1}n

• O either always answers with Fk(x), or it always answers with f(x)
Ox

Fk(x)
or

f(x)• D can query O many times

Distinguisher
DO

Evaluates
Fk

“World 1”:

k is chosen u.a.r.
in {0, 1}n

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

“World 1”:

k is chosen u.a.r.
in {0, 1}n

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

k is chosen u.a.r.
in {0, 1}n

DFk(·)(1n)

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
DO

Evaluates
f

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions

Denotes the kind of oracle
D is interacting with

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 1”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 0”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Defining pseudorandom functions

Denotes the kind of oracle
D is interacting with

D wants to tell “World 0”
apart from “World 1”

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Funcn

Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom
functions?

• F (k, x) = 1n

• F (k, x) = k

• F (k, x) = k ∨ x

• F (k, x) = k ⊕ x

• F (k, x) = k ∧ x

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

G(s):

• Return Fs(0...000) ∥Fs(0...001)

expansion factor ℓ(n) = 2n

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

expansion factor ℓ(n) = n · L

⟨x⟩ = binary
encoding of x
with n bits

(for L = O(poly(n)))

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

expansion factor ℓ(n) = n · L

⟨x⟩ = binary
encoding of x
with n bits

Proof that G is a PRG? Security reduction (“breaking G implies breaking F”)

• Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)

• Use D to build a distinguisher A for F (with non negligible gap)

• This contradicts the fact that F is a PRF (i.e., no such D can exist)

(for L = O(poly(n)))

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

PRFs and PRGs

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

PRFs and PRGs

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

Pr[AFk(·)(1n) = 1] = Pr[D(G(k)) = 1]

PRFs and PRGs

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

Pr[AFk(·)(1n) = 1] = Pr[D(G(k)) = 1] Pr[Af(·)(1n) = 1] = Pr[D(r) = 1]

PRFs and PRGs

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

Pr[AFk(·)(1n) = 1] = Pr[D(G(k)) = 1] Pr[Af(·)(1n) = 1] = Pr[D(r) = 1]

PRFs and PRGs

Random string
in {0, 1}L·n

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

Pr[AFk(·)(1n) = 1] = Pr[D(G(k)) = 1]

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� =

�� Pr[D(G(k))]− Pr[D(r)]
�� = ε(n)

Pr[Af(·)(1n) = 1] = Pr[D(r) = 1]

PRFs and PRGs

Random string
in {0, 1}L·n

G(k):

• Return Fk(⟨0⟩) ∥Fk(⟨1⟩) ∥ . . . ∥Fk(⟨L⟩)

• Suppose that G is not a PRG, then there is some D such that:

|Pr[D(G(k)) = 1]− Pr[D(r) = 1]| = ε(n) where ε(n) is not negligible

• We design a distinguisher A for F . AΦ has access to an oracle Φ and returns:

D(Φ(⟨0⟩) ∥Φ(⟨1⟩) ∥ . . . ∥Φ(⟨L⟩))

Pr[AFk(·)(1n) = 1] = Pr[D(G(k)) = 1]

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� =

�� Pr[D(G(k))]− Pr[D(r)]
�� = ε(n)

Pr[Af(·)(1n) = 1] = Pr[D(r) = 1]

• Therefore F is not a PRF. □

PRFs and PRGs

Random string
in {0, 1}L·n

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist ⇐⇒ PRGs exist

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

G(k) = 11011010010010110000101001011110

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

Fk(⟨i⟩) returns the i-th group of bits (counting from 0) of G(k)

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

ℓin(n) = t(n), ℓout(n) = n

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

Fk(⟨i⟩) returns the i-th group of bits (counting from 0) of G(k)

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

Caveat: To construct the table in polynomial time we need t(n) = O(log n)

ℓin(n) = t(n), ℓout(n) = n

PRFs and PRGs

If we have a PRF F (k, x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRG G we can use it to build a PRF F (k, x).

No. PRFs exist ⇐⇒ PRGs exist

A simple case: consider a PRG G(k) with expansion factor ℓ(n) = n · 2t(n)

Divide the output of G(k) into 2t(n) “chunks” of n bits each

G(k) = 11011010010010110000101001011110

Fk(⟨i⟩) returns the i-th group of bits (counting from 0) of G(k)

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

Caveat: To construct the table in polynomial time we need t(n) = O(log n)

ℓin(n) = t(n), ℓout(n) = n

=⇒ F has short inputs

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

G(k) = 11011010010010110000101001011110

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

• D returns the same output as A

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

• Pr[D(G(k)) = 1] = Pr[AFk(·)(1n) = 1]

• D returns the same output as A

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

• Pr[D(G(k)) = 1] = Pr[AFk(·)(1n) = 1]

• D returns the same output as A

• Pr[D(r) = 1] = Pr[Af(·)(1n) = 1]

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

• Pr[D(G(k)) = 1] = Pr[AFk(·)(1n) = 1]

• D returns the same output as A

• Pr[D(r) = 1] = Pr[Af(·)(1n) = 1]
=⇒ |Pr[D(G(k))]− Pr[D(r)]| = ε(n)

non negligible

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

PRFs and PRGs

Proof of security:

• Suppose that F is not a PRF, then there is A such that

�� Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
�� = ε(n) for non-negligible ε(n)

• Consider the following distinguisher D(w) for G:

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls AΦ . Whenever A queries
Φ(x), D answers with the output of the row labeled x in the table

• Pr[D(G(k)) = 1] = Pr[AFk(·)(1n) = 1]

• D returns the same output as A

• Pr[D(r) = 1] = Pr[Af(·)(1n) = 1]
=⇒ |Pr[D(G(k))]− Pr[D(r)]| = ε(n)

□

non negligible

=⇒ G is not a PRG

G(k) = 11011010010010110000101001011110

000
001
010
011
100
101
110
111

1101
1010
0100
1011
0000
1010
0101
1110

x Fk(x)

The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n. G(s) = G0(s) ∥G1(s)

The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n.

Imagine the following complete binary
tree of height n

G

. . .

0 1

0 1

0 1 0 1 0 1 1

0 1
G

G

G G G

G

G G

G

G

GG

G

G

G(s) = G0(s) ∥G1(s)

0 1 0 1 0 1 0 1 0 1 0 1 0 1

The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n.

Imagine the following complete binary
tree of height n

G

. . .

0 1

0 1

0 1 0 1 0 1 1

0 1
G

G

G G G

G

G G

G

G

G

Interpret the key k of F (k, x) as the seed of the root of the tree

k

G

G

G

G(s) = G0(s) ∥G1(s)

0 1 0 1 0 1 0 1 0 1 0 1 0 1

The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n.

Imagine the following complete binary
tree of height n

G

. . .

0 1

0 1

0 1 0 1 0 1 1

0 1
G

G

G G G

G

G G

G

G

G

Interpret the key k of F (k, x) as the seed of the root of the tree

k

Interpret the binary digits of x as a path in the tree

G

G

G

G(s) = G0(s) ∥G1(s)

G1(k)

G0(G1(k))

G1(G0(G1(k)))

0 1 0 1 0 1 0 1 0 1 0 1 0 1

The Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., ℓ(n) = 2n.

Imagine the following complete binary
tree of height n

G

. . .

0 1

0 1

0 1 0 1 0 1 1

0 1
G

G

G G G

G

G G

G

G

G

Interpret the key k of F (k, x) as the seed of the root of the tree

k

Interpret the binary digits of x as a path in the tree

Interpret the output of the leaf as the output of F (k, x)

G

G

G

G(s) = G0(s) ∥G1(s)

G1(k)

G0(G1(k))

G1(G0(G1(k)))

= G1(G1(G0(G1(k))))

0 1 0 1 0 1 0 1 0 1 0 1 0 1

F (k, 1011)

The Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won’t see a proof of this fact (see Section 8.5 of the textbook if interested).

The Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won’t see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don’t have a length-doubling PRG?

The Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won’t see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don’t have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just ℓ(n) = n+ 1

In fact, we can build a PRG with expansion factor n+ p(n) for any polynomial p(n)

G

s

An easy case: increasing the expansion factor by 1

Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

G

s

. . .

G(s) = x1x2x3 . . . xny

An easy case: increasing the expansion factor by 1

Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Call G(s) and interpret the first n bits x1x2 . . . xn of the output as a new seed

• Let the last bit of G(s) be y

y

G

s

. . .

G(s) = x1x2x3 . . . xny

G
. . .

An easy case: increasing the expansion factor by 1

Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Call G(s) and interpret the first n bits x1x2 . . . xn of the output as a new seed

• Return G(x1x2 . . . xn) ∥ y

• Let the last bit of G(s) be y

G′

y

G

s

. . .

G(s) = x1x2x3 . . . xny

G
. . .

Overall expansion factor ℓ(n) = n+ 2

An easy case: increasing the expansion factor by 1

Increasing the expansion factor

• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Call G(s) and interpret the first n bits x1x2 . . . xn of the output as a new seed

• Return G(x1x2 . . . xn) ∥ y

• Let the last bit of G(s) be y

G′

y

G

s

. . .

G
. . .

G

. . .

G
. . .

G
.

...

. . .

Increasing the expansion factor from n+ 1 to 2n

Increasing the expansion factor (length-doubling)

G′• Start from a PRG G with expansion factor ℓ(n) = n+ 1

• Repeat the previous idea for n levels

• The i-th intermediate level outputs n+ 1 bits

• n bits are used as a seed for the next level

• The (n+ 1)-th bit yi will be part of the output
of the whole construction

• The last level outputs n+ 1 bits x1x2 . . . xnyn

• The final output is x1x2 . . . xnynyn−1 . . . y1

y1y2ynx1 xn

Overall expansion factor: ℓ(n) = n+ n = 2n

.

Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

Algorithm bG(s): (here s ∈ {0, 1}n)
• t0 ← s

• For i = 1, 2, . . . , p(n):

• Interpret ti−1 as si−1∥σi−1 where |si−1| = n and |σi−1| = i− 1

• ti ← G(si−1)∥σi−1

• Return tp(n)

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

Algorithm bG(s): (here s ∈ {0, 1}n)
• t0 ← s

• For i = 1, 2, . . . , p(n):

• Interpret ti−1 as si−1∥σi−1 where |si−1| = n and |σi−1| = i− 1

• ti ← G(si−1)∥σi−1

• Return tp(n)

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Note that: H0
n is the output distribution of bG(s) for a seed s choosen u.a.r. from {0, 1}n

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Note that: H0
n is the output distribution of bG(s) for a seed s choosen u.a.r. from {0, 1}n

H
p(n)
n is a string of length p(n) + n chosen u.a.r. from {0, 1}n+p(n)

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Note that: H0
n is the output distribution of bG(s) for a seed s choosen u.a.r. from {0, 1}n

H
p(n)
n is a string of length p(n) + n chosen u.a.r. from {0, 1}n+p(n)

We prove that if there exists a polynomial-time distinguisher bD (with non-negligible gap) for bG, then
there is a also a distinguisher D for G

Theorem: If there exists a pseudorandom generator G with expansion factor n+ 1 then, for any
polynomial p, bG is a pseudorandom generator with expansion factor n+ p(n).

Increasing the expansion factor to n + p(n)

Proof:

Define Hj
n to be the distribution on strings of length n+ p(n) output by the following process:

• Choose tj u.a.r. from {0, 1}n+j

• Run bG starting from iteration j + 1 of the for loop and returns its output

Note that: H0
n is the output distribution of bG(s) for a seed s choosen u.a.r. from {0, 1}n

H
p(n)
n is a string of length p(n) + n chosen u.a.r. from {0, 1}n+p(n)

We prove that if there exists a polynomial-time distinguisher bD (with non-negligible gap) for bG, then
there is a also a distinguisher D for G

Let D be a distinguisher such that:
�� Prs[bD(bG(s))]− Prr[bD(r)]

�� = ε(n) for some non-negligible ε(n)

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

If w is a uniform string in {0, 1}n:
Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

• Both w and σ′
j are chosen u.a.r., therefore tj∗ is a uniform string in {0, 1}n+j∗

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

If w is a uniform string in {0, 1}n:
Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

• Both w and σ′
j are chosen u.a.r., therefore tj∗ is a uniform string in {0, 1}n+j∗

• The distribution of tp(n) is exactly Hj∗
n

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1]

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

If w is the output of G(s) on some seed s choosen u.a.r. from {0, 1}n:

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

If w is the output of G(s) on some seed s choosen u.a.r. from {0, 1}n:
• Define tj∗−1 = s∥σ′

j and notice that tj∗−1 is a uniform string in {0, 1}n+j∗−1

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

If w is the output of G(s) on some seed s choosen u.a.r. from {0, 1}n:
• Define tj∗−1 = s∥σ′

j and notice that tj∗−1 is a uniform string in {0, 1}n+j∗−1

• Imagine running the j∗-th iteration of bG. We would have tj∗ = G(s)∥σ′
j = w∥σ′

j

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Consider the following distinguisher D′ for G:

Increasing the expansion factor to n + p(n)

• Choose j u.a.r. in {1, 2, . . . , p(n)}
• Choose σ′

j u.a.r. in {0, 1}j−1

• Set tj = w∥σ′
j and run bG from iteration j to compute tp(n)

• Run bD(tp(n)) and copy its output

Algorithm D(w): (here w ∈ {0, 1}n+1)

Fix j∗ ∈ {1, 2, . . . , p(n)} and consider what happens when D chooses j = j∗

If w is the output of G(s) on some seed s choosen u.a.r. from {0, 1}n:
• Define tj∗−1 = s∥σ′

j and notice that tj∗−1 is a uniform string in {0, 1}n+j∗−1

• Imagine running the j∗-th iteration of bG. We would have tj∗ = G(s)∥σ′
j = w∥σ′

j

• The distribution of tp(n) is exactly Hj∗−1
n

Prs[D(G(s)) = 1 | j = j∗] = Pr
t←Hj∗−1

n
[bD(t) = 1]

. . .

G

. . .

si−1z }| { σi−1z}|{

| {z }
si

| {z }
σi

ti−1z }| {

| {z }
ti

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗]

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗−1

n

[bD(t) = 1]

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗] =

1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

We can now bound:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

=

����
1

p(n)
·
� p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]−
p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

� ����

We can now bound:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

=

����
1

p(n)
·
� p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]−
p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

� ����

=
1

p(n)
·
���� Pr

t←H
p(n)
n

[bD(t) = 1]− Pr
t←H0

n

[bD(t) = 1]

����

We can now bound:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

=

����
1

p(n)
·
� p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]−
p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

� ����

=
1

p(n)
·
���� Pr

t←H
p(n)
n

[bD(t) = 1]− Pr
t←H0

n

[bD(t) = 1]

����

= 1
p(n) ·

�� Prr[bD(r) = 1]− Prs[bD(bG(s)) = 1]
��

We can now bound:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

=

����
1

p(n)
·
� p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]−
p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

� ����

=
1

p(n)
·
���� Pr

t←H
p(n)
n

[bD(t) = 1]− Pr
t←H0

n

[bD(t) = 1]

����

= 1
p(n) ·

�� Prr[bD(r) = 1]− Prs[bD(bG(s)) = 1]
�� = ε(n)

p(n)

We can now bound:

Increasing the expansion factor to n + p(n)

Prr[D(r) = 1 | j = j∗] = Pr
t←Hj∗

n
[bD(t) = 1] Prs[D(G(s)) = 1 | j = j∗] = Pr

t←Hj∗−1
n

[bD(t) = 1]

We have shown that:

Pr
r
[D(r) = 1] =

p(n)X

j∗=1

Pr
r
[D(r) = 1 | j = j∗] · Pr[j = j∗] =

1

p(n)

p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]

Pr
s
[D(G(s)) = 1] =

p(n)X

j∗=1

Pr
s
[D(G(s)) = 1 | j = j∗] Pr[j = j∗]

�� Prs[D(G(s)) = 1]− Prr[D(r) = 1]
��

=
1

p(n)

p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

=

����
1

p(n)
·
� p(n)X

j∗=1

Pr
t←Hj∗

n

[bD(t) = 1]−
p(n)−1X

j∗=0

Pr
t←Hj∗

n

[bD(t) = 1]

� ����

=
1

p(n)
·
���� Pr

t←H
p(n)
n

[bD(t) = 1]− Pr
t←H0

n

[bD(t) = 1]

����

= 1
p(n) ·

�� Prr[bD(r) = 1]− Prs[bD(bG(s)) = 1]
�� = ε(n)

p(n)

Not
negligible!

□

We can now bound:

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Think of a permutation F as a huge table in which all entries F (x) are distinct:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n

rows

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Think of a permutation F as a huge table in which all entries F (x) are distinct:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n

rows

2n choices

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Think of a permutation F as a huge table in which all entries F (x) are distinct:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n

rows

2n choices

2n − 1 choices

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Think of a permutation F as a huge table in which all entries F (x) are distinct:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n

rows

2n choices

2n − 1 choices

only 1 choice

...

Pseudorandom permutations

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

• Let Permn denote the set of all permutations in {0, 1}n, i.e., the set of all functions
F : {0, 1}n → {0, 1}n that are bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

• How big is Permn?

Think of a permutation F as a huge table in which all entries F (x) are distinct:

x F (x)

00...000 10...011

00...001

00...010

...

11...111

01...010

00...110

10...001

...

2n

rows

2n choices

2n − 1 choices

only 1 choice

...
|Permn| = 2n · (2n − 1) · · · · · 1

= (2n)!

Number of Permutations vs Number of Functions

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn|

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn| = lim

n→∞
(2n)!

2n2n

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn| = lim

n→∞
(2n)!

2n2n
= lim

t→∞
t!

tt

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

t = 2n

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn| = lim

n→∞
(2n)!

2n2n
= lim

t→∞
t!

tt
= lim

t→∞

√
2πt · tt/et

tt

Stirling’s approximation: t! ∼
√
2πt

�
t

e

�t

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

t = 2n

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn| = lim

n→∞
(2n)!

2n2n
= lim

t→∞
t!

tt
= lim

t→∞

√
2πt · tt/et

tt
= lim

t→∞

√
2πt

et

Stirling’s approximation: t! ∼
√
2πt

�
t

e

�t

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

t = 2n

Number of Permutations vs Number of Functions

What’s the (asymptotic) proportion of functions in Funcn that are also permutations (i.e., invertible)?

lim
n→∞

|Permn|
|Funcn| = lim

n→∞
(2n)!

2n2n
= lim

t→∞
t!

tt
= lim

t→∞

√
2πt · tt/et

tt
= lim

t→∞

√
2πt

et
= 0

Stirling’s approximation: t! ∼
√
2πt

�
t

e

�t

Asymptotically, almost no function in Funcn is a permutation!

Since a function F ∈ Permn is bijective, it must be invertible

F−1 exists and F (x) = y ⇐⇒ F−1(y) = x

t = 2n

Keyed permutations

A keyed permutation is a keyed function F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n) such that:

• ℓin(n) = ℓout(n) (this quantity is called the block length); and

• For every k ∈ {0, 1}ℓkey(n), the function Fk(x) = F (k, x) is a permutation

Keyed permutations

A keyed permutation is efficient if:

• There is a polynomial-time algorithm that computes F (x) given x; and

• There is a polynomial-time algorithm that computes F−1(y) given y

A keyed permutation is a keyed function F : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n) such that:

• ℓin(n) = ℓout(n) (this quantity is called the block length); and

• For every k ∈ {0, 1}ℓkey(n), the function Fk(x) = F (k, x) is a permutation

Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Permn

Pseudorandom permutations, formal definition

Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can
distinguish it from a random permutation

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Probability over the randomness of the
distinguisher and the choice of k

Probability over the randomness of
the distinguisher and the uniform
choice of f ∈ Permn

Pseudorandom permutations

Recall that (asymptotically) almost no function in Funcn is a permutation

• As soon as ℓin(n) ≥ n, a PRP is indistinguishable (in polynomial time, with non-negligible gap)
from PRF

• Since a PRF is indistinguishable from a random function, this implies that PRPs with ℓin(n) ≥ n
are also indistinguishable from random functions!

Nevertheless:

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ε such that:

�� Pr[DFk(·),F−1
k (·)(1n) = 1]− Pr[Df(·),f−1(·)(1n) = 1]

�� ≤ ε(n)

Strong pseudorandom permutations

Sometimes we need even even “stronger” functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom
permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are
indistinguishable from random permutation even if the adversary
has oracle access to both the permutation and its inverse

Fk(x) or f(x)

F−1
k (x) or f−1(x)

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a strong pseudorandom permutation if for all probabilistic polynomial-time
distinguishers D, there is a negligible function ε such that:

�� Pr[DFk(·),F−1
k (·)(1n) = 1]− Pr[Df(·),f−1(·)(1n) = 1]

�� ≤ ε(n)

Distinguisher
D

...

Evaluates
Fk

Output (0 or 1)

“World 1”: k is chosen u.a.r. in {0, 1}n

“World 0”: f is chosen u.a.r. in Permn

DFk(·),F−1(·)(1n)

Df(·),f−1(·)(1n)

Strong pesudorandom permutations

D wants to tell “World 0”
apart from “World 1”

Evaluates
F−1
k...

Distinguisher
D

...

Evaluates
f

Evaluates
f−1
k...

Denotes the kind of oracle
D is interacting with

Output (0 or 1)

