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How do we build a CPA-secure encryption scheme?
e For EAV-security we had to rely on PRGs

e For CPA-security we need a new cryptographic primitive: pseudorandom functions (PRFs)
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(Pseudo-)Random Functions

What does it mean for a function f: {0,1}* — {0,1}* to be random?

The question is ill-posed!

int getRandomNumber()

return 4. // chosen by fair dice roll.
/ Quaranteed to be random.

e |t does not make sense to say that a fixed function is random

e Just like it does not make sense to say that 0010110 is 3

random, or that the number 4 is random

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions
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Keyed Functions

A keyed function is a function F': {0,1}* x {0,1}* — {0,1}*
This function has two inputs. The first input is called the key

A keyed function is said to be efficient if there is a polynomial-time algorithm that takes as input
k€ {0,1}* and z € {0,1}*, and computes F'(k, )

We are usually interested in keyed function in which:

These quantities are
actually functions of the
security parameter!

e The key has some fixed length Zj., (n)

e The second input has some fixed length ¢;,,(n)

e The output has some fixed length £,,; (n)

Simplifying assumption (can be removed): F' is length-preserving

gk:ey (n) — gzn (n> — gout (n) —n
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Number of functions
Let Func,, be the set of all functions f: {0,1}" — {0,1}" How big is Func,?

Think of the function as a huge table:

) We have 2™ choices
00...000 | 10...011 4 per row
00...001 01...010
2™ rows g 00...010 00...110
\ 11...111 10...001

How many distinct tables?
(choices per row)#™ows = (27)2" = gn2"

For n = 4 there 25¢ functions
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Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is
sampled uniformly at random from the set Func,

By the principle of deferred decisions, we can equivalently think of f:

e As a function whose outputs are completely determined at sampling time
(i.e., for each x, choose a random string f(x) in {0,1}")

e As a function whose outputs are decided lazily: whenever we need to evaluate f(x):

e If f(x) was never evaluated before with input x:

e Return a binary string chosen u.a.r. from {0,1}"

e Otherwise, return the previously chosen string for input x
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Back to keyed functions

We will typically use efficient keyed functions as follows:
e Chose some key k € {0,1}"
e Evaluate the function F'(k,x) for different choices of x, while k stays the same

e Is is then convenient to define the single-input function Fi(x) = F(k, x)

Choosing k is equivalent to choosing a function F} € Func,!

Pick a uniform k. We now have a distribution over the functions in Func,,

How big is the support of this distribution?
There can be at most as many functions Fj, as keys k € {0,1}" = at most 2" functions!

n-2"
For n = 4 there are 2% = 16 possible choices. .. out of 25 possible functions! (out of 2=)

We can only sample a tiny fractions of the functions in Func,,!
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Defining pseudorandom functions

Intuition: F':{0,1}" x {0,1}" — {0,1}" is pseudorandom if no polynomial-time algorithm
D can distinguish the function Fj (where k is chosen u.a.r.) from a random function
f € Func,, except for a negligible probability.

Caution! What's the input to D?

e We cannot use an encoding of Fj and f as the input to D

e Such an encoding would be (super)exponential in n !

e [ needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give D oracle access to F}i and f and input 1":

e There is an oracle O that can be queried with a string x € {0,1}" O
e O either always answers with F}(x), or it always answers with f(z) F ()
e D can query O many times f(();)

e [ needs to guess whether O is evaluating F}, or f
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Defining pseudorandom functions

“World 1":

k is chosen u.a.r. O m > DISEITE By
in {0,1}" <
Evaluates >
Fy. B
> Output (0 or 1) DO (17)
>
“World 0":
O m >
f is chosen u.a.r. <
in Func,, Evaluates >
/ <
> Output (0 or 1) DIO(1m)
>




“World 1":

k 1s chosen u.a.r.
in {0,1}"

“World 0":

f is chosen u.a.r.
in Func,

Defining pseudorandom functions

O

Evaluates
Ey
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Output (0 or 1)

Evaluates

f

Denotes the kind of oracle
D is interacting with
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Output (0 or 1) DO (17)




“World 1":

k 1s chosen u.a.r.
in {0,1}"

“World 0":

f is chosen u.a.r.
in Func,

Defining pseudorandom functions

O

Evaluates
Ey

Distinguisher

D wants to tell “World 0"
apart from “World 1"

Output (0 or 1)

Evaluates

f

Denotes the kind of oracle
D is interacting with

)

Output (0 or 1) DO (1m)
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Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function F': {0,1}" x {0,1}" — {0,1}"
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function £ such that:

| Pr[DF*O)(1™) = 1] — Pr[D/V(1™) = 1] | < e(n)

/ .

Probability over the randomness of the Probability over the randomness of
distinguisher and the choice of & the distinguisher and the uniform
choice of f € Func,



Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom
functions?

o F(k,z)=1"

o Fk,x)=F

o Fk,x)=kVux
o Fk,o)=kANx

o Flkx)=kdx
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If we have a PRF F'(k,x) we can use it to build a PRG G.

G(s):
o Return F,(0...000) || F;(0...001)

expansion factor /(n) = 2n
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PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

G(k): (x) :.binary
o Return Fi((0)) I| Fk (1) | ... [E((L)) encoding of
expansion factor /(n) =n - L (for L = O(poly(n)))

Proof that G is a PRG? Security reduction (“breaking G implies breaking F")
e Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)
e Use D to build a distinguisher A for ' (with non negligible gap)

e This contradicts the fact that F' is a PRF (i.e., no such D can exist)
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PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

Random string
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PRFs and PRGs

G(k):
o Return Fi((0)) | ()] ... [F((L)

e Suppose that GG is not a PRG, then there is some D such that:
|Pr[D(G(k)) = 1] — Pr[D(r) = 1]| = e(n) where €(n) is not negligible

e We design a distinguisher A for F'. A% has access to an oracle ® and returns:

Random string

D(2(0) (1) - 1 2((L)) ) ,/ in {0,111
Pr[AF()(17) = 1] = Pr[D(G(k)) = 1] Pr[ A/ (1) = 1] = Pr[D(r) = 1]
| Pr[ AT O (1m) = 1] — Pr[A/O(1™) = 1] | = | Pr[D(G(K))] — Pr[D(r)] | = (n)

e Therefore F is not a PRF. § [
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PRFs and PRGs

If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()

A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010

Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011

100 0000

k) =11101/101001001011/000010100101(1110

G(k) ‘ 101 1010

110 0101

111 1110
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If we have a PRF F'(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs? No. PRFs exist <= PRGs exist

If we have a PRG G we can use it to build a PRF F(k, x).
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lin(n) =t(n), lbour(n) =n
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If we have a PRG G we can use it to build a PRF F(k, x).

z Fy ()
A simple case: consider a PRG G/(k) with expansion factor £(n) = n - 2t(") 000 1101
001 1010
Divide the output of G(k) into 24" “chunks” of n bits each 010 0100
011 1011
100 0000
k) =11101/101001001011/000010100101(1110
G(k) ‘ 101 | [1010
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F.((i)) returns the i-th group of bits (counting from 0) of G(k) 111 1110

lin(n) =t(n), lbour(n) =n

Caveat: To construct the table in polynomial time we need ¢t(n) = O(logn) == I has short inputs



PRFs and PRGs

Proof of security: G(k) =11011010010010110000101001011110

e Suppose that F' is not a PRF, then there is A such that

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n)



PRFs and PRGs

Proof of security: G(k) =[t101/t01001001011000010100101]1110

e Suppose that F' is not a PRF, then there is A such that

x F(z)

| Pr[AF() (1) = 1] — Pr[AfO) (1) = 1] | = e(n) for non-negligible £(n) 000 1101

001 1010

. . . . 010 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

101 1010

110 0101

111 1110




PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110




PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A



PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(K)) = 1] = Pr[AF()(17) = 1]



PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(K)) = 1] = Pr[AF()(17) = 1]

e Pr[D(r) = 1] = Pr[A/0)(17) = 1]



PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(k)) = 1] = Pr{APC (1) = 1] |
» = |Pr[D(G(k))] — Pr[D(r)]| = £(n) non negligible

e Pr[D(r) = 1] = Pr[A/0)(17) = 1]



PRFs and PRGs

Proof of security: G(k) = [t101jt010010010110000010100101[1110

e Suppose that F' is not a PRF, then there is A such that

x Fp ()

| Pr[Af+0) (1) = 1] — Pr[A7)(1™) = 1] | = £(n) for non-negligible £(n) 000 1101

001 1010

| e | 010 | 0100

e Consider the following distinguisher D(w) for G: 011 1011

e D splits w into blocks, and builds a table as before 100 0000

e D simulates the oracle ® and calls A® . Whenever A queries 101 1010

. . 110 0101

®(x), D answers with the output of the row labeled x in the table 111 1110

e D returns the same output as A

o Pr[D(G(k)) = 1] = Pr{APC (1) = 1] |
» = |Pr[D(G(k))] — Pr[D(r)]| = £(n) non negligible

e Pr[D(r) = 1] = Pr[A/0)(17) = 1] )
—> (G is not a PRG gD



he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)



he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)

Imagine the following complete binary
tree of height n

0 G 1
Yy Yy
0 G 1 0 G 1
Y Yy
G G G G
0 v/\vl 0 v/\'l 0 y/\yl , \'1
G

G G G G G G
01 Oy 7yl Oy 7yl 07yl Oy7y1 Oy 01



he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
' : : 1 Y
(O_JG% (_OJ%
G G G G
0 1 0 1 0 1 1
Y e T
G G G G G G o G
031 Oyl Oyl Oyl Oy vl Oy 3! 0yl

Interpret the key k of F'(k,x) as the seed of the root of the tree



he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
'ﬁ 0 G 1 G1(k)
(o_/g GoGi(k)) 0 LG 1
G G G | Gi(Go(Gi(R)) | G
0 1 0 1 0 1 1
Ty Y i
G G G G G G o G
Oy =y Oy 7yl Oy 1 Oy~ 1 Oyl Oyl Oy =yl

Interpret the key k of F'(k,x) as the seed of the root of the tree

Interpret the binary digits of x as a path in the tree



he Goldreich-Goldwasser-Micali construction

Let G be a length-doubling PRG, i.e., {(n) = 2n. G(s) = Go(s) || G1(s)
Imagine the following complete binary k
tree of height n Y
'ﬁ 0 G 1 G1(k)
(O_JGQ, GoGi(k)) 0 LG 1
G G G | Gi(Go(Gi(R)) | G
0 1 0 1 0 1 1
Ty Y i
G G G G G G o G
Oy =y Oy 7yl Oy 1 Oy~ 1 Oyl Oyl Oy =yl

Interpret the key k of F'(k,x) as the seed of the root of the tree
Interpret the binary digits of x as a path in the tree
Interpret the output of the leaf as the output of F(k, x) F(k,1011) = G1(G1(Go(G1(k))))
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he Goldreich-Goldwasser-Micali construction

If G is a secure length-doubling PRG, then the
Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just £(n) =n + 1

In fact, we can build a PRG with expansion factor n + p(n) for any polynomial p(n)
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e Start from a PRG G with expansion factor /(n) =n + 1
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e Start from a PRG G with expansion factor /(n) =n + 1
e Call G(s) and interpret the first n bits x1x5 ...z, of the output as a new seed
e Let the last bit of G(s) be y
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Increasing the expansion factor

An easy case: increasing the expansion factor by 1
e Start from a PRG G with expansion factor /(n) =n + 1
e Call G(s) and interpret the first n bits x1x5 ...z, of the output as a new seed
e Let the last bit of G(s) be y

e Return G(z122...2,) ||y

|
¢ v
G

G(s) = x1x913 ... TRY

A | vV V vY Overall expansion factor /(n) =n + 2



Increasing the expansion factor (length-doubling)

Increasing the expansion factor from n + 1 to 2n

e Start from a PRG G with expansion factor /(n) =n + 1
e Repeat the previous idea for n levels

e The i-th intermediate level outputs n + 1 bits
e 1 bits are used as a seed for the next level

e The (n+ 1)-th bit y; will be part of the output
of the whole construction

The last level outputs n + 1 bits 125 ... 2,y,
e The final output is 122 ... 2 YnYn_1...Y1

Overall expansion factor: {(n) =n+n =2n
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;
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Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

Algorithm a(s): (here s € {0,1}") ) si-1
® ip<s lu .
e Fori=1,2,...,p(n): o
e Interpret ¢;_1 as s;_1||o;_1 where |s;_1| =n and |o;_1| =i —1 lll o l
o t; < G(si—1)|loi—1 e
e Return ) E




Increasing the expansion factor to n + p(n)

Repeat the previous idea p(n) times

ti—1
~ Si—1 O;—1
Algorithm G(s):  (here s € {0,1}") —_— =
»tos !
e Fori=1,2,...,p(n): G
o Interpret tz’—l as Si_1||0'¢_1 where |Sz’—1| — n and |Ui—1| =7—1 lll . ll =
Yyvvyy
o ti <+ G(si—1)||0i-1 ——— ,
e Return ) - T

Theorem: If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).
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Theorem: |If there exists a pseudorandom generator GG with expansion factor n + 1 then, for any
polynomial p, G is a pseudorandom generator with expansion factor n + p(n).

Proof:
Define H% to be the distribution on strings of length n 4 p(n) output by the following process:
e Choose t; u.a.r. from {0,1}"*J

e Run G starting from iteration j + 1 of the for loop and returns its output

Note that: H? is the output distribution of G(s) for a seed s choosen u.a.r. from {0,1}"
12 s a string of length p(n) 4+ n chosen u.a.r. from {0,1}"*P(")

We prove that if there exists a polynomial-time distinguisher D (with non-negligible gap) for G, then
there is a also a distinguisher D for GG

Let D be a distinguisher such that:
| Pr, [D(G(s))] = Pr,[D(r)] | = e(n) for some non-negligible £(n)
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e The distribution of ¢, is exactly Hj
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Algorithm Dw):  (here w e {0, 17741 Cma o
e Choose j u.a.r. in {1,2,..'. ,p(n)} ll ii
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Pseudorandom permutations

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

e Let Perm,, denote the set of all permutations in {0,1}", i.e., the set of all functions
F :{0,1}"™ — {0,1}" that are bijective

e How big is Perm,,”

Think of a permutation F' as a huge table in which all entries F'(x) are distinct:

on
Fows

00...000 | 10...011 4 — 2" choices

00...001 | 01...010 “ —~ 27 _1 choices
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Number of Permutations vs Number of Functions

Since a function F' € Perm,, is bijective, it must be invertible

Flexistsand F(z) =y < Fl(y) ==
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Asymptotically, almost no function in Func,, is a permutation!
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Keyed permutations
A keyed permutation is a keyed function F : {0, 1}kes(?) 5 £0, 1}4in(n) — {0, 1}fout (") such that:
o lin(n) = Lloyut(n) (this quantity is called the block length); and

o For every k € {0,1}%<s(™) the function Fj,(z) = F(k,z) is a permutation

A keyed permutation is efficient if:
e There is a polynomial-time algorithm that computes F(z) given x; and

e There is a polynomial-time algorithm that computes F~1(y) given y
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is a pseudorandom permutation if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ¢ such that:

| Pr{DPO(17) = 1] - Pr[DFO (1) = 1] | < e(n)
Probability over the randomness of the Probability over the randomness of
distinguisher and the choice of k the distinguisher and the uniform

choice of f € Perm,,

Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can
distinguish it from a random permutation



Pseudorandom permutations

Recall that (asymptotically) almost no function in Func,, is a permutation

Nevertheless:

e As soon as /;,(n) > n, a PRP is indistinguishable (in polynomial time, with non-negligible gap)
from PRF

e Since a PRF is indistinguishable from a random function, this implies that PRPs with ¢;,(n) > n
are also indistinguishable from random functions!
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