Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

- For EAV-security we had to rely on PRGs

Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

- For EAV-security we had to rely on PRGs
- For CPA-security we need a new cryptographic primitive: pseudorandom functions (PRFs)

(Pseudo-)Random Functions

What does it mean for a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ to be random?

(Pseudo-)Random Functions

What does it mean for a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ to be random?

The question is ill-posed!

- It does not make sense to say that a fixed function is random

(Pseudo-)Random Functions

What does it mean for a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ to be random?

The question is ill-posed!

- It does not make sense to say that a fixed function is random
- Just like it does not make sense to say that 0010110 is

```
int getRandomNumber()
    return 4; // chosen by fair dice roll.
        // guaranteed to be random.
}
``` random, or that the number 4 is random

\section*{(Pseudo-)Random Functions}

What does it mean for a function \(f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}\) to be random?

The question is ill-posed!
- It does not make sense to say that a fixed function is random
- Just like it does not make sense to say that 0010110 is
```

int getRandomNumber()
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}

```

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

\section*{Keyed Functions}

A keyed function is a function \(F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\)
This function has two inputs. The first input is called the key

\section*{Keyed Functions}

A keyed function is a function \(F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\)
This function has two inputs. The first input is called the key
A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input \(k \in\{0,1\}^{*}\) and \(x \in\{0,1\}^{*}\), and computes \(F(k, x)\)

\section*{Keyed Functions}

A keyed function is a function \(F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\)
This function has two inputs. The first input is called the key
A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input \(k \in\{0,1\}^{*}\) and \(x \in\{0,1\}^{*}\), and computes \(F(k, x)\)

We are usually interested in keyed function in which:
- The key has some fixed length \(\ell_{\text {key }}\)
- The second input has some fixed length \(\ell_{i n}\)
- The output has some fixed length \(\ell_{o u t}\)

\section*{Keyed Functions}

A keyed function is a function \(F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\)
This function has two inputs. The first input is called the key
A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input \(k \in\{0,1\}^{*}\) and \(x \in\{0,1\}^{*}\), and computes \(F(k, x)\)

We are usually interested in keyed function in which:
- The key has some fixed length \(\ell_{\text {key }}(n)\)
- The second input has some fixed length \(\ell_{i n}(n)\)
- The output has some fixed length \(\ell_{\text {out }}(n)\)

These quantities are actually functions of the security parameter!

\section*{Keyed Functions}

A keyed function is a function \(F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}\)
This function has two inputs. The first input is called the key
A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input \(k \in\{0,1\}^{*}\) and \(x \in\{0,1\}^{*}\), and computes \(F(k, x)\)

We are usually interested in keyed function in which:
- The key has some fixed length \(\ell_{\text {key }}(n)\)
- The second input has some fixed length \(\ell_{i n}(n)\)
- The output has some fixed length \(\ell_{\text {out }}(n)\)

Simplifying assumption (can be removed): \(F\) is length-preserving
\[
\ell_{\text {key }}(n)=\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n
\]

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?
Think of the function as a huge table:

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?
Think of the function as a huge table:

How many distinct tables?

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?
Think of the function as a huge table:

How many distinct tables?

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?
Think of the function as a huge table:

How many distinct tables?
\((\text { choices per row })^{\# \text { rows }}=\left(2^{n}\right)^{2^{n}}=2^{n \cdot 2^{n}}\)

\section*{Number of functions}

Let Func \({ }_{n}\) be the set of all functions \(f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\)
How big is \(\mathrm{Func}_{n}\) ?
Think of the function as a huge table:

How many distinct tables?
\((\text { choices per row })^{\# \text { rows }}=\left(2^{n}\right)^{2^{n}}=2^{n \cdot 2^{n}}\)
For \(n=4\) there \(2^{64}\) functions

\section*{Random functions}

When we talk about a random function \(f\) (for some security parameter \(n\)), we actually mean that \(f\) is sampled uniformly at random from the set \(\mathrm{Func}_{n}\)

\section*{Random functions}

When we talk about a random function \(f\) (for some security parameter \(n\)), we actually mean that \(f\) is sampled uniformly at random from the set Func \({ }_{n}\)

By the principle of deferred decisions, we can equivalently think of \(f\) :
- As a function whose outputs are completely determined at sampling time (i.e., for each \(x\), choose a random string \(f(x)\) in \(\{0,1\}^{n}\))

\section*{Random functions}

When we talk about a random function \(f\) (for some security parameter \(n\)), we actually mean that \(f\) is sampled uniformly at random from the set Func \({ }_{n}\)

By the principle of deferred decisions, we can equivalently think of \(f\) :
- As a function whose outputs are completely determined at sampling time (i.e., for each \(x\), choose a random string \(f(x)\) in \(\{0,1\}^{n}\))
- As a function whose outputs are decided lazily: whenever we need to evaluate \(f(x)\) :
- If \(f(x)\) was never evaluated before with input \(x\) :
- Return a binary string chosen u.a.r. from \(\{0,1\}^{n}\)
- Otherwise, return the previously chosen string for input \(x\)

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

Choosing \(k\) is equivalent to choosing a function \(F_{k} \in\) Func \(_{n}\) !
Pick a uniform \(k\). We now have a distribution over the functions in \(\mathrm{Func}_{n}\)

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

Choosing \(k\) is equivalent to choosing a function \(F_{k} \in \mathrm{Func}_{n}\) !
Pick a uniform \(k\). We now have a distribution over the functions in \(\mathrm{Func}_{n}\)

How big is the support of this distribution?

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

Choosing \(k\) is equivalent to choosing a function \(F_{k} \in \mathrm{Func}_{n}\) !
Pick a uniform \(k\). We now have a distribution over the functions in Func \(_{n}\)

How big is the support of this distribution?
There can be at most as many functions \(F_{k}\) as keys \(k \in\{0,1\}^{n} \Longrightarrow\) at most \(2^{n}\) functions!

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

Choosing \(k\) is equivalent to choosing a function \(F_{k} \in \mathrm{Func}_{n}\) !
Pick a uniform \(k\). We now have a distribution over the functions in Func \(_{n}\)

How big is the support of this distribution?
There can be at most as many functions \(F_{k}\) as keys \(k \in\{0,1\}^{n} \Longrightarrow\) at most \(2^{n}\) functions!
For \(n=4\) there are \(2^{4}=16\) possible choices. \(\ldots\) out of \(2^{64}\) possible functions!

\section*{Back to keyed functions}

We will typically use efficient keyed functions as follows:
- Chose some key \(k \in\{0,1\}^{n}\)
- Evaluate the function \(F(k, x)\) for different choices of \(x\), while \(k\) stays the same
- Is is then convenient to define the single-input function \(F_{k}(x)=F(k, x)\)

Choosing \(k\) is equivalent to choosing a function \(F_{k} \in \mathrm{Func}_{n}\) !
Pick a uniform \(k\). We now have a distribution over the functions in Func \(_{n}\)

How big is the support of this distribution?
There can be at most as many functions \(F_{k}\) as keys \(k \in\{0,1\}^{n} \Longrightarrow\) at most \(2^{n}\) functions!
For \(n=4\) there are \(2^{4}=16\) possible choices. \(\ldots\) out of \(2^{64}\) possible functions!

We can only sample a tiny fractions of the functions in \(\mathrm{Func}_{n}\) !

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \(D\) oracle access to \(F_{k}\) and \(f\) and input \(1^{n}\) :

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \(D\) oracle access to \(F_{k}\) and \(f\) and input \(1^{n}\) :
- There is an oracle \(\mathcal{O}\) that can be queried with a string \(x \in\{0,1\}^{n}\)

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \(D\) oracle access to \(F_{k}\) and \(f\) and input \(1^{n}\) :
- There is an oracle \(\mathcal{O}\) that can be queried with a string \(x \in\{0,1\}^{n}\)
- \(\mathcal{O}\) either always answers with \(F_{k}(x)\), or it always answers with \(f(x)\)

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \(D\) oracle access to \(F_{k}\) and \(f\) and input \(1^{n}\) :
- There is an oracle \(\mathcal{O}\) that can be queried with a string \(x \in\{0,1\}^{n}\)
- \(\mathcal{O}\) either always answers with \(F_{k}(x)\), or it always answers with \(f(x)\)
- \(D\) can query \(\mathcal{O}\) many times

\section*{Defining pseudorandom functions}

Intuition: \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is pseudorandom if no polynomial-time algorithm \(D\) can distinguish the function \(F_{k}\) (where \(k\) is chosen u.a.r.) from a random function \(f \in\) Func \(_{n}\), except for a negligible probability.

Caution! What's the input to \(D\) ?
- We cannot use an encoding of \(F_{k}\) and \(f\) as the input to \(D\)
- Such an encoding would be (super)exponential in \(n\) !
- \(D\) needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \(D\) oracle access to \(F_{k}\) and \(f\) and input \(1^{n}\) :
- There is an oracle \(\mathcal{O}\) that can be queried with a string \(x \in\{0,1\}^{n}\)
- \(\mathcal{O}\) either always answers with \(F_{k}(x)\), or it always answers with \(f(x)\)
- \(D\) can query \(\mathcal{O}\) many times
- \(D\) needs to guess whether \(\mathcal{O}\) is evaluating \(F_{k}\) or \(f\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)
\begin{tabular}{|c|}
\hline \(\mathcal{O}\) \\
Evaluates \\
\(F_{k}\)
\end{tabular}

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

"World 0":
\(f\) is chosen u.a.r. in Func \({ }_{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

"World 0":
\(f\) is chosen u.a.r. in Func \({ }_{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

"World 0":
\(f\) is chosen u.a.r. in Func \({ }_{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

Output (0 or 1)

"World 0":
\(f\) is chosen u.a.r. in Func \({ }_{n}\)

\section*{Defining pseudorandom functions}
"World 1":
\(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)
"World 0":
\(f\) is chosen u.a.r. in \(\mathrm{Func}_{n}\)

\(D\) wants to tell "World 0" apart from "World 1"

Denotes the kind of oracle \(D\) is interacting with

\section*{Defining pseudorandom functions (formal)}

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a pseudorandom function if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

\section*{Defining pseudorandom functions (formal)}

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a pseudorandom function if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

\section*{Defining pseudorandom functions (formal)}

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a pseudorandom function if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

Probability over the randomness of the distinguisher and the choice of \(k\)

Probability over the randomness of the distinguisher and the uniform choice of \(f \in\) Func \(_{n}\)

\section*{Examples}

What are some possible distinguishers from the following (failed attempts at) pseudorandom functions?
- \(F(k, x)=1^{n}\)
- \(F(k, x)=k\)
- \(F(k, x)=k \vee x\)
- \(F(k, x)=k \wedge x\)
- \(F(k, x)=k \oplus x\)

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
\[
G(s):
\]
- Return \(F_{s}(0 \ldots 000) \| F_{s}(0 \ldots .001)\)
expansion factor \(\ell(n)=2 n\)

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
\[
\begin{aligned}
& G(k) \text { : } \\
& \text { - Return } F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)
\end{aligned}
\]
\(\langle x\rangle=\) binary encoding of \(x\) with \(n\) bits

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
\[
G(k):
\]
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
\(\langle x\rangle=\) binary encoding of \(x\) with \(n\) bits
expansion factor \(\ell(n)=n \cdot L\)

Proof that \(G\) is a PRG? Security reduction ("breaking \(G\) implies breaking \(F\) ")
- Suppose that \(G\) is not a PRG, then there is some distinguisher \(D\) for \(G\) (with non negligible gap)
- Use \(D\) to build a distinguisher \(\mathcal{A}\) for \(F\) (with non negligible gap)
- This contradicts the fact that \(F\) is a PRF (i.e., no such \(D\) can exist)

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle))
\]

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle))
\]
\(\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(G(k))=1]\)

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
\begin{gathered}
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle)) \\
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(G(k))=1] \quad \operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(r)=1]
\end{gathered}
\]

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
\begin{array}{cc}
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle)) \\
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(G(k))=1] & \operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(r)=1]
\end{array}
\]

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
\begin{array}{cc}
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle)) \\
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(G(k))=1] & \operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(r)=1]
\end{array}
\]
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]|=|\operatorname{Pr}[D(G(k))]-\operatorname{Pr}[D(r)]|=\varepsilon(n)
\]

\section*{PRFs and PRGs}
\(G(k)\) :
- Return \(F_{k}(\langle 0\rangle)\left\|F_{k}(\langle 1\rangle)\right\| \ldots \| F_{k}(\langle L\rangle)\)
- Suppose that \(G\) is not a PRG , then there is some \(D\) such that:
\[
|\operatorname{Pr}[D(G(k))=1]-\operatorname{Pr}[D(r)=1]|=\varepsilon(n) \text { where } \varepsilon(n) \text { is not negligible }
\]
- We design a distinguisher \(\mathcal{A}\) for \(F\). \(\mathcal{A}^{\Phi}\) has access to an oracle \(\Phi\) and returns:
\[
\begin{array}{cc}
D(\Phi(\langle 0\rangle)\|\Phi(\langle 1\rangle)\| \ldots \| \Phi(\langle L\rangle)) \\
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(G(k))=1] & \operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}[D(r)=1]
\end{array}
\]
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]|=|\operatorname{Pr}[D(G(k))]-\operatorname{Pr}[D(r)]|=\varepsilon(n)
\]
- Therefore \(F\) is not a PRF.

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
\[
G(k)=11011010010010110000101001011110
\]

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
Divide the output of \(G(k)\) into \(2^{t(n)}\) "chunks" of \(n\) bits each
\[
G(k)=11011010010010110000101001011110
\]

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
Divide the output of \(G(k)\) into \(2^{t(n)}\) "chunks" of \(n\) bits each
\[
G(k)=11011010010010110000101001011110
\]
\begin{tabular}{l|l}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
\hline 010 & 0100 \\
\hline 011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110 \\
\hline
\end{tabular}

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
Divide the output of \(G(k)\) into \(2^{t(n)}\) "chunks" of \(n\) bits each
\[
G(k)=11011010010010110000101001011110
\]
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110 \\
\hline
\end{tabular}
\(F_{k}(\langle i\rangle)\) returns the \(i\)-th group of bits (counting from 0) of \(G(k)\)111 \(\ell_{\text {in }}(n)=t(n), \ell_{\text {out }}(n)=n\)

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
Divide the output of \(G(k)\) into \(2^{t(n)}\) "chunks" of \(n\) bits each
\[
G(k)=11011010010010110000101001011110
\]
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}
\(F_{k}(\langle i\rangle)\) returns the \(i\)-th group of bits (counting from 0) of \(G(k)\) 111 1110 \(\ell_{\text {in }}(n)=t(n), \ell_{\text {out }}(n)=n\)

Caveat: To construct the table in polynomial time we need \(t(n)=O(\log n)\)

\section*{PRFs and PRGs}

If we have a PRF \(F(k, x)\) we can use it to build a PRG \(G\).
Are PRFs a stronger cryptographic primitive than PRGs?
No. PRFs exist \(\Longleftrightarrow\) PRGs exist

If we have a PRG \(G\) we can use it to build a PRF \(F(k, x)\).

A simple case: consider a PRG \(G(k)\) with expansion factor \(\ell(n)=n \cdot 2^{t(n)}\)
Divide the output of \(G(k)\) into \(2^{t(n)}\) "chunks" of \(n\) bits each
\[
G(k)=11011010010010110000101001011110
\]
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}
\(F_{k}(\langle i\rangle)\) returns the \(i\)-th group of bits (counting from 0) of \(G(k)\) 111 \(\ell_{\text {in }}(n)=t(n), \ell_{\text {out }}(n)=n\)

Caveat: To construct the table in polynomial time we need \(t(n)=O(\log n) \Longrightarrow F\) has short inputs

\section*{PRFs and PRGs}

Proof of security:
\[
G(k)=11011010010010110000101001011110
\]
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\left|\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]\right|=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]

\section*{PRFs and PRGs}

Proof of security:
\[
G(k)=11011010010010110000101001011110
\]
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\left|\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right]\right|=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=110110100100 \mid 1011000010100101 / 1110\)
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
- Consider the following distinguisher \(D(w)\) for \(G\) :
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=1101101001001011000010100101 / 1110\)
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}
- \(D\) returns the same output as \(\mathcal{A}\)

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=1101101001001011000010100101 / 1110\)
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
- Consider the following distinguisher \(D(w)\) for \(G\) :
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
\hline 010 & 0100 \\
\hline 011 & 1011 \\
\hline 100 & 0000 \\
\hline 101 & 1010 \\
110 & 0101 \\
\hline 111 & 1110 \\
\hline
\end{tabular}
- \(D\) returns the same output as \(\mathcal{A}\)
- \(\operatorname{Pr}[D(G(k))=1]=\operatorname{Pr}\left[A^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]\)

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=1101101001001011000010100101 / 1110\)
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
- Consider the following distinguisher \(D(w)\) for \(G\) :
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
010 & 0100 \\
011 & 1011 \\
100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
111 & 1110
\end{tabular}
- \(D\) returns the same output as \(\mathcal{A}\)
- \(\operatorname{Pr}[D(G(k))=1]=\operatorname{Pr}\left[A^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]\)
- \(\operatorname{Pr}[D(r)=1]=\operatorname{Pr}\left[A^{f(\cdot)}\left(1^{n}\right)=1\right]\)

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=11011010010010110000101001011110\)
- Suppose that \(F\) is not a PRF, then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
- Consider the following distinguisher \(D(w)\) for \(G\) :
\begin{tabular}{l|l|}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
\hline 010 & 0100 \\
011 & 1011 \\
\hline 100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
\hline 111 & 1110 \\
\hline
\end{tabular}
- \(D\) returns the same output as \(\mathcal{A}\)
- \(\operatorname{Pr}[D(G(k))=1]=\operatorname{Pr}\left[A^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]\)
- \(\operatorname{Pr}[D(r)=1]=\operatorname{Pr}\left[A^{f(\cdot)}\left(1^{n}\right)=1\right] \quad\{\)

\section*{PRFs and PRGs}

Proof of security:
\(G(k)=11011010010010110000101001011110\)
- Suppose that \(F\) is not a PRF , then there is \(\mathcal{A}\) such that
\[
\operatorname{Pr}\left[\mathcal{A}^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(\cdot)}\left(1^{n}\right)=1\right] \mid=\varepsilon(n) \text { for non-negligible } \varepsilon(n)
\]
- Consider the following distinguisher \(D(w)\) for \(G\) :
\begin{tabular}{c|c}
\(x\) & \(F_{k}(x)\) \\
\hline 000 & 1101 \\
001 & 1010 \\
\hline 010 & 0100 \\
011 & 1011 \\
\hline 100 & 0000 \\
101 & 1010 \\
110 & 0101 \\
\hline 111 & 1110 \\
\hline
\end{tabular}
- \(D\) splits \(w\) into blocks, and builds a table as before100
- \(D\) simulates the oracle \(\Phi\) and calls \(\mathcal{A}^{\Phi}\). Whenever \(\mathcal{A}\) queries \(\Phi(x), D\) answers with the output of the row labeled \(x\) in the table110
- \(D\) returns the same output as \(\mathcal{A}\)
- \(\operatorname{Pr}[D(G(k))=1]=\operatorname{Pr}\left[A^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]\)
- \(\operatorname{Pr}[D(r)=1]=\operatorname{Pr}\left[A^{f(\cdot)}\left(1^{n}\right)=1\right] \quad\{\) \(\Longrightarrow|\operatorname{Pr}[D(G(k))]-\operatorname{Pr}[D(r)]|=\varepsilon(n)\) non negligible \(\Longrightarrow G\) is not a PRG

\section*{The Goldreich-Goldwasser-Micali construction}

Let \(G\) be a length-doubling PRG, i.e., \(\ell(n)=2 n\).
\[
G(s)=G_{0}(s) \| G_{1}(s)
\]

\section*{The Goldreich-Goldwasser-Micali construction}

Let \(G\) be a length-doubling PRG, i.e., \(\ell(n)=2 n\).
\[
G(s)=G_{0}(s) \| G_{1}(s)
\]

Imagine the following complete binary tree of height \(n\)

\section*{The Goldreich-Goldwasser-Micali construction}

Let \(G\) be a length-doubling PRG, i.e., \(\ell(n)=2 n\).
\[
G(s)=G_{0}(s) \| G_{1}(s)
\]

Imagine the following complete binary tree of height \(n\)

Interpret the key \(k\) of \(F(k, x)\) as the seed of the root of the tree

\section*{The Goldreich-Goldwasser-Micali construction}

Let \(G\) be a length-doubling PRG, i.e., \(\ell(n)=2 n\).
\[
G(s)=G_{0}(s) \| G_{1}(s)
\]

Imagine the following complete binary tree of height \(n\)

Interpret the key \(k\) of \(F(k, x)\) as the seed of the root of the tree
Interpret the binary digits of \(x\) as a path in the tree

\section*{The Goldreich-Goldwasser-Micali construction}

Let \(G\) be a length-doubling PRG, i.e., \(\ell(n)=2 n\).
\[
G(s)=G_{0}(s) \| G_{1}(s)
\]

Imagine the following complete binary tree of height \(n\)

Interpret the key \(k\) of \(F(k, x)\) as the seed of the root of the tree
Interpret the binary digits of \(x\) as a path in the tree Interpret the output of the leaf as the output of \(F(k, x)\)
\[
F(k, 1011)=G_{1}\left(G_{1}\left(G_{0}\left(G_{1}(k)\right)\right)\right)
\]

\section*{The Goldreich-Goldwasser-Micali construction}

\author{
If \(G\) is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF
}

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

\section*{The Goldreich-Goldwasser-Micali construction}

\author{
If \(G\) is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF
}

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

\section*{The Goldreich-Goldwasser-Micali construction}

\section*{If \(G\) is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF}

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?
We can build one from any PRG, even if the expansion factor is just \(\ell(n)=n+1\)

In fact, we can build a PRG with expansion factor \(n+p(n)\) for any polynomial \(p(n)\)

\section*{Increasing the expansion factor}

An easy case: increasing the expansion factor by 1
- Start from a PRG \(G\) with expansion factor \(\ell(n)=n+1\)

\section*{Increasing the expansion factor}

An easy case: increasing the expansion factor by 1
- Start from a PRG \(G\) with expansion factor \(\ell(n)=n+1\)
- Call \(G(s)\) and interpret the first \(n\) bits \(x_{1} x_{2} \ldots x_{n}\) of the output as a new seed
- Let the last bit of \(G(s)\) be \(y\)

\[
G(s)=x_{1} x_{2} x_{3} \ldots x_{n} y
\]

\section*{Increasing the expansion factor}

An easy case: increasing the expansion factor by 1
- Start from a PRG \(G\) with expansion factor \(\ell(n)=n+1\)
- Call \(G(s)\) and interpret the first \(n\) bits \(x_{1} x_{2} \ldots x_{n}\) of the output as a new seed
- Let the last bit of \(G(s)\) be \(y\)
- Return \(G\left(x_{1} x_{2} \ldots x_{n}\right) \| y\)

\[
G(s)=x_{1} x_{2} x_{3} \ldots x_{n} y
\]

\section*{Increasing the expansion factor}

An easy case: increasing the expansion factor by 1
- Start from a PRG \(G\) with expansion factor \(\ell(n)=n+1\)
- Call \(G(s)\) and interpret the first \(n\) bits \(x_{1} x_{2} \ldots x_{n}\) of the output as a new seed
- Let the last bit of \(G(s)\) be \(y\)
- Return \(G\left(x_{1} x_{2} \ldots x_{n}\right) \| y\)

\[
G(s)=x_{1} x_{2} x_{3} \ldots x_{n} y
\]

Overall expansion factor \(\ell(n)=n+2\)

\section*{Increasing the expansion factor (length-doubling)}

Increasing the expansion factor from \(n+1\) to \(2 n\)
- Start from a PRG \(G\) with expansion factor \(\ell(n)=n+1\)
- Repeat the previous idea for \(n\) levels
- The \(i\)-th intermediate level outputs \(n+1\) bits
- \(n\) bits are used as a seed for the next level
- The \((n+1)\)-th bit \(y_{i}\) will be part of the output of the whole construction
- The last level outputs \(n+1\) bits \(x_{1} x_{2} \ldots x_{n} y_{n}\)
- The final output is \(x_{1} x_{2} \ldots x_{n} y_{n} y_{n-1} \ldots y_{1}\)

Overall expansion factor: \(\ell(n)=n+n=2 n\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Repeat the previous idea \(p(n)\) times
Algorithm \(\widehat{G}(s)\) : \(\quad\) (here \(s \in\{0,1\}^{n}\))
- \(t_{0} \leftarrow s\)
- For \(i=1,2, \ldots, p(n)\) :
- Interpret \(t_{i-1}\) as \(s_{i-1} \| \sigma_{i-1}\) where \(\left|s_{i-1}\right|=n\) and \(\left|\sigma_{i-1}\right|=i-1\)
- \(t_{i} \leftarrow G\left(s_{i-1}\right) \| \sigma_{i-1}\)
- Return \(t_{p(n)}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Repeat the previous idea \(p(n)\) times
Algorithm \(\widehat{G}(s): \quad\left(\right.\) here \(\left.s \in\{0,1\}^{n}\right)\)
- \(t_{0} \leftarrow s\)
- For \(i=1,2, \ldots, p(n)\) :
- Interpret \(t_{i-1}\) as \(s_{i-1} \| \sigma_{i-1}\) where \(\left|s_{i-1}\right|=n\) and \(\left|\sigma_{i-1}\right|=i-1\)
- \(t_{i} \leftarrow G\left(s_{i-1}\right) \| \sigma_{i-1}\)
- Return \(t_{p(n)}\)

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

Proof:
Define \(H_{n}^{j}\) to be the distribution on strings of length \(n+p(n)\) output by the following process:
- Choose \(t_{j}\) u.a.r. from \(\{0,1\}^{n+j}\)
- Run \(\widehat{G}\) starting from iteration \(j+1\) of the for loop and returns its output

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

Proof:
Define \(H_{n}^{j}\) to be the distribution on strings of length \(n+p(n)\) output by the following process:
- Choose \(t_{j}\) u.a.r. from \(\{0,1\}^{n+j}\)
- Run \(\widehat{G}\) starting from iteration \(j+1\) of the for loop and returns its output

Note that: \(H_{n}^{0}\) is the output distribution of \(\widehat{G}(s)\) for a seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

Proof:
Define \(H_{n}^{j}\) to be the distribution on strings of length \(n+p(n)\) output by the following process:
- Choose \(t_{j}\) u.a.r. from \(\{0,1\}^{n+j}\)
- Run \(\widehat{G}\) starting from iteration \(j+1\) of the for loop and returns its output

Note that: \(H_{n}^{0}\) is the output distribution of \(\widehat{G}(s)\) for a seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\)
\[
H_{n}^{p(n)} \text { is a string of length } p(n)+n \text { chosen u.a.r. from }\{0,1\}^{n+p(n)}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

Proof:
Define \(H_{n}^{j}\) to be the distribution on strings of length \(n+p(n)\) output by the following process:
- Choose \(t_{j}\) u.a.r. from \(\{0,1\}^{n+j}\)
- Run \(\widehat{G}\) starting from iteration \(j+1\) of the for loop and returns its output

Note that: \(H_{n}^{0}\) is the output distribution of \(\widehat{G}(s)\) for a seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\)
\(H_{n}^{p(n)}\) is a string of length \(p(n)+n\) chosen u.a.r. from \(\{0,1\}^{n+p(n)}\)
We prove that if there exists a polynomial-time distinguisher \(\widehat{D}\) (with non-negligible gap) for \(\widehat{G}\), then there is a also a distinguisher \(D\) for \(G\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Theorem: If there exists a pseudorandom generator \(G\) with expansion factor \(n+1\) then, for any polynomial \(p, \widehat{G}\) is a pseudorandom generator with expansion factor \(n+p(n)\).

Proof:
Define \(H_{n}^{j}\) to be the distribution on strings of length \(n+p(n)\) output by the following process:
- Choose \(t_{j}\) u.a.r. from \(\{0,1\}^{n+j}\)
- Run \(\widehat{G}\) starting from iteration \(j+1\) of the for loop and returns its output

Note that: \(H_{n}^{0}\) is the output distribution of \(\widehat{G}(s)\) for a seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\)
\[
H_{n}^{p(n)} \text { is a string of length } p(n)+n \text { chosen u.a.r. from }\{0,1\}^{n+p(n)}
\]

We prove that if there exists a polynomial-time distinguisher \(\widehat{D}\) (with non-negligible gap) for \(\widehat{G}\), then there is a also a distinguisher \(D\) for \(G\)
Let \(D\) be a distinguisher such that:
\[
\left|\operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s))]-\operatorname{Pr}_{r}[\widehat{D}(r)]\right|=\varepsilon(n) \text { for some non-negligible } \varepsilon(n)
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\) If \(w\) is a uniform string in \(\{0,1\}^{n}\) :

- Both \(w\) and \(\sigma_{j}^{\prime}\) are chosen u.a.r., therefore \(t_{j^{*}}\) is a uniform string in \(\{0,1\}^{n+j^{*}}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\) If \(w\) is a uniform string in \(\{0,1\}^{n}\) :

- Both \(w\) and \(\sigma_{j}^{\prime}\) are chosen u.a.r., therefore \(t_{j^{*}}\) is a uniform string in \(\{0,1\}^{n+j^{*}}\)
- The distribution of \(t_{p(n)}\) is exactly \(H_{n}^{j^{*}}\)
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\) If \(w\) is the output of \(G(s)\) on some seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\) :

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\)
If \(w\) is the output of \(G(s)\) on some seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\) :

- Define \(t_{j^{*}-1}=s \| \sigma_{j}^{\prime}\) and notice that \(t_{j^{*}-1}\) is a uniform string in \(\{0,1\}^{n+j^{*}-1}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\) If \(w\) is the output of \(G(s)\) on some seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\) :

- Define \(t_{j^{*}-1}=s \| \sigma_{j}^{\prime}\) and notice that \(t_{j^{*}-1}\) is a uniform string in \(\{0,1\}^{n+j^{*}-1}\)
- Imagine running the \(j^{*}\)-th iteration of \(\widehat{G}\). We would have \(t_{j^{*}}=G(s)\left\|\sigma_{j}^{\prime}=w\right\| \sigma_{j}^{\prime}\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

Consider the following distinguisher \(D^{\prime}\) for \(G\) :
Algorithm \(D(w): \quad\left(\right.\) here \(\left.w \in\{0,1\}^{n+1}\right)\)
- Choose \(j\) u.a.r. in \(\{1,2, \ldots, p(n)\}\)
- Choose \(\sigma_{j}^{\prime}\) u.a.r. in \(\{0,1\}^{j-1}\)
- Set \(t_{j}=w \| \sigma_{j}^{\prime}\) and run \(\widehat{G}\) from iteration \(j\) to compute \(t_{p(n)}\)
- Run \(\widehat{D}\left(t_{p(n)}\right)\) and copy its output

Fix \(j^{*} \in\{1,2, \ldots, p(n)\}\) and consider what happens when \(D\) chooses \(j=j^{*}\) If \(w\) is the output of \(G(s)\) on some seed \(s\) choosen u.a.r. from \(\{0,1\}^{n}\) :

- Define \(t_{j^{*}-1}=s \| \sigma_{j}^{\prime}\) and notice that \(t_{j^{*}-1}\) is a uniform string in \(\{0,1\}^{n+j^{*}-1}\)
- Imagine running the \(j^{*}\)-th iteration of \(\widehat{G}\). We would have \(t_{j^{*}}=G(s)\left\|\sigma_{j}^{\prime}=w\right\| \sigma_{j}^{\prime}\)
- The distribution of \(t_{p(n)}\) is exactly \(H_{n}^{j^{*}-1}\)
\[
\operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{r}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{r}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{r}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{s}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right]
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1]
\end{aligned}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{r}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\]
\[
\operatorname{Pr}_{s}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\]

We can now bound:
\(\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right|\)

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \underset{s}{\operatorname{Pr}}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

We can now bound:
\[
\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right|=\left|\frac{1}{p(n)} \cdot\left(\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]-\sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]\right)\right|
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \underset{s}{\operatorname{Pr}}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

We can now bound:
\[
\begin{aligned}
\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right| & =\left\lvert\, \frac{1}{p(n)} \cdot\left(\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]-\sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]\right)\right. \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t)=1]-\operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t)=1]\right|
\end{aligned}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \underset{s}{\operatorname{Pr}}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

We can now bound:
\[
\begin{aligned}
\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right| & =\left\lvert\, \frac{1}{p(n)} \cdot\left(\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]-\sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]\right)\right. \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t)=1]-\operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t)=1]\right| \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{r}[\widehat{D}(r)=1]-\operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s))=1]\right|
\end{aligned}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*-1}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \underset{s}{\operatorname{Pr}}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

We can now bound:
\[
\begin{aligned}
\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right| & =\left\lvert\, \frac{1}{p(n)} \cdot\left(\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]-\sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j{ }_{j}^{*}}}[\widehat{D}(t)=1]\right)\right. \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t)=1]-\operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t)=1]\right| \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{r}[\widehat{D}(r)=1]-\operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s))=1]\right|=\frac{\varepsilon(n)}{p(n)}
\end{aligned}
\]

\section*{Increasing the expansion factor to \(n+p(n)\)}

We have shown that:
\[
\begin{aligned}
& \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \quad \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right]=\operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}-1}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(r)=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{r}\left[D(r)=1 \mid j=j^{*}\right] \cdot \operatorname{Pr}\left[j=j^{*}\right]=\frac{1}{p(n)} \sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1] \\
& \operatorname{Pr}[D(G(s))=1]=\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{s}\left[D(G(s))=1 \mid j=j^{*}\right] \operatorname{Pr}\left[j=j^{*}\right] \quad=\frac{1}{p(n)} \sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]
\end{aligned}
\]

We can now bound:
\[
\begin{aligned}
\left|\operatorname{Pr}_{s}[D(G(s))=1]-\operatorname{Pr}_{r}[D(r)=1]\right| & =\left|\frac{1}{p(n)} \cdot\left(\sum_{j^{*}=1}^{p(n)} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]-\sum_{j^{*}=0}^{p(n)-1} \operatorname{Pr}_{t \leftarrow H_{n}^{j^{*}}}[\widehat{D}(t)=1]\right)\right| \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{t \leftarrow H_{n}^{p(n)}}[\widehat{D}(t)=1]-\operatorname{Pr}_{t \leftarrow H_{n}^{0}}[\widehat{D}(t)=1]\right| \begin{array}{c}
\text { Not } \\
\text { negligible! }
\end{array} \\
& =\frac{1}{p(n)} \cdot\left|\operatorname{Pr}_{r}[\widehat{D}(r)=1]-\operatorname{Pr}_{s}[\widehat{D}(\widehat{G}(s))=1]\right|=\frac{\varepsilon(n)}{p(n)}
\end{aligned}
\]

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let \(\operatorname{Perm}_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \(_{n}\) ?

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let Perm \({ }_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \({ }_{n}\) ?

Think of a permutation \(F\) as a huge table in which all entries \(F(x)\) are distinct:
\(2^{n}\) rows \(\left\{\begin{array}{c|c}x & F(x) \\ \hline 00 \ldots 000 & 10 \ldots .011 \\ 00 \ldots 001 & 01 \ldots .010 \\ 00 \ldots 010 & 00 \ldots 110 \\ \vdots & \vdots \\ 11 \ldots 111 & 10 \ldots .001\end{array}\right.\)

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let Perm \({ }_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \({ }_{n}\) ?

Think of a permutation \(F\) as a huge table in which all entries \(F(x)\) are distinct:

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let Perm \({ }_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \({ }_{n}\) ?

Think of a permutation \(F\) as a huge table in which all entries \(F(x)\) are distinct:
\(2^{n}\) rows \(\left\{\begin{array}{c|cc}x & F(x) \\ \hline 00 \ldots 000 & 10 \ldots 011 & \sim \\ 00 \ldots 001 & 01 \ldots 010 & 2^{n} \text { choices } \\ 00 \ldots 010 & 00 \ldots 110 \\ \vdots & \vdots \\ 11 \ldots 111 & 10 \ldots 001\end{array}\right.\)

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let Perm \({ }_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \({ }_{n}\) ?

Think of a permutation \(F\) as a huge table in which all entries \(F(x)\) are distinct:

\section*{Pseudorandom permutations}

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)
Informal: A pseudorandom permutation is a pseudorandom function that is bijective
- Let Perm \({ }_{n}\) denote the set of all permutations in \(\{0,1\}^{n}\), i.e., the set of all functions \(F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) that are bijective
- How big is Perm \({ }_{n}\) ?

Think of a permutation \(F\) as a huge table in which all entries \(F(x)\) are distinct:

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\left|\mathrm{Func}_{n}\right|}
\]

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\mid \text { Func }_{n} \mid}=\lim _{n \rightarrow \infty} \frac{\left(2^{n}\right)!}{2^{n^{n}}}
\]

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\left|\mathrm{Func}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left(2^{n}\right)!}{2^{n 2^{n}}}=\lim _{t \rightarrow \infty} \frac{t!}{t^{t}}
\]

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\mid \text { Func }_{n} \mid}=\lim _{n \rightarrow \infty} \frac{\left(2^{n}\right)!}{2^{n 2^{n}}}=\lim _{t \rightarrow \infty} \frac{t!}{t^{t}}=\lim _{t \rightarrow \infty} \frac{\sqrt{2 \pi t} \cdot t^{t} / e^{t}}{t^{t}}
\]

Stirling's approximation: \(t!\sim \sqrt{2 \pi t}\left(\frac{t}{e}\right)^{t}\)

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\left|\operatorname{Func}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left(2^{n}\right)!}{2^{n 2^{n}}}=\lim _{t \rightarrow \infty} \frac{t!}{t^{t}}=\lim _{t \rightarrow \infty} \frac{\sqrt{2 \pi t} \cdot t^{t} / e^{t}}{t^{t}}=\lim _{t \rightarrow \infty} \frac{\sqrt{2 \pi t}}{e^{t}} \\
t=2^{n}
\end{gathered}
\]

Stirling's approximation: \(t!\sim \sqrt{2 \pi t}\left(\frac{t}{e}\right)^{t}\)

\section*{Number of Permutations vs Number of Functions}

Since a function \(F \in \operatorname{Perm}_{n}\) is bijective, it must be invertible
\[
F^{-1} \text { exists and } F(x)=y \Longleftrightarrow F^{-1}(y)=x
\]

What's the (asymptotic) proportion of functions in \(\mathrm{Func}_{n}\) that are also permutations (i.e., invertible)?
\[
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\left|\operatorname{Perm}_{n}\right|}{\left|\mathrm{Func}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left(2^{n}\right)!}{2^{n 2^{n}}}=\lim _{t \rightarrow \infty} \frac{t!}{t^{t}}=\lim _{t \rightarrow \infty} \frac{\sqrt{2 \pi t} \cdot t^{t} / e^{t}}{t^{t}}=\lim _{t \rightarrow \infty} \frac{\sqrt{2 \pi t}}{e^{t}}=0 \\
t=2^{n}
\end{gathered}
\]

Stirling's approximation: \(t!\sim \sqrt{2 \pi t}\left(\frac{t}{e}\right)^{t}\)

Asymptotically, almost no function in Func \(_{n}\) is a permutation!

\section*{Keyed permutations}

A keyed permutation is a keyed function \(F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}\) such that:
- \(\ell_{\text {in }}(n)=\ell_{\text {out }}(n)\) (this quantity is called the block length); and
- For every \(k \in\{0,1\}^{\ell_{\text {key }}(n)}\), the function \(F_{k}(x)=F(k, x)\) is a permutation

\section*{Keyed permutations}

A keyed permutation is a keyed function \(F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}\) such that:
- \(\ell_{\text {in }}(n)=\ell_{\text {out }}(n)\) (this quantity is called the block length); and
- For every \(k \in\{0,1\}^{\ell_{\text {key }}(n)}\), the function \(F_{k}(x)=F(k, x)\) is a permutation

A keyed permutation is efficient if:
- There is a polynomial-time algorithm that computes \(F(x)\) given \(x\); and
- There is a polynomial-time algorithm that computes \(F^{-1}(y)\) given \(y\)

\section*{Pseudorandom permutations, formal definition}

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

Probability over the randomness of the distinguisher and the choice of \(k\)

Probability over the randomness of the distinguisher and the uniform choice of \(f \in \operatorname{Perm}_{n}\)

\section*{Pseudorandom permutations, formal definition}

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

Probability over the randomness of the distinguisher and the choice of \(k\)

Probability over the randomness of the distinguisher and the uniform choice of \(f \in \operatorname{Perm}_{n}\)

Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can distinguish it from a random permutation

\section*{Pseudorandom permutations}

Recall that (asymptotically) almost no function in \(\mathrm{Func}_{n}\) is a permutation

Nevertheless:
- As soon as \(\ell_{i n}(n) \geq n\), a PRP is indistinguishable (in polynomial time, with non-negligible gap) from PRF
- Since a PRF is indistinguishable from a random function, this implies that PRPs with \(\ell_{i n}(n) \geq n\) are also indistinguishable from random functions!

\section*{Strong pseudorandom permutations}

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

\section*{Strong pseudorandom permutations}

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to both the permutation and its inverse

\section*{Strong pseudorandom permutations}

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to both the permutation and its inverse

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a strong pseudorandom permutation if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot), F_{k}^{-1}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot), f^{-1}(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

\section*{Strong pseudorandom permutations}

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define strong pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to both the permutation and its inverse

Definition: An efficient, length preserving, keyed function \(F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}\) is a strong pseudorandom permutation if for all probabilistic polynomial-time distinguishers \(D\), there is a negligible function \(\varepsilon\) such that:
\[
\left|\operatorname{Pr}\left[D^{F_{k}(\cdot), F_{k}^{-1}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f(\cdot), f^{-1}(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)
\]

\section*{Strong pesudorandom permutations}
"World 1 ": \(k\) is chosen u.a.r. in \(\{0,1\}^{n}\)

\(D\) wants to tell "World 0" apart from "World 1"
"World 0 ": \(f\) is chosen u.a.r. in Perm \({ }_{n}\)

Denotes the kind of oracle \(D\) is interacting with```

