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Definition: A private key encryption scheme Π has indistinguishable encryptions under a
chosen-plaintext attack (is CPA-secure) if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKcpa
A,Π(n) = 1] ≤ 1

2
+ ε(n)

Definition of CPA-security

If Π is CPA-secure then Π has indistinguishable multiple encryptions
in the presence of an eavesdropper (and hence it is also EAV-secure)

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

⇒
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Let F : {0, 1}n × {0, 1}n → {0, 1}n be a (length-preserving) pseudorandom permutation

Consider the following scheme for messages m ∈ {0, 1}n:

Enck(m) = Fk(m)

Is this CPA-secure?

• We expect the output of Enc to be indistinguishable from a random binary string...

No stateless, deterministic encryption scheme can be CPA-secure

Notice that Enc depends only on k and m... . . . the scheme is stateless and deterministic!
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k (c)
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Actually achieving CPA security
Intuition:

• When a message needs to be encrypted, a fresh random string r is generated

• r is used to “index into” a pseudorandom function F

• k is the secret, while r can be sent in the clear

• Fk(r) is essentially a random string, and can only be computed if both k and r are known

• Encryption proceeds like in one-time pad, where the random string comes from Fk(r)

• The process behaves similarly to the “real” OTP if the parties were to“agree on a new key” after
each message

Fk(r)

m

F

k

⊕r

c = ⟨r, Fk(r)⊕m⟩

Enc
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Distinguisher DΦ(1n): (for the PRF F )

• Whenever A queries the encryption oracle with m:

• Query Φ with a r ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Answer ⟨r, y ⊕m⟩

• When A outputs m0,m1:

• Query Φ with a r∗ ∈ {0, 1}n chosen u.a.r. and obtain a response y

• Send the ciphertext ⟨r∗, y ⊕mb⟩ to A

• Run A.

• When A outputs its guess b′:

• Choose b u.a.r. from {0, 1}

• Return 1 if b′ = b and 0 otherwise
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Let A be any polynomial-time adversary and consider the experiment PrivKcpa
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• Whenever A queries the encryption oracle for the i-th time with a message mi:

• A value ri is chosen u.a.r. from {0, 1}n

• The oracle answers with ⟨ri, f(ri)⊕mi⟩

• The challenge ciphertext is computed as follows:

• b ∈ {0, 1} and r∗ ∈ {0, 1}n are chosen u.a.r.

• The challenge ciphertext is ⟨r∗, f(r∗)⊕mb⟩

We consider two cases:

• The value r∗ is different from all ris

• There is at least one ri s.t. ri = r∗ We call this event “repeat”

This event is the complement of “repeat”, i.e. repeat
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A,eΠ(n) = 1] = Pr[PrivKcpa
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• Return c = ⟨r, f(r)⊕m⟩
□



Caveats

• The values r used for encryption should never be reused



Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩



Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′



Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• Same problem as in OTP



Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• However, when n is sufficiently large and r is chosen uniformly at random, the probability of a
repeat is negligible

• This is exactly what we used in our security proof!

• Same problem as in OTP



Caveats

• The values r used for encryption should never be reused

• If a value r is reused, then there are two ciphertexts ⟨r, Fk(r)⊕m⟩ and ⟨r, Fk(r)⊕m′⟩

• The adversary can detect this, and compute (Fk(r)⊕m)⊕ (Fk(r)⊕m′) = m⊕m′

• However, when n is sufficiently large and r is chosen uniformly at random, the probability of a
repeat is negligible

• If n is too short, or it is not chosen from a uniform distribution then repeats might happen!

• This is exactly what we used in our security proof!

• Same problem as in OTP
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Encrypting long messages

• We have shown that any CPA-secure encryption scheme is also secure for multiple encryptions

What if we want to send a message that is longer than the security parameter (i.e., |m| > n) ?

Idea:

• Think of m as the concatenation of many messages of length n, i.e., m = m1 ∥m2 ∥m3 ∥ . . .

• Encrypt each mi separately

Does it work? Yes, but...

• The ciphertext is (at least) twice as long as the plaintext

• The last chunk needs special handling (padding, truncating the output, ...)

Can we do better?
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Stream ciphers

Pseudorandom generators are not very convenient to work with:

• A PRG has a fixed output length
(altough we can build a PRG with a bigger expansion factor from a PRG with a smaller expansion factor)

• The whole output is produced in “one shot”

Practical construction of (candidate) PRGs are called stream ciphers

• They are able to produce an infinite stream of random bits, one at a time, on demand

• They are easier to use and more flexible (e.g., they explicitly deal with IVs)

Warning: Sometimes the term “stream cipher” is used to refer to the encryption scheme built from
the actual stream cipher (as defined here)
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Stream ciphers

A stream cipher is a pair of deterministic polynomial-time algorithms

• Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st0

• Next: takes a generic state st and outputs a bit y and a new (updated) state st′

* In practice, Next can output multiple bits at once (e.g., a byte)

Init

s (IV)

st0 Next Nextst1 Nextst2 st3 . . .

y1 y2 y3

Idea: we can generate as many random bits as we need, by repeatedly calling Next
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Secure Stream Ciphers

A stream cipher is secure if the output stream generated by starting from a seed chosen u.a.r. is
pseudorandom

• Any polynomial-length output stream is indistinguishable from a stream in which each bit is
chosen u.a.r. in {0, 1}

Formally:

• Define the function F ℓ
s (IV) (from {0, 1}n×{0, 1}n to {0, 1}ℓ) as the string y of GetBits(Init(s, IV), 1ℓ)

• Given a stream cipher (Init,Next), define the function GetBits(st, 1ℓ) as the function that
returns the pair (y, stℓ), where

• y = y1y2 . . . yℓ is the string of the random bits output by n successive calls of Next starting from
state st

• stℓ is the state output by the final (i.e., ℓ-th) call to Next

• The stream cipher is secure if F ℓ
s (IV) is a pseudorandom function for any polynomial ℓ

If the stream cipher uses IVs:
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Secure Stream ciphers with IVs from Pseudorandom Functions

If we have a pseudorandom function F : {0, 1}n × {0, 1}n → {0, 1}n, we can use it to build a stream
cipher that takes an initialization vector

The idea is similar to that used to construct a PRG from a PRF

The resulting stream cipher will use a n-bit seed, a 3n/4-bits IV, and will output n bits per call to Next

(this is an example, these parameters can be tuned)

Init(s, IV):

• Output (s, IV, 0)

Next(st):

⟨i⟩ = Binary encoding
of i using n/4 bits

• Output the n bits Fs(IV ∥ ⟨i⟩) and the new state (s, IV, ⟨i+ 1⟩)
• Unpack the state st in (s, IV, ⟨i⟩)
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Modes of operation of Stream Ciphers

We can use stream ciphers in two different modes of operation

• Synchronized mode: The sender and receiver each maintain a state, which must be kept
synchronized between messages

• Unsynchronized mode: The sender and receiver do not need to store any information during the
communication session (i.e., they are stateless)

• Useful for short communication sessions. Each message must be delivered exactly once and
all messages must be received in order

• Example: data exchanged over a TCP connection

• Useful for long messages, and communication over a long period of time. Does not require
messages to be delivered in order

• Does not need to use IVs, Ciphertext length = message length

• Each message uses its own IV

• Needs IVs, Ciphertext length = message length + IV length (≈ message length for long messages)
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Alice & Bob need to keep track of the last state for as long as they wish to communicate
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Stream ciphers

• We don’t know if (secure) stream ciphers exist (we don’t know if PRGs / PRFs exist)

• In practice we have some candidate stream cipher constructions that are conjectured to be secure

• These construction have withstood years of public scrutiny and attempted cryptanalysis

• A stream cipher without IV can be thought of as a more convenient interface to a PRG

• A stream cipher with IV can be thought of as a more convenient interface to a PRF

• Trivium: optimized for hardware

• RC4 (insecure): optimized for software

• ChaCha20: replacement of RC4

• Some popular practical constructions of stream ciphers:


