
Recap: Modeling CPA security

Verifier

m0,m1 ∈ M

c ← Enck(mb)

b′

Encryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

b ← {0, 1}

challenge ciphertext

...

guess about b

if b′ = b

if b′ ̸= b

Definition: A private key encryption scheme Π has indistinguishable encryptions under a
chosen-plaintext attack (is CPA-secure) if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKcpa
A,Π(n) = 1] ≤ 1

2
+ ε(n)

Definition of CPA-security

If Π is CPA-secure then Π has indistinguishable multiple encryptions
in the presence of an eavesdropper (and hence it is also EAV-secure)

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

⇒

Achieving CPA security (a first attempt)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Achieving CPA security (a first attempt)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages m ∈ {0, 1}n:

Enck(m) = Fk(m) Deck(c) = F−1
k (c)

Achieving CPA security (a first attempt)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages m ∈ {0, 1}n:

Enck(m) = Fk(m)

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

Deck(c) = F−1
k (c)

Achieving CPA security (a first attempt)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages m ∈ {0, 1}n:

Enck(m) = Fk(m)

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

Notice that Enc depends only on k and m... . . . the scheme is stateless and deterministic!

Deck(c) = F−1
k (c)

Achieving CPA security (a first attempt)

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages m ∈ {0, 1}n:

Enck(m) = Fk(m)

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

No stateless, deterministic encryption scheme can be CPA-secure

Notice that Enc depends only on k and m... . . . the scheme is stateless and deterministic!

Deck(c) = F−1
k (c)

Actually achieving CPA security

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom function

• Gen(1n) : return a key k chosen u.a.r. from {0, 1}n
Consider the following encryption scheme Π = (Gen,Enc,Dec):

Gen k ← {0, 1}n

Actually achieving CPA security

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom function

• Gen(1n) : return a key k chosen u.a.r. from {0, 1}n
Consider the following encryption scheme Π = (Gen,Enc,Dec):

• Enck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, Fk(r)⊕m⟩

Gen k ← {0, 1}n

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Actually achieving CPA security

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom function

• Gen(1n) : return a key k chosen u.a.r. from {0, 1}n
Consider the following encryption scheme Π = (Gen,Enc,Dec):

• Enck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, Fk(r)⊕m⟩

• Deck(c):

• Split the ciphertext c into ⟨r, s⟩
• Return Fk(r)⊕ s

Gen k ← {0, 1}n

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

c F Fk(r) ⊕

k

r

s
m

Dec

Actually achieving CPA security

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom function

• Gen(1n) : return a key k chosen u.a.r. from {0, 1}n
Consider the following encryption scheme Π = (Gen,Enc,Dec):

• Enck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, Fk(r)⊕m⟩

• Deck(c):

• Split the ciphertext c into ⟨r, s⟩
• Return Fk(r)⊕ s

Gen k ← {0, 1}n

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

c F Fk(r) ⊕

k

r

s
m

Dec

M = {0, 1}n K = {0, 1}n C = {0, 1}2n

Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

• Fk(r) is essentially a random string, and can only be computed if both k and r are known

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

• k is the secret, while r can be sent in the clear

• Fk(r) is essentially a random string, and can only be computed if both k and r are known

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

• k is the secret, while r can be sent in the clear

• Fk(r) is essentially a random string, and can only be computed if both k and r are known

• Encryption proceeds like in one-time pad, where the random string comes from Fk(r)

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

• k is the secret, while r can be sent in the clear

• Fk(r) is essentially a random string, and can only be computed if both k and r are known

• Encryption proceeds like in one-time pad, where the random string comes from Fk(r)

• The process behaves similarly to the “real” OTP if the parties were to“agree on a new key” after
each message

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩

If eΠ is CPA-secure then Π is CPA-secure

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

If eΠ is CPA-secure then Π is CPA-secure

Security reduction:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n) for some non-negligible ε(n)

If eΠ is CPA-secure then Π is CPA-secure

Security reduction:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

• We use A to build a distinguisher D with non-negligible gap for the PRF F used in Π

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n) for some non-negligible ε(n)

If eΠ is CPA-secure then Π is CPA-secure

Security reduction:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

• We use A to build a distinguisher D with non-negligible gap for the PRF F used in Π

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n) for some non-negligible ε(n)

• Contradiction

If eΠ is CPA-secure then Π is CPA-secure

Security reduction:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

• We use A to build a distinguisher D with non-negligible gap for the PRF F used in Π

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n) for some non-negligible ε(n)

• Contradiction =⇒ there is an adversary that “wins” PrivKcpa
A,Π(n) iff it“wins“ PrivKcpa

A,eΠ(n)

If eΠ is CPA-secure then Π is CPA-secure

Security reduction:

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� ≤ ε(n) for some negligible function ε(n)

We will show that, regardless of A, Pr[PrivKcpa
A,Π(n) = 1] and Pr[PrivKcpa

A,eΠ(n) = 1] are almost the same

(i.e., they differ by a negligible function)

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

• We use A to build a distinguisher D with non-negligible gap for the PRF F used in Π

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n) for some non-negligible ε(n)

• Contradiction =⇒ there is an adversary that “wins” PrivKcpa
A,Π(n) iff it“wins“ PrivKcpa

A,eΠ(n)

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Run A.

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• Run A.

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• When A outputs m0,m1:

• Run A.

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• When A outputs m0,m1:

• Query Φ with a r∗ ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Send the ciphertext ⟨r∗, y ⊕mb⟩ to A

• Run A.

• Choose b u.a.r. from {0, 1}

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• When A outputs m0,m1:

• Query Φ with a r∗ ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Send the ciphertext ⟨r∗, y ⊕mb⟩ to A

• Run A.

• When A outputs its guess b′:

• Choose b u.a.r. from {0, 1}

If eΠ is CPA-secure then Π is CPA-secure

Distinguisher DΦ(1n): (for the PRF F)

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• When A outputs m0,m1:

• Query Φ with a r∗ ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Send the ciphertext ⟨r∗, y ⊕mb⟩ to A

• Run A.

• When A outputs its guess b′:

• Choose b u.a.r. from {0, 1}

• Return 1 if b′ = b and 0 otherwise

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

• The behaviour of DΦ is exactly that of the experiment PrivKcpa
A,Π(n)

Pr[DFk(·)(1n) = 1] = Pr[PrivKcpa
A,Π(n) = 1]

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

• The behaviour of DΦ is exactly that of the experiment PrivKcpa
A,Π(n)

Pr[DFk(·)(1n) = 1] = Pr[PrivKcpa
A,Π(n) = 1]

When Φ is a random function f :

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

• The behaviour of DΦ is exactly that of the experiment PrivKcpa
A,Π(n)

Pr[DFk(·)(1n) = 1] = Pr[PrivKcpa
A,Π(n) = 1]

When Φ is a random function f :

• The behaviour of DΦ is exactly that of the experiment PrivKcpa

A,eΠ(n)

Pr[Df(·)(1n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1]

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

• The behaviour of DΦ is exactly that of the experiment PrivKcpa
A,Π(n)

Pr[DFk(·)(1n) = 1] = Pr[PrivKcpa
A,Π(n) = 1]

When Φ is a random function f :

• The behaviour of DΦ is exactly that of the experiment PrivKcpa

A,eΠ(n)

Pr[Df(·)(1n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1]

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n)

If eΠ is CPA-secure then Π is CPA-secure

When Φ is the PRF Fk:

• The behaviour of DΦ is exactly that of the experiment PrivKcpa
A,Π(n)

Pr[DFk(·)(1n) = 1] = Pr[PrivKcpa
A,Π(n) = 1]

When Φ is a random function f :

• The behaviour of DΦ is exactly that of the experiment PrivKcpa

A,eΠ(n)

Pr[Df(·)(1n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1]

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[PrivKcpa
A,Π(n) = 1]− Pr[PrivKcpa

A,eΠ(n) = 1]
�� = ε(n)

Not negligible!

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

• Whenever A queries the encryption oracle for the i-th time with a message mi:

• A value ri is chosen u.a.r. from {0, 1}n

• The oracle answers with ⟨ri, f(ri)⊕mi⟩

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

• Whenever A queries the encryption oracle for the i-th time with a message mi:

• A value ri is chosen u.a.r. from {0, 1}n

• The oracle answers with ⟨ri, f(ri)⊕mi⟩

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

We consider two cases:

• The value r∗ is different from all ris

• There is at least one ri s.t. ri = r∗

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

• Whenever A queries the encryption oracle for the i-th time with a message mi:

• A value ri is chosen u.a.r. from {0, 1}n

• The oracle answers with ⟨ri, f(ri)⊕mi⟩

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

We consider two cases:

• The value r∗ is different from all ris

• There is at least one ri s.t. ri = r∗ We call this event “repeat”

Showing that eΠ is CPA-secure

Let A be any polynomial-time adversary and consider the experiment PrivKcpa

A,eΠ(n)

• Whenever A queries the encryption oracle for the i-th time with a message mi:

• A value ri is chosen u.a.r. from {0, 1}n

• The oracle answers with ⟨ri, f(ri)⊕mi⟩

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

We consider two cases:

• The value r∗ is different from all ris

• There is at least one ri s.t. ri = r∗ We call this event “repeat”

This event is the complement of “repeat”, i.e. repeat

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Showing that eΠ is CPA-secure

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Showing that eΠ is CPA-secure

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat]

Showing that eΠ is CPA-secure

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]

Showing that eΠ is CPA-secure

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n

Showing that eΠ is CPA-secure

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

• Since ri ̸= r∗ ∀i, and f is a random function, all f(ri) are chosen independently from f(r∗)

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

• Since ri ̸= r∗ ∀i, and f is a random function, all f(ri) are chosen independently from f(r∗)

• A learns nothing about f(r∗) while interacting with the encryption oracle

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

• Since ri ̸= r∗ ∀i, and f is a random function, all f(ri) are chosen independently from f(r∗)

• A learns nothing about f(r∗) while interacting with the encryption oracle Pr[b′ = b] = 1
2

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

• Since ri ̸= r∗ ∀i, and f is a random function, all f(ri) are chosen independently from f(r∗)

• A learns nothing about f(r∗) while interacting with the encryption oracle Pr[b′ = b] = 1
2

= 1
2

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

Pr[PrivKcpa

A,eΠ(n) = 1] = Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] + Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat]≤ Pr[repeat] ≤ P
i Pr[ri = r∗]≤ P

i
1
2n = q(n)

2n

polynomially bounded

negligible

Pr[PrivKcpa

A,eΠ(n) = 1 ∧ repeat] = Pr[PrivKcpa

A,eΠ(n) = 1 | repeat] · Pr[repeat]

≤ Pr[PrivKcpa

A,eΠ(n) = 1 | repeat]

• Since ri ̸= r∗ ∀i, and f is a random function, all f(ri) are chosen independently from f(r∗)

• A learns nothing about f(r∗) while interacting with the encryption oracle Pr[b′ = b] = 1
2

= 1
2

≤ 1
2 + q(n)

2n

Showing that eΠ is CPA-secure

where q(n) is an upper bound on the number of queries performed by A.

negligible

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩

Proof of security

Can we prove that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant eΠ of Π in which a truly random function f is used instead of F

• Prove that if eΠ is CPA-secure then Π is CPA-secure

• Prove that eΠ is CPA-secure

gEnck(m) (where |m| = n):

• Choose r uniformly at random from {0, 1}n

• Return c = ⟨r, f(r)⊕m⟩
□

Caveats

• The values r used for encryption should never be reused

Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• Same problem as in OTP

Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• However, when n is sufficiently large and r is chosen uniformly at random, the probability of a
repeat is negligible

• This is exactly what we used in our security proof!

• Same problem as in OTP

Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• However, when n is sufficiently large and r is chosen uniformly at random, the probability of a
repeat is negligible

• If n is too short, or it is not chosen from a uniform distribution then repeats might happen!

• This is exactly what we used in our security proof!

• Same problem as in OTP

Encrypting long messages

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work?

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work? Yes, but...

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work? Yes, but...

• The ciphertext is (at least) twice as long as the plaintext

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work? Yes, but...

• The ciphertext is (at least) twice as long as the plaintext

• The last chunk needs special handling (padding, truncating the output, ...)

Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work? Yes, but...

• The ciphertext is (at least) twice as long as the plaintext

• The last chunk needs special handling (padding, truncating the output, ...)

Can we do better?

Stream ciphers

Pseudorandom generators are not very convenient to work with:

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Practical construction of (candidate) PRGs are called stream ciphers

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Practical construction of (candidate) PRGs are called stream ciphers

• They are able to produce an infinite stream of random bits, one at a time, on demand

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Practical construction of (candidate) PRGs are called stream ciphers

• They are able to produce an infinite stream of random bits, one at a time, on demand

• They are easier to use and more flexible (e.g., they explicitly deal with IVs)

Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Practical construction of (candidate) PRGs are called stream ciphers

• They are able to produce an infinite stream of random bits, one at a time, on demand

• They are easier to use and more flexible (e.g., they explicitly deal with IVs)

Warning: Sometimes the term “stream cipher” is used to refer to the encryption scheme built from
the actual stream cipher (as defined here)

Stream ciphers

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st0

Init

s (IV)

st0

Stream ciphers

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st0

• Next: takes a generic state st and outputs a bit y and a new (updated) state st′

Init

s (IV)

st0 Next st1

y1

Stream ciphers

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st0

• Next: takes a generic state st and outputs a bit y and a new (updated) state st′

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as we need, by repeatedly calling Next

Stream ciphers

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st0

• Next: takes a generic state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as we need, by repeatedly calling Next

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

• y = y1y2 . . . yℓ is the string of the random bits output by n successive calls of Next starting from
state st

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

• y = y1y2 . . . yℓ is the string of the random bits output by n successive calls of Next starting from
state st

• stℓ is the state output by the final (i.e., ℓ-th) call to Next

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

• y = y1y2 . . . yℓ is the string of the random bits output by n successive calls of Next starting from
state st

• stℓ is the state output by the final (i.e., ℓ-th) call to Next

• Define the function Gℓ(s) (from {0, 1}n to {0, 1}ℓ) as the string y of GetBits(Init(s), 1ℓ)

• The stream cipher is secure if Gℓ(s) is a pseudorandom generator for any polynomial ℓ

If the stream cipher does not use IVs:

Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Define the function F ℓ
s (IV) (from {0, 1}n×{0, 1}n to {0, 1}ℓ) as the string y of GetBits(Init(s, IV), 1ℓ)

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

• y = y1y2 . . . yℓ is the string of the random bits output by n successive calls of Next starting from
state st

• stℓ is the state output by the final (i.e., ℓ-th) call to Next

• The stream cipher is secure if F ℓ
s (IV) is a pseudorandom function for any polynomial ℓ

If the stream cipher uses IVs:

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a n-bit seed, a 3n/4-bits IV, and will output n bits per call to Next

(this is an example, these parameters can be tuned)

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a n-bit seed, a 3n/4-bits IV, and will output n bits per call to Next

(this is an example, these parameters can be tuned)

Init(s, IV):

• Output (s, IV, 0)

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a n-bit seed, a 3n/4-bits IV, and will output n bits per call to Next

(this is an example, these parameters can be tuned)

Init(s, IV):

• Output (s, IV, 0)

Next(st):

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)
• Unpack the state st in (s, IV, ⟨i⟩)

Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a n-bit seed, a 3n/4-bits IV, and will output n bits per call to Next

(this is an example, these parameters can be tuned)

Init(s, IV):

• Output (s, IV, 0)

Next(st):

⟨i⟩ = Binary encoding
of i using n/4 bits

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)
• Unpack the state st in (s, IV, ⟨i⟩)

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

• Synchronized mode: The sender and receiver each maintain a state, which must be kept
synchronized between messages

• Useful for short communication sessions. Each message must be delivered exactly once and
all messages must be received in order

• Example: data exchanged over a TCP connection

• Does not need to use IVs, Ciphertext length = message length

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

• Synchronized mode: The sender and receiver each maintain a state, which must be kept
synchronized between messages

• Unsynchronized mode: The sender and receiver do not need to store any information during the
communication session (i.e., they are stateless)

• Useful for short communication sessions. Each message must be delivered exactly once and
all messages must be received in order

• Example: data exchanged over a TCP connection

• Useful for long messages, and communication over a long period of time. Does not require
messages to be delivered in order

• Does not need to use IVs, Ciphertext length = message length

• Each message uses its own IV

• Needs IVs, Ciphertext length = message length + IV length (≈ message length for long messages)

Synchronized mode

Init

k

st0

Synchronized mode

Init

k

Init

k

st0 st0

Synchronized mode

Init

k

Next ⊕

Init

k

m1st0

st1

st0

Synchronized mode

Init

k

Next ⊕

Init

k

m1

c1

st0

st1

st0

Synchronized mode

Init

k

Next ⊕

Init

k

Next⊕

m1

m1

c1

st0

st1

st0

st1

Synchronized mode

Init

k

Next

Next

⊕

⊕

Init

k

Next

Next

⊕

⊕

m1

m2

m3

m1

m2

c1

c2

st0

st1

st2

st0

st1

st2

Synchronized mode

Init

k

Next

Next

Next

...

⊕

⊕

⊕

Init

k

Next

Next

Next

...

⊕

⊕

⊕

m1

m2

m3

m1

m2

m3

c1

c2

c3

...

Alice & Bob need to keep track of the last state for as long as they wish to communicate

st0

st1

st2

st3

st0

st1

st2

st3

Unsynchronized mode

Init

k IV

Alice picks a
random IV

st0

Unsynchronized mode

Init

k IV

Alice picks a
random IV

IV

st0

Unsynchronized mode

Init

k IV

Init

IV k

Alice picks a
random IV

IV

st0 st0

Unsynchronized mode

Init

k IV

Init

IV k

Alice picks a
random IV

Next
y = y1y2y3 . . .

IV

Generate as many bits
y1y2y3 . . . as needed

st0 st0
sti

Unsynchronized mode

Init

k IV

Init

IV k

Alice picks a
random IV

Next
y = y1y2y3 . . .

IV

m = m1m2m3 . . .

Generate as many bits
y1y2y3 . . . as needed

⊕ c = c1c2c3 . . .

st0 st0
sti

Unsynchronized mode

Init

k IV

Init

IV k

Alice picks a
random IV

Next
y = y1y2y3 . . .

IV

m = m1m2m3 . . .

Generate as many bits
y1y2y3 . . . as needed

⊕ Next
y

⊕c = c1c2c3 . . .

m

st0 st0
sti sti

Stream ciphers

• A stream cipher without IV can be thought of as a more convenient interface to a PRG

• A stream cipher with IV can be thought of as a more convenient interface to a PRF

Stream ciphers

• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• A stream cipher without IV can be thought of as a more convenient interface to a PRG

• A stream cipher with IV can be thought of as a more convenient interface to a PRF

Stream ciphers

• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• In practice we have some candidate stream cipher constructions that are conjectured to be secure

• These construction have withstood years of public scrutiny and attempted cryptanalysis

• A stream cipher without IV can be thought of as a more convenient interface to a PRG

• A stream cipher with IV can be thought of as a more convenient interface to a PRF

Stream ciphers

• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• In practice we have some candidate stream cipher constructions that are conjectured to be secure

• These construction have withstood years of public scrutiny and attempted cryptanalysis

• A stream cipher without IV can be thought of as a more convenient interface to a PRG

• A stream cipher with IV can be thought of as a more convenient interface to a PRF

• Trivium: optimized for hardware

• RC4 (insecure): optimized for software

• ChaCha20: replacement of RC4

• Some popular practical constructions of stream ciphers:

