Recap: Modeling CPA security

Definition of CPA-security

Definition: A private key encryption scheme Π has indistinguishable encryptions under a chosen-plaintext attack (is **CPA-secure**) if, for every probabilistic polynomial-time adversary A, there is a negligible function ε such that:

$$\Pr[\operatorname{\textit{PrivK}}_{\mathcal{A},\Pi}^{\operatorname{\textit{cpa}}}(n) = 1] \leq \frac{1}{2} + \varepsilon(n)$$

Any private-key encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

 \downarrow

If Π is CPA-secure then Π has indistinguishable multiple encryptions in the presence of an eavesdropper (and hence it is also EAV-secure)

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom permutation

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages $m \in \{0, 1\}^n$:

 $\operatorname{Enc}_k(m) = F_k(m)$ $\operatorname{Dec}_k(c) = F_k^{-1}(c)$

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages $m \in \{0, 1\}^n$:

$$\operatorname{Enc}_k(m) = F_k(m)$$
 $\operatorname{Dec}_k(c) = F_k^{-1}(c)$

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages $m \in \{0, 1\}^n$:

$$\operatorname{Enc}_k(m) = F_k(m)$$
 $\operatorname{Dec}_k(c) = F_k^{-1}(c)$

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

Notice that Enc depends only on k and m... ... the scheme is stateless and deterministic!

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages $m \in \{0, 1\}^n$:

$$\operatorname{Enc}_k(m) = F_k(m)$$
 $\operatorname{Dec}_k(c) = F_k^{-1}(c)$

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

Notice that Enc depends only on k and m... ... the scheme is stateless and deterministic!

No stateless, deterministic encryption scheme can be CPA-secure

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom function

Consider the following encryption scheme $\Pi = (Gen, Enc, Dec)$:

• $\operatorname{Gen}(1^n)$: return a key k chosen u.a.r. from $\{0,1\}^n$

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom function

Consider the following encryption scheme $\Pi = (Gen, Enc, Dec)$:

- $\operatorname{Gen}(\mathbf{1}^n)$: return a key k chosen u.a.r. from $\{0,1\}^n$
- $\operatorname{Enc}_k(m)$ (where |m| = n):
 - Choose r uniformly at random from $\{0,1\}^n$
 - Return $c = \langle r, F_k(r) \oplus m \rangle$

 \mathcal{C}

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom function

Consider the following encryption scheme $\Pi = (Gen, Enc, Dec)$:

- $\operatorname{Gen}(\mathbf{1}^n)$: return a key k chosen u.a.r. from $\{0,1\}^n$
- $\operatorname{Enc}_k(m)$ (where |m| = n):
 - Choose r uniformly at random from $\{0,1\}^n$
 - Return $c = \langle r, F_k(r) \oplus m \rangle$
- $\operatorname{Dec}_k(c)$:
 - Split the ciphertext c into $\langle r,s\rangle$
 - Return $F_k(r) \oplus s$

 \mathcal{C}

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (length-preserving) pseudorandom function

Consider the following encryption scheme $\Pi = (Gen, Enc, Dec)$:

- $\mathsf{Gen}(\mathbf{1}^n):\mathsf{return}$ a key k chosen u.a.r. from $\{0,1\}^n$
- $\operatorname{Enc}_k(m)$ (where |m| = n):
 - Choose r uniformly at random from $\{0,1\}^n$
 - Return $c = \langle r, F_k(r) \oplus m \rangle$
- $\operatorname{Dec}_k(c)$:
 - Split the ciphertext c into $\langle r,s\rangle$
 - Return $F_k(r) \oplus s$

 $\mathcal{M} = \{0,1\}^n$ $\mathcal{K} = \{0,1\}^n$ $\mathcal{C} = \{0,1\}^{2n}$

- When a message needs to be encrypted, a **fresh** random string r is generated
- r is used to "index into" a pseudorandom function F

- When a message needs to be encrypted, a **fresh** random string r is generated
- $\bullet \ r$ is used to "index into" a pseudorandom function F
- $F_k(r)$ is essentially a random string, and can only be computed if **both** k and r are known

- When a message needs to be encrypted, a **fresh** random string r is generated
- r is used to "index into" a pseudorandom function F
- $F_k(r)$ is essentially a random string, and can only be computed if **both** k and r are known
- k is the **secret**, while r can be sent in the clear

- When a message needs to be encrypted, a **fresh** random string r is generated
- $\bullet \ r$ is used to "index into" a pseudorandom function F
- $F_k(r)$ is essentially a random string, and can only be computed if **both** k and r are known
- k is the **secret**, while r can be sent in the clear
- Encryption proceeds like in one-time pad, where the random string comes from $F_k(r)$

- When a message needs to be encrypted, a **fresh** random string r is generated
- r is used to "index into" a pseudorandom function F
- $F_k(r)$ is essentially a random string, and can only be computed if **both** k and r are known
- k is the **secret**, while r can be sent in the clear
- Encryption proceeds like in one-time pad, where the random string comes from $F_k(r)$
- The process behaves similarly to the "real" OTP if the parties were to "agree on a new key" after each message

Can we **prove** that this encryption scheme is secure?

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F

Can we **prove** that this encryption scheme is secure?

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- \bullet Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure

Can we **prove** that this encryption scheme is secure?

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure
- Prove that $\widetilde{\Pi}$ is CPA-secure

Can we **prove** that this encryption scheme is secure?

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure
- Prove that $\widetilde{\Pi}$ is CPA-secure

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure
- Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure
- Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

 $\left| \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

 $\left| \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$

Security reduction:

• Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary A s.t.:

 $| \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] | = \varepsilon(n) \text{ for some non-negligible } \varepsilon(n)$

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

 $\left| \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$

- Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary \mathcal{A} s.t.: $\left| \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$ for some non-negligible $\varepsilon(n)$
- We use \mathcal{A} to build a distinguisher D with non-negligible gap for the PRF F used in Π

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

 $\left| \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$

- Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary \mathcal{A} s.t.: $\left| \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$ for some non-negligible $\varepsilon(n)$
- We use \mathcal{A} to build a distinguisher D with non-negligible gap for the PRF F used in Π
- Contradiction

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \mid \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$$

- Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary \mathcal{A} s.t.: $\left| \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$ for some non-negligible $\varepsilon(n)$
- We use \mathcal{A} to build a distinguisher D with non-negligible gap for the PRF F used in Π
- Contradiction \implies there is an adversary that "wins" $\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$ iff it "wins" $\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n)$

We will show that, regardless of \mathcal{A} , $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$ and $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$ are almost the same (i.e., they differ by a negligible function)

 $\left| \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| \leq \varepsilon(n) \quad \text{ for some negligible function } \varepsilon(n)$

- Suppose that the above inequality does not hold, i.e., there is some polynomial-time adversary \mathcal{A} s.t.: $\left| \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$ for some non-negligible $\varepsilon(n)$
- We use \mathcal{A} to build a distinguisher D with non-negligible gap for the PRF F used in Π
- Contradiction \implies there is an adversary that "wins" $\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$ iff it "wins" $\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n)$

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever \mathcal{A} queries the encryption oracle with m:

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever ${\mathcal A}$ queries the encryption oracle with m:
 - Query Φ with a $r\in\{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Answer $\langle r, y \oplus m \rangle$

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever \mathcal{A} queries the encryption oracle with m:
 - Query Φ with a $r\in\{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Answer $\langle r, y \oplus m \rangle$
- When \mathcal{A} outputs m_0, m_1 :

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever \mathcal{A} queries the encryption oracle with m:
 - Query Φ with a $r \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Answer $\langle r, y \oplus m \rangle$
- When \mathcal{A} outputs m_0, m_1 :
 - Choose b u.a.r. from $\{0,1\}$
 - Query Φ with a $r^* \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Send the ciphertext $\langle r^*, y \oplus m_b
 angle$ to $\mathcal A$

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever \mathcal{A} queries the encryption oracle with m:
 - Query Φ with a $r \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Answer $\langle r, y \oplus m \rangle$
- When \mathcal{A} outputs m_0, m_1 :
 - Choose b u.a.r. from $\{0,1\}$
 - Query Φ with a $r^* \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Send the ciphertext $\langle r^*, y \oplus m_b
 angle$ to $\mathcal A$
- When \mathcal{A} outputs its guess b':

Distinguisher $D^{\Phi}(\mathbf{1}^n)$:

- Run \mathcal{A} .
- Whenever \mathcal{A} queries the encryption oracle with m:
 - Query Φ with a $r \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Answer $\langle r, y \oplus m \rangle$
- When \mathcal{A} outputs m_0, m_1 :
 - Choose b u.a.r. from $\{0,1\}$
 - Query Φ with a $r^* \in \{0,1\}^n$ chosen u.a.r. and obtain a response y
 - Send the ciphertext $\langle r^*, y \oplus m_b
 angle$ to $\mathcal A$
- When \mathcal{A} outputs its guess b':
 - Return 1 if b' = b and 0 otherwise

When Φ is the PRF F_k :
When Φ is the PRF F_k :

- The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv}{\rm K}_{{\cal A},\Pi}^{\rm cpa}(n)$

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1]$$

When Φ is the PRF F_k :

- The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv}{\rm K}^{\rm cpa}_{{\mathcal A},\Pi}(n)$

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1]$$

When Φ is a random function f:

When Φ is the PRF F_k :

- The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv}{\rm K}_{{\cal A},\Pi}^{\rm cpa}(n)$

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1]$$

When Φ is a random function f:

• The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv} {\rm K}_{{\cal A},\widetilde{\Pi}}^{\rm cpa}(n)$

$$\Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$$

When Φ is the PRF F_k :

• The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv}{\rm K}^{\rm cpa}_{{\mathcal A},\Pi}(n)$

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1]$$

When Φ is a random function f:

• The behaviour of D^{Φ} is exactly that of the experiment ${\rm PrivK}_{{\cal A},\widetilde{\Pi}}^{{\rm cpa}}(n)$

$$\Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$$

$$\left| \operatorname{Pr}[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[D^{f(\cdot)}(\mathbf{1}^n) = 1] \right| = \left| \operatorname{Pr}[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$$

When Φ is the PRF F_k :

• The behaviour of D^{Φ} is exactly that of the experiment ${\rm Priv}{\rm K}_{{\cal A},\Pi}^{\rm cpa}(n)$

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1]$$

When Φ is a random function f:

• The behaviour of D^{Φ} is exactly that of the experiment ${\rm PrivK}_{{\cal A},\widetilde{\Pi}}^{{\rm cpa}}(n)$

$$\Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1]$$

$$\left| \operatorname{Pr}[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[D^{f(\cdot)}(\mathbf{1}^n) = 1] \right| = \left| \operatorname{Pr}[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] - \operatorname{Pr}[\operatorname{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \right| = \varepsilon(n)$$

Not negligible!

Proof of security

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure

• Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

Proof of security

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

• Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F

• Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure

• Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

- The challenge ciphertext is computed as follows:
 - $b \in \{0,1\}$ and $r^* \in \{0,1\}^n$ are chosen u.a.r.
 - The challenge ciphertext is $\langle r^*, f(r^*) \oplus m_b
 angle$

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

- The challenge ciphertext is computed as follows:
 - $b \in \{0,1\}$ and $r^* \in \{0,1\}^n$ are chosen u.a.r.
 - The challenge ciphertext is $\langle r^*, f(r^*) \oplus m_b \rangle$
- Whenever \mathcal{A} queries the encryption oracle for the *i*-th time with a message m_i :
 - A value r_i is chosen u.a.r. from $\{0,1\}^n$
 - The oracle answers with $\langle r_i, f(r_i) \oplus m_i
 angle$

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

- The challenge ciphertext is computed as follows:
 - $b \in \{0,1\}$ and $r^* \in \{0,1\}^n$ are chosen u.a.r.
 - The challenge ciphertext is $\langle r^*, f(r^*) \oplus m_b \rangle$
- Whenever \mathcal{A} queries the encryption oracle for the *i*-th time with a message m_i :
 - A value r_i is chosen u.a.r. from $\{0,1\}^n$
 - The oracle answers with $\langle r_i, f(r_i) \oplus m_i \rangle$

We consider two cases:

- There is at least one r_i s.t. $r_i = r^*$
- The value r^* is different from all r_i s

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

- The challenge ciphertext is computed as follows:
 - $b \in \{0,1\}$ and $r^* \in \{0,1\}^n$ are chosen u.a.r.
 - The challenge ciphertext is $\langle r^*, f(r^*) \oplus m_b \rangle$
- Whenever \mathcal{A} queries the encryption oracle for the *i*-th time with a message m_i :
 - A value r_i is chosen u.a.r. from $\{0,1\}^n$
 - The oracle answers with $\langle r_i, f(r_i) \oplus m_i \rangle$

We consider two cases:

- There is at least one r_i s.t. $r_i = r^*$ We call this event "repeat"
- The value r^* is different from all r_i s

Let \mathcal{A} be any polynomial-time adversary and consider the experiment $\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n)$

- The challenge ciphertext is computed as follows:
 - $b \in \{0,1\}$ and $r^* \in \{0,1\}^n$ are chosen u.a.r.
 - The challenge ciphertext is $\langle r^*, f(r^*) \oplus m_b \rangle$
- Whenever \mathcal{A} queries the encryption oracle for the *i*-th time with a message m_i :
 - A value r_i is chosen u.a.r. from $\{0,1\}^n$
 - The oracle answers with $\langle r_i, f(r_i) \oplus m_i \rangle$

We consider two cases:

- There is at least one r_i s.t. $r_i = r^*$
- We call this event "repeat"
- The value r^* is different from all r_i s

This event is the complement of "repeat", i.e. repeat

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \\ \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n}$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$$

where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

polynomially bounded

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$

where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \cdot \Pr[\overline{\mathsf{repeat}}]$$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}} \end{aligned} &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \land \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \end{aligned}$$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}}] &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] &\cdot \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \end{aligned}$$

• Since $r_i \neq r^* \forall i$, and f is a random function, all $f(r_i)$ are chosen independently from $f(r^*)$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}}] &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] &\cdot \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \end{aligned}$$

• Since $r_i \neq r^* \forall i$, and f is a random function, all $f(r_i)$ are chosen independently from $f(r^*)$

• \mathcal{A} learns nothing about $f(r^*)$ while interacting with the encryption oracle

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}}] &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] &\cdot \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \end{aligned}$$

• Since $r_i \neq r^* \forall i$, and f is a random function, all $f(r_i)$ are chosen independently from $f(r^*)$

• \mathcal{A} learns nothing about $f(r^*)$ while interacting with the encryption oracle $\Pr[b'=b]=\frac{1}{2}$

 $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}]$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}}] &= \Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] &\cdot \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] = \frac{1}{2} \end{aligned}$$

• Since $r_i \neq r^* \forall i$, and f is a random function, all $f(r_i)$ are chosen independently from $f(r^*)$

• \mathcal{A} learns nothing about $f(r^*)$ while interacting with the encryption oracle $\Pr[b'=b]=\frac{1}{2}$

negligible

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \mathsf{repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\mathsf{repeat}}] \leq \frac{1}{2} + \frac{q(n)}{2^n}$$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\mathsf{cpa}}(n) = 1 \land \mathsf{repeat}] \leq \Pr[\mathsf{repeat}] \leq \sum_{i} \Pr[r_i = r^*] \leq \sum_{i} \frac{1}{2^n} = \frac{q(n)}{2^n}$ where q(n) is an upper bound on the number of queries performed by \mathcal{A} .

$$\begin{aligned} \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) &= 1 \land \overline{\mathsf{repeat}} \end{bmatrix} &= \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] \land \Pr[\overline{\mathsf{repeat}}] \\ &\leq \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \mid \overline{\mathsf{repeat}}] = \frac{1}{2} \end{aligned}$$

• Since $r_i \neq r^* \forall i$, and f is a random function, all $f(r_i)$ are chosen independently from $f(r^*)$

• \mathcal{A} learns nothing about $f(r^*)$ while interacting with the encryption oracle $\Pr[b'=b]=\frac{1}{2}$

Proof of security

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure

• Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

Proof of security

Can we **prove** that this encryption scheme is secure?

High-level proof strategy:

- Consider a variant $\widetilde{\Pi}$ of Π in which a truly random function f is used instead of F
- Prove that if $\widetilde{\Pi}$ is CPA-secure then Π is CPA-secure
- Prove that $\widetilde{\Pi}$ is CPA-secure

 $\widetilde{\mathsf{Enc}}_k(m)$ (where |m| = n):

- Choose r uniformly at random from $\{0,1\}^n$
- Return $c = \langle r, f(r) \oplus m \rangle$

 $\bullet\,$ The values r used for encryption should never be reused

- The values r used for encryption should never be reused
 - If a value r is reused, then there are two ciphertexts $\langle r, F_k(r) \oplus m \rangle$ and $\langle r, F_k(r) \oplus m' \rangle$

- The values r used for encryption should never be reused
 - If a value r is reused, then there are two ciphertexts $\langle r, F_k(r) \oplus m \rangle$ and $\langle r, F_k(r) \oplus m' \rangle$
 - The adversary can detect this, and compute $(F_k(r)\oplus m)\oplus (F_k(r)\oplus m')=m\oplus m'$

- The values r used for encryption should never be reused
 - If a value r is reused, then there are two ciphertexts $\langle r, F_k(r) \oplus m \rangle$ and $\langle r, F_k(r) \oplus m' \rangle$
 - The adversary can detect this, and compute $(F_k(r)\oplus m)\oplus (F_k(r)\oplus m')=m\oplus m'$
 - Same problem as in OTP

- The values r used for encryption should never be reused
 - If a value r is reused, then there are two ciphertexts $\langle r, F_k(r) \oplus m \rangle$ and $\langle r, F_k(r) \oplus m' \rangle$
 - The adversary can detect this, and compute $(F_k(r)\oplus m)\oplus (F_k(r)\oplus m')=m\oplus m'$
 - Same problem as in OTP
- However, when n is sufficiently large and r is chosen uniformly at random, the probability of a repeat is negligible
- This is exactly what we used in our security proof!
Caveats

- The values r used for encryption should never be reused
 - If a value r is reused, then there are two ciphertexts $\langle r, F_k(r) \oplus m \rangle$ and $\langle r, F_k(r) \oplus m' \rangle$
 - The adversary can detect this, and compute $(F_k(r)\oplus m)\oplus (F_k(r)\oplus m')=m\oplus m'$
 - Same problem as in OTP
- However, when n is sufficiently large and r is chosen uniformly at random, the probability of a repeat is negligible
- This is exactly what we used in our security proof!

• If n is too short, or it is not chosen from a uniform distribution then repeats might happen!

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \| m_2 \| m_3 \| \dots$
- Encrypt each m_i separately

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \| m_2 \| m_3 \| \dots$
- Encrypt each m_i separately

Does it work?

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \parallel m_2 \parallel m_3 \parallel \ldots$
- Encrypt each m_i separately

Does it work? Yes, but...

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \parallel m_2 \parallel m_3 \parallel \ldots$
- Encrypt each m_i separately

Does it work? Yes, but...

• The ciphertext is (at least) twice as long as the plaintext

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \parallel m_2 \parallel m_3 \parallel \ldots$
- Encrypt each m_i separately

Does it work? Yes, but...

- The ciphertext is (at least) twice as long as the plaintext
- The last chunk needs special handling (padding, truncating the output, ...)

What if we want to send a message that is longer than the security parameter (i.e., |m| > n)?

Idea:

- We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions
- Think of m as the concatenation of many messages of length n, i.e., $m = m_1 \parallel m_2 \parallel m_3 \parallel \ldots$
- Encrypt each m_i separately

Does it work? Yes, but...

- The ciphertext is (at least) twice as long as the plaintext
- The last chunk needs special handling (padding, truncating the output, ...)

Can we do better?

Pseudorandom generators are not very convenient to work with:

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

Pseudorandom generators are not very convenient to work with:

- A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)
- The whole output is produced in "one shot"

Pseudorandom generators are not very convenient to work with:

- A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)
- The whole output is produced in "one shot"

Practical construction of (candidate) PRGs are called **stream ciphers**

Pseudorandom generators are not very convenient to work with:

- A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)
- The whole output is produced in "one shot"

Practical construction of (candidate) PRGs are called **stream ciphers**

• They are able to produce an infinite stream of random bits, one at a time, on demand

Pseudorandom generators are not very convenient to work with:

- A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)
- The whole output is produced in "one shot"

Practical construction of (candidate) PRGs are called **stream ciphers**

- They are able to produce an infinite stream of random bits, one at a time, on demand
- They are easier to use and more flexible (e.g., they explicitly deal with IVs)

Pseudorandom generators are not very convenient to work with:

- A PRG has a fixed output length (altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)
- The whole output is produced in "one shot"

Practical construction of (candidate) PRGs are called **stream ciphers**

- They are able to produce an infinite stream of random bits, one at a time, on demand
- They are easier to use and more flexible (e.g., they explicitly deal with IVs)

Warning: Sometimes the term "stream cipher" is used to refer to the encryption scheme built from the actual stream cipher (as defined here)

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a *n*-bit seed *s*, and possibly a *n*-bit *initialization vector* (IV), and outputs a *state* st₀

A stream cipher is a pair of deterministic polynomial-time algorithms

- Init: takes a *n*-bit seed *s*, and possibly a *n*-bit *initialization vector* (IV), and outputs a *state* st₀
- Next: takes a generic state st and outputs a bit y and a new (updated) state st'

A stream cipher is a pair of deterministic polynomial-time algorithms

- Init: takes a *n*-bit seed *s*, and possibly a *n*-bit *initialization vector* (IV), and outputs a *state* st₀
- Next: takes a generic state st and outputs a bit y and a new (updated) state st'

Idea: we can generate as many random bits as we need, by repeatedly calling Next

A stream cipher is a pair of deterministic polynomial-time algorithms

- Init: takes a *n*-bit seed *s*, and possibly a *n*-bit *initialization vector* (IV), and outputs a *state* st₀
- Next: takes a generic state st and outputs a bit y and a new (updated) state st'

Idea: we can generate as many random bits as we need, by repeatedly calling Next

* In practice, Next can output multiple bits at once (e.g., a byte)

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

Formally:

Given a stream cipher (Init, Next), define the function GetBits(st, 1^ℓ) as the function that returns the pair (y, st_ℓ), where

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

Formally:

- Given a stream cipher (Init, Next), define the function GetBits(st, 1^ℓ) as the function that returns the pair (y, st_ℓ), where
 - $y = y_1 y_2 \dots y_\ell$ is the string of the random bits output by n successive calls of Next starting from state st

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

Formally:

- Given a stream cipher (Init, Next), define the function GetBits(st, 1^ℓ) as the function that returns the pair (y, st_ℓ), where
 - $y = y_1 y_2 \dots y_\ell$ is the string of the random bits output by n successive calls of Next starting from state st
 - st_{\ell} is the state output by the final (i.e., $\ell\text{-th})$ call to Next

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

Formally:

- Given a stream cipher (Init, Next), define the function GetBits(st, 1^ℓ) as the function that returns the pair (y, st_ℓ), where
 - $y = y_1 y_2 \dots y_\ell$ is the string of the random bits output by n successive calls of Next starting from state st
 - st_{\ell} is the state output by the final (i.e., $\ell\text{-th})$ call to Next

If the stream cipher does not use IVs:

- Define the function $G^{\ell}(s)$ (from $\{0,1\}^n$ to $\{0,1\}^{\ell}$) as the string y of GetBits(Init $(s), 1^{\ell}$)
- The stream cipher is secure if $G^{\ell}(s)$ is a pseudorandom generator for any polynomial ℓ

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is chosen u.a.r. in $\{0,1\}$

Formally:

- Given a stream cipher (Init, Next), define the function GetBits(st, 1^ℓ) as the function that returns the pair (y, st_ℓ), where
 - $y = y_1 y_2 \dots y_\ell$ is the string of the random bits output by n successive calls of Next starting from state st
 - st_{\ell} is the state output by the final (i.e., $\ell\text{-th})$ call to Next

If the stream cipher uses IVs:

- Define the function $F_s^{\ell}(\mathsf{IV})$ (from $\{0,1\}^n \times \{0,1\}^n$ to $\{0,1\}^{\ell}$) as the string y of $\mathsf{GetBits}(\mathsf{Init}(s,\mathsf{IV}),1^{\ell})$
- The stream cipher is secure if $F_s^{\ell}(IV)$ is a pseudorandom function for any polynomial ℓ

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a *n*-bit seed, a 3n/4-bits IV, and will output *n* bits per call to Next (this is an example, these parameters can be tuned)

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a *n*-bit seed, a 3n/4-bits IV, and will output *n* bits per call to Next (this is an example, these parameters can be tuned)

```
Init(s, IV):
Output (s, IV, 0)
```

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a *n*-bit seed, a 3n/4-bits IV, and will output *n* bits per call to Next (this is an example, these parameters can be tuned)

Init(s, IV):

• Output (s, IV, 0)

Next(st):

- Unpack the state st in $(s, \mathsf{IV}, \langle i \rangle)$
- Output the *n* bits $F_s(\mathsf{IV} \| \langle i \rangle)$ and the new state $(s, \mathsf{IV}, \langle i+1 \rangle)$

If we have a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, we can use it to build a stream cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a *n*-bit seed, a 3n/4-bits IV, and will output *n* bits per call to Next (this is an example, these parameters can be tuned)

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

- **Synchronized mode**: The sender and receiver each maintain a state, which must be kept synchronized between messages
 - Useful for short communication sessions. Each message must be delivered exactly once and all messages must be received in order
 - Example: data exchanged over a TCP connection
 - Does not need to use IVs, Ciphertext length = message length

Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

- **Synchronized mode**: The sender and receiver each maintain a state, which must be kept synchronized between messages
 - Useful for short communication sessions. Each message must be delivered exactly once and all messages must be received in order
 - Example: data exchanged over a TCP connection
 - Does not need to use IVs, Ciphertext length = message length
- **Unsynchronized mode**: The sender and receiver do not need to store any information during the communication session (i.e., they are stateless)
 - Useful for long messages, and communication over a long period of time. Does not require messages to be delivered in order
 - Each message uses its own IV
 - Needs IVs, Ciphertext length = message length + IV length (\approx message length for long messages)

Synchronized mode

Synchronized mode

Synchronized mode

Alice & Bob need to keep track of the last state for as long as they wish to communicate

Unsynchronized mode

Alice picks a random IV

Generate as many bits $y_1y_2y_3\ldots$ as needed

Generate as many bits $y_1y_2y_3...$ as needed

 $y_1y_2y_3\ldots$ as needed

- A stream cipher without IV can be thought of as a more convenient interface to a PRG
- A stream cipher with IV can be thought of as a more convenient interface to a PRF

- A stream cipher without IV can be thought of as a more convenient interface to a PRG
- A stream cipher with IV can be thought of as a more convenient interface to a PRF
- We don't know if (secure) stream ciphers exist (we don't know if PRGs / PRFs exist)

- A stream cipher without IV can be thought of as a more convenient interface to a PRG
- A stream cipher with IV can be thought of as a more convenient interface to a PRF
- We don't know if (secure) stream ciphers exist (we don't know if PRGs / PRFs exist)
- In practice we have some candidate stream cipher constructions that are conjectured to be secure
- These construction have withstood years of public scrutiny and attempted cryptanalysis

- A stream cipher without IV can be thought of as a more convenient interface to a PRG
- A stream cipher with IV can be thought of as a more convenient interface to a PRF
- We don't know if (secure) stream ciphers exist (we don't know if PRGs / PRFs exist)
- In practice we have some candidate stream cipher constructions that are conjectured to be secure
- These construction have withstood years of public scrutiny and attempted cryptanalysis
- Some popular practical constructions of stream ciphers:
 - Trivium: optimized for hardware
 - RC4 (insecure): optimized for software
 - ChaCha20: replacement of RC4