# Stream ciphers (reminder)

A stream cipher is a pair of deterministic polynomial-time algorithms

- Init: takes a *n*-bit seed *s*, and possibly a *n*-bit *initialization vector* (IV), and outputs a *state* st
- Next: takes a state st and outputs a bit y and a new (updated) state st'

Idea: we can generate as many random bits as desired, by repeatedly calling Next



\* In practice, **Next** can output multiple bits at once (e.g., a byte)

- Stands for Rivest Cipher 4
- Designed for performance in software



#### Ron Rivest (the R in RSA)

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does **not** use (L)FSRs
- Very simple (fits one slide!)



#### Ron Rivest (the R in RSA)

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does **not** use (L)FSRs
- Very simple (fits one slide!)
- No longer considered secure (especially if misused)!
  - ... but still used in practice



WEP Encryption



Ron Rivest (the R in RSA)

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does **not** use (L)FSRs
- Very simple (fits one slide!)
- No longer considered secure (especially if misused)!
  - ... but still used in practice



WEP Encryption



#### Ron Rivest (the R in RSA)

• We will see how to attack it

The state consists of:

- An array S of 256 bytes, which will always be a permutation of  $\{0,\ldots,255\}$
- A pair of integers  $i, j \in \{0, \dots, 255\}$

The state consists of:

- An array S of 256 bytes, which will always be a permutation of  $\{0, \ldots, 255\}$
- A pair of integers  $i, j \in \{0, \dots, 255\}$



The state consists of:

- An array S of 256 bytes, which will always be a permutation of  $\{0, \ldots, 255\}$
- A pair of integers  $i, j \in \{0, \dots, 255\}$



- $S \leftarrow [0, 1, 2, \dots, 255]$
- $k \leftarrow \underbrace{k \parallel k \parallel \ldots \parallel k}_{16 \text{ times}}$
- $j \leftarrow 0$
- For  $i \leftarrow 0, 1, \dots, 255$ :
  - $j \leftarrow j + S[i] + k[i] \pmod{256}$
  - Swap S[i] and S[j]
- Return  $\langle S, i=0, j=0\rangle$

Next(st =  $\langle S, i, j \rangle$ ): (returns a byte) •  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ 

• 
$$y \leftarrow S[t]$$

• Return the byte y and the new state  ${\rm st}'=\langle S,i,j\rangle$ 



#### Test vectors

Key length: 128 bits.

key: 0x0102030405060708090a0b0c0d0e0f10

| DEC 0    | HEX | 0:    | 9a | c7 | сс | 9a | 60 | 9d | 1e | f7 | b2 | 93 | 28 | 99 | cd | e4 | 1b | 97 |
|----------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DEC 16   | HEX | 10:   | 52 | 48 | c4 | 95 | 90 | 14 | 12 | 6a | 66 | 8a | 84 | f1 | 1d | 1a | 9e | 1c |
| DEC 240  | HEX | f0:   | 06 | 59 | 02 | e4 | b6 | 20 | f6 | сс | 36 | c8 | 58 | 9f | 66 | 43 | 2f | 2b |
| DEC 256  | HEX | 100:  | d3 | 9d | 56 | 6b | c6 | bc | e3 | 01 | 07 | 68 | 15 | 15 | 49 | f3 | 87 | 3f |
| DEC 496  | HEX | 1f0:  | b6 | d1 | e6 | c4 | a5 | e4 | 77 | 1c | ac | 79 | 53 | 8d | f2 | 95 | fb | 11 |
| DEC 512  | HEX | 200:  | c6 | 8c | 1d | 5c | 55 | 9a | 97 | 41 | 23 | df | 1d | bc | 52 | a4 | 3b | 89 |
| DEC 752  | HEX | 2f0:  | c5 | ec | f8 | 8d | e8 | 97 | fd | 57 | f€ | d3 | 01 | 70 | 1b | 82 | a2 | 59 |
| DEC 768  | HEX | 300:  | ec | cb | e1 | 3d | e1 | fc | c9 | 1c | 11 | a0 | b2 | 6c | 0b | c8 | fa | 4d |
| DEC 1008 | HEX | 3f0:  | e7 | a7 | 25 | 74 | f8 | 78 | 2a | e2 | 66 | ab | cf | 9e | bc | d6 | 60 | 65 |
| DEC 1024 | HEX | 400:  | bd | f0 | 32 | 4e | 60 | 83 | dc | c6 | d3 | ce | dd | 3c | a8 | c5 | 3c | 16 |
| DEC 1520 | HEX | 5f0:  | b4 | 01 | 10 | c4 | 19 | 0b | 56 | 22 | as | 61 | 16 | b0 | 01 | 7e | d2 | 97 |
| DEC 1536 | HEX | 600:  | ff | a0 | b5 | 14 | 64 | 7e | с0 | 4f | 63 | 06 | b8 | 92 | ae | 66 | 11 | 81 |
| DEC 2032 | HEX | 7f0:  | d0 | 3d | 1b | с0 | 3c | d3 | 3d | 70 | d1 | f9 | fa | 5d | 71 | 96 | 3e | bd |
| DEC 2048 | HEX | 800:  | 8a | 44 | 12 | 64 | 11 | ea | a7 | 8b | d5 | 1e | 8d | 87 | a8 | 87 | 9b | f5 |
| DEC 3056 | HEX | bf0:  | fa | be | b7 | 60 | 28 | ad | e2 | d0 | e4 | 87 | 22 | e4 | 6c | 46 | 15 | a3 |
| DEC 3072 | HEX | c00:  | с0 | 5d | 88 | ab | d5 | 03 | 57 | f9 | 35 | a6 | 3c | 59 | ee | 53 | 76 | 23 |
| DEC 4080 | HEX | ff0:  | ff | 38 | 26 | 5c | 16 | 42 | c1 | ab | e  | d3 | c2 | fe | 5e | 57 | 2b | f8 |
| DEC 4096 | HEX | 1000: | a3 | 6a | 4c | 30 | 1a | e8 | ac | 13 | 61 | 0c | cb | c1 | 22 | 56 | са | сс |

## Output bias

Empirical distribution of the value of the 2nd output byte over 50000 samples (with keys chosen u.a.r.)



There is a bias towards 0 in the second byte output by RC4

(about twice as likely to be 0)

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$



- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2] = 0



- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 0 \qquad 0 \quad 1 \quad 2 \qquad 255$$
  
$$j = 0 \qquad 0 \quad \cdots \quad 0 \quad \cdots \quad 0$$

 $\begin{array}{l} \mathsf{Next}(\mathsf{st} = \langle S, i, j \rangle) \texttt{:} \qquad (\texttt{returns a byte}) \\ \bullet \ i \leftarrow i + 1 \pmod{256} \\ \bullet \ j \leftarrow j + S[i] \pmod{256} \\ \bullet \ Swap \ S[i] \ \texttt{and} \ S[j] \\ \bullet \ t = S[i] + S[j] \pmod{256} \\ \bullet \ y \leftarrow S[t] \\ \bullet \ \texttt{Return the byte } y \ \texttt{and the new state st}' = \langle S, i, j \rangle \end{array}$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0



Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2] = 0



Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0



Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 1 \qquad \begin{array}{ccccccccc} 0 & 1 & 2 & X & 255 \\ j = X & \hline & 0 & \cdots & \hline X & \cdots & \hline \end{array}$$

Next(st = 
$$\langle S, i, j \rangle$$
): (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 1 \qquad \begin{array}{ccccccccc} 0 & 1 & 2 & X & 255 \\ j = X & \hline & 0 & \cdots & \hline X & \cdots & \hline \end{array}$$

Next(st = 
$$\langle S, i, j \rangle$$
):(returns a byte)•  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap  $S[i]$  and  $S[j]$ •  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): 2nd call (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): 2nd call (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): 2nd call (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 2 \qquad \begin{array}{cccccccccc} 0 & 1 & 2 & X & 255 \\ j = X & \hline & 0 & \cdots & \hline X & \cdots & \hline \end{array}$$

Next(st = 
$$\langle S, i, j \rangle$$
): 2nd call (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0,1,\ldots,255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

Next(st = 
$$\langle S, i, j \rangle$$
): 2nd call (returns a byte)  
•  $i \leftarrow i + 1 \pmod{256}$   
•  $j \leftarrow j + S[i] \pmod{256}$   
• Swap  $S[i]$  and  $S[j]$   
•  $t = S[i] + S[j] \pmod{256}$   
•  $y \leftarrow S[t]$   
• Return the byte  $y$  and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2] = 0

$$i = 2 \qquad 0 \quad 1 \quad 2 \qquad X \qquad 255$$

$$j = X \qquad X \qquad 0 \qquad \cdots \qquad 1$$

$$t = X$$

Next(st =  $\langle S, i, j \rangle$ ): 2nd call (returns a byte) •  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte y and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2] = 0

$$i = 2 \qquad \begin{array}{ccccccc} 0 & 1 & 2 & X & 255 \\ j = X & & X & 0 & \cdots \\ t = X \end{array}$$

Next(st =  $\langle S, i, j \rangle$ ): 2nd call (returns a byte) •  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte y and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 2 \qquad \begin{array}{cccccccc} 0 & 1 & 2 & X & 255 \\ j = X & & X & 0 & \cdots \end{array}$$

$$t = X$$
 Output byte  $y = 0$ 

Next(st =  $\langle S, i, j \rangle$ ): 2nd call (returns a byte) •  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte y and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2] = 0

- t = X Output byte y = 0
- With probability  $\approx \frac{255}{256} \approx 1$  we have that S[2] is distributed "uniformly at random" after 2 iterations

Next(st =  $\langle S, i, j \rangle$ ):(returns a byte)•  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte y and the new state st' =  $\langle S, i, j \rangle$ 

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over  $\{0, 1, \dots, 255\}$
- With probability  $\approx \frac{1}{256}$  we have S[2]=0

$$i = 2 \qquad \begin{array}{ccccccccc} 0 & 1 & 2 & X & 255 \\ j = X & & X & 0 & \cdots \end{array}$$

t = X Output byte y = 0

random" after 2 iterations

• With probability  $\approx \frac{255}{256} \approx 1$  we have that S[2] is distributed "uniformly at

Probability that the 2nd output byte is 0:

$$\approx \frac{1}{256} + 1 \cdot \frac{1}{256} = \frac{2}{256}$$

Next(st =  $\langle S, i, j \rangle$ ):(returns a byte)•  $i \leftarrow i + 1 \pmod{256}$ •  $j \leftarrow j + S[i] \pmod{256}$ • Swap S[i] and S[j]•  $t = S[i] + S[j] \pmod{256}$ •  $y \leftarrow S[t]$ • Return the byte y and the new state st' =  $\langle S, i, j \rangle$ 

# Output bias

- The output bias is indicative of structural problems with RC4
- Other biases have been found in other bytes of the RC4 state
- Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!



# Output bias

- The output bias is indicative of structural problems with RC4
- Other biases have been found in other bytes of the RC4 state
- Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!



In summary: Do not use RC4!

## RC4 and IVs

RC4 is **not** designed to take an IV ... but programmers don't know it and use an IV anyway



## RC4 and IVs

RC4 is **not** designed to take an IV

In practice an IV of some length  $\ell$  (in bytes) is often used, together with a key k' of  $16 - \ell$  bytes

 $k = \mathsf{IV} \parallel k'$ 

## RC4 and IVs

RC4 is **not** designed to take an IV

In practice an IV of some length  $\ell$  (in bytes) is often used, together with a key k' of  $16 - \ell$  bytes

 $k = \mathsf{IV} \, \| \, k'$ 



• 3-byte IV, 13 bytes key

### RC4 and IVs

RC4 is **not** designed to take an IV

In practice an IV of some length  $\ell$  (in bytes) is often used, together with a key k' of  $16 - \ell$  bytes

 $k = \mathsf{IV} \parallel k'$ 





- $\bullet~3\mbox{-byte}$  IV,  $13~\mbox{bytes}$  key
- Key recovery attack!

## RC4 and IVs

RC4 is **not** designed to take an IV

In practice an IV of some length  $\ell$  (in bytes) is often used, together with a key k' of  $16 - \ell$  bytes

 $k = \mathsf{IV} \parallel k'$ 





- 3-byte IV, 13 bytes key
- Key recovery attack!
- We show a simplified attack that recovers the first byte of the key (i.e., k[3])

• Recall that **IV**s are not kept secret!

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$





- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



$$k = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 255 & X & \Psi \end{bmatrix} \cdots \qquad i = 0 \quad j = 0$$

$$0 \quad 1 \quad 2 \quad 3$$

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



$$k = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 255 & X & \Psi \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ S = \begin{bmatrix} 3 & 1 & 2 & 0 \\ 3 & 1 & 2 & 0 \end{bmatrix}$$
  $\cdots$   $i = 1$   $j = 3$ 

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$





- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$





- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$





- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$





- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$



this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%,~S[3]$  is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

**Next(st** =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i+1 \pmod{256}$
- $j \leftarrow j + S[i] \pmod{256}$
- Swap S[i] and S[j]
- $t = S[i] + S[j] \pmod{256}$
- $y \leftarrow S[t]$
- Return y and st' =  $\langle S, i, j \rangle$

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%,~S[3]$  is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)

i = 1

• Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$ 

Next(st =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i + 1 \pmod{256}$
- $j \leftarrow j + S[i] \pmod{256}$
- $\bullet \ {\rm Swap} \ S[i] \ {\rm and} \ S[j]$
- $t = S[i] + S[j] \pmod{256}$
- $y \leftarrow S[t]$
- Return y and st' =  $\langle S, i, j \rangle$

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%$ , S[3] is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

Next(st =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i + 1 \pmod{256}$  i = 1
- $j \leftarrow j + S[i] \pmod{256}$  j = 0
- $\bullet \ {\rm Swap} \ S[i] \ {\rm and} \ S[j]$
- $t = S[i] + S[j] \pmod{256}$
- $y \leftarrow S[t]$
- Return y and st' =  $\langle S, i, j \rangle$

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%$ , S[3] is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

**Next(**st =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i + 1 \pmod{256}$  i = 1
- $j \leftarrow j + S[i] \pmod{256}$  j = 0
- $\bullet \mbox{ Swap } S[i] \mbox{ and } S[j]$

• 
$$t = S[i] + S[j] \pmod{256}$$
  $t = 3$ 

- $y \leftarrow S[t]$
- Return y and st' =  $\langle S, i, j \rangle$

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%$ , S[3] is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

**Next(**st =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i + 1 \pmod{256}$  i = 1
- $j \leftarrow j + S[i] \pmod{256}$  j = 0
- $\bullet \mbox{ Swap } S[i] \mbox{ and } S[j]$

• 
$$t = S[i] + S[j] \pmod{256}$$
  $t = 3$ 

• 
$$y \leftarrow S[t]$$
  $y = S[3]$ 

• Return y and  $\mathsf{st}' = \langle S, i, j \rangle$ 

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%$ , S[3] is not modified in the remaining iterations of Init

- Recall that **IV**s are not kept secret!
- The adversary waits until the IV takes the form  $\langle 3, 255, X \rangle$  (for some value X)
- Happens with probability  $\frac{1}{256^2} = \frac{1}{65536}$

**Next(**st =  $\langle S, i, j \rangle$ ):

- $i \leftarrow i + 1 \pmod{256}$  i = 1
- $j \leftarrow j + S[i] \pmod{256}$  j = 0
- $\bullet \mbox{ Swap } S[i] \mbox{ and } S[j]$

• 
$$t = S[i] + S[j] \pmod{256}$$
  $t = 3$ 

• 
$$y \leftarrow S[t]$$
  $y = S[3]$ 

• Return y and  $\mathsf{st}' = \langle S, i, j \rangle$ 

this is just one possibility (attacks for other combinations are also known)



With probability  $\approx 5\%$ , S[3] is not modified in the remaining iterations of Init

What's the first byte output by Next (when i = j = 0)?

 $6 + X + \Psi$ 

- 5% of the time the adversary sees  $6 + X + \Psi$
- Since X is known (it is part of the IV), the adversary can recover  $\Psi$

- 5% of the time the adversary sees  $6 + X + \Psi$
- Since X is known (it is part of the IV), the adversary can recover  $\Psi$
- Quite far from uniform:  $\frac{1}{256} \approx 0.4\%$

- 5% of the time the adversary sees  $6 + X + \Psi$
- Since X is known (it is part of the IV), the adversary can recover  $\Psi$
- Quite far from uniform:  $\frac{1}{256} \approx 0.4\%$
- Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some probability)
- Guess the first byte of the key (with high confidence)

- 5% of the time the adversary sees  $6 + X + \Psi$
- Since X is known (it is part of the IV), the adversary can recover  $\Psi$
- Quite far from uniform:  $\frac{1}{256} \approx 0.4\%$
- Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some probability)
- Guess the first byte of the key (with high confidence)
- Repeat similar attacks to extract the next byte of the key, until the whole key is reconstructed



• 5% of the time the adversary sees  $6 + X + \Psi$ 



Introduced in 2008. Secure replacement for RC4

Takes a  $256\mbox{-bit}$  key k and a  $64\mbox{-bit}$  IV



Daniel J. Bernstein

Introduced in 2008. Secure replacement for RC4

Takes a  $256\mbox{-bit}$  key k and a  $64\mbox{-bit}$  IV

Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)



Daniel J. Bernstein

Introduced in 2008. Secure replacement for RC4

Takes a 256-bit key k and a 64-bit IV

Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation  $P:\{0,1\}^{512} \rightarrow \{0,1\}^{512}$  on 512-bit strings

The permutation P is used to construct a keyed function with a  $256\mbox{-bit}$  key,  $128\mbox{-bit}$  inputs and  $512\mbox{-bit}$  outputs

 $F_k(x) = P(\text{constant} \parallel k \parallel x) \boxplus (\text{constant} \parallel k \parallel x)$ 



Daniel J. Bernstein

Introduced in 2008. Secure replacement for RC4

Takes a 256-bit key k and a 64-bit IV

Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation  $P:\{0,1\}^{512}\to \{0,1\}^{512}$  on 512-bit strings

The permutation P is used to construct a keyed function with a  $256\mbox{-bit}$  key,  $128\mbox{-bit}$  inputs and  $512\mbox{-bit}$  outputs

 $F_k(x) = P(\text{constant} \parallel k \parallel x) \boxplus (\text{constant} \parallel k \parallel x)$ 



Daniel J. Bernstein

 $\boxplus$  denotes word-wise modular addition (of 32-bit words)

Introduced in 2008. Secure replacement for RC4

Takes a 256-bit key k and a 64-bit IV

Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation  $P:\{0,1\}^{512}\to \{0,1\}^{512}$  on 512-bit strings

The permutation P is used to construct a keyed function with a  $256\mbox{-bit}$  key,  $128\mbox{-bit}$  inputs and  $512\mbox{-bit}$  outputs

 $F_k(x) = P(\text{constant} \parallel k \parallel x) \boxplus (\text{constant} \parallel k \parallel x)$ 

Output stream:

 $F_k(\mathsf{IV} \parallel \langle 0 \rangle), F_k(\mathsf{IV} \parallel \langle 1 \rangle), F_k(\mathsf{IV} \parallel \langle 2 \rangle), \ldots$ 



Daniel J. Bernstein

 $\boxplus$  denotes word-wise modular addition (of 32-bit words)

 $\langle i \rangle$  = binary encoding of i with 64 bits

Introduced in 2008. Secure replacement for RC4

Takes a 256-bit key k and a 64-bit IV

Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation  $P:\{0,1\}^{512}\to \{0,1\}^{512}$  on 512-bit strings

The permutation P is used to construct a keyed function with a  $256\mbox{-bit}$  key,  $128\mbox{-bit}$  inputs and  $512\mbox{-bit}$  outputs

 $F_k(x) = P(\text{constant} \parallel k \parallel x) \boxplus (\text{constant} \parallel k \parallel x)$ 

Output stream:

 $F_k(\mathsf{IV} \parallel \langle 0 \rangle), F_k(\mathsf{IV} \parallel \langle 1 \rangle), F_k(\mathsf{IV} \parallel \langle 2 \rangle), \ldots$ 

Not patented. Several public domain implementations available



Daniel J. Bernstein

 $\boxplus$  denotes word-wise modular addition (of 32-bit words)

 $\langle i \rangle$  = binary encoding of i with 64 bits

# **Block Ciphers**

A block cipher is...

#### **Block Ciphers**

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

### **Block Ciphers**

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

You can think of block ciphers as *practical constructions* of (candidate) pseudorandom permutations

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

You can think of block ciphers as *practical constructions* of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider  $\ell_{key}(n) = n$  and  $\ell_{in}(n) = \ell_{out}(n) = n$ 

 $\boldsymbol{n}$  is called the **block length** of  $\boldsymbol{F}$ 

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

You can think of block ciphers as *practical constructions* of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider 
$$\ell_{key}(n) = n$$
 and  $\ell_{in}(n) = \ell_{out}(n) = n$ 

n is called the **block length** of F

We assume for simplicity that the message m to be encrypted can be split into blocks  $m_1, m_2, m_3, \ldots$  of lengths exactly n

| m = | $m_1$ | $m_2$ | $m_3$ | ••• |  |  |  |
|-----|-------|-------|-------|-----|--|--|--|
|-----|-------|-------|-------|-----|--|--|--|

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

You can think of block ciphers as *practical constructions* of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider 
$$\ell_{key}(n) = n$$
 and  $\ell_{in}(n) = \ell_{out}(n) = n$ 

n is called the **block length** of F

We assume for simplicity that the message m to be encrypted can be split into blocks  $m_1, m_2, m_3, \ldots$  of lengths exactly n

| $m = \boxed{m_1 \mid m_2 \mid m_3}$ |  |
|-------------------------------------|--|
|-------------------------------------|--|

What if the length of m is not a multiple of n?

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

You can think of block ciphers as *practical constructions* of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths

We consider 
$$\ell_{key}(n) = n$$
 and  $\ell_{in}(n) = \ell_{out}(n) = n$ 

 $\boldsymbol{n}$  is called the **block length** of  $\boldsymbol{F}$ 

We assume for simplicity that the message m to be encrypted can be split into blocks  $m_1, m_2, m_3, \ldots$  of lengths exactly n

What if the length of m is not a multiple of n?

Padding (with care)

Recall that we can always build a stream cipher from a block cipher

For example:

### Init(s, IV):

• Output (s, IV, 0)

### Next(st):

- Unpack the state in  $(s, \mathsf{IV}, \langle i \rangle)$
- Output the *n* bits  $F_s(IV || \langle i \rangle)$  and the new state  $(s, IV, \langle i+1 \rangle)$

Recall that we can always build a stream cipher from a block cipher

For example:



Recall that we can always build a stream cipher from a block cipher

For example:



- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation\*)

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation\*)



- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation\*)



• The ciphertext is (at least) twice as long as the plaintext

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation\*)



- The ciphertext is (at least) twice as long as the plaintext
- Can we do better?

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation\*)



- The ciphertext is (at least) twice as long as the plaintext
- Can we do better? Several options (modes of operations)

First idea:

First idea:



First idea:



First idea:



First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$  **Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:** 
$$m_i = F_k^{-1}(c_i)$$

• No ciphertext expansion!

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

- No ciphertext expansion!
- Is it CPA-secure?

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

• No ciphertext expansion!

• Is it CPA-secure?

No! Encryption is deterministic!

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

• No ciphertext expansion!

No! Encryption is deterministic!

• Is it EAV-secure?

• Is it CPA-secure?

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

- No ciphertext expansion!
- Is it CPA-secure?

• Is it EAV-secure?

No! Encryption is deterministic! [Dem0]

First idea:

• Encrypt each block of the message independently



**Encrypting:**  $c_i = F_k(m_i)$ 

**Decrypting:**  $m_i = F_k^{-1}(c_i)$ 

• No ciphertext expansion!

Is it CPA-secure?

• Is it EAV-secure?

No! Encryption is deterministic!

[Demo]

No! It's just a fancy substitution cipher! (Frequency analysis)

First idea:





### **Encrypting:**

• A random IV is chosen and sent as the first block  $c_0$  of the ciphertext



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext
- Each block  $m_i$  of the message is XORed with the previous ciphertext block before applying  $F_k$

$$c_i = F_k(c_{i-1} \oplus m_i)$$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext
- Each block  $m_i$  of the message is XORed with the previous ciphertext block before applying  $F_k$

$$c_i = F_k(c_{i-1} \oplus m_i)$$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext
- Each block  $m_i$  of the message is XORed with the previous ciphertext block before applying  $F_k$

$$c_i = F_k(c_{i-1} \oplus m_i)$$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext
- Each block  $m_i$  of the message is XORed with the previous ciphertext block before applying  $F_k$

$$c_i = F_k(c_{i-1} \oplus m_i)$$



### Decrypting:

• To decrypt  $m_i$  we need  $c_{i-1}$ 





### **Decrypting:**

- To decrypt  $m_i$  we need  $c_{i-1}$
- $m_i = F_k^{-1}(c_i) \oplus c_{i-1}$





### **Decrypting:**

- To decrypt  $m_i$  we need  $c_{i-1}$
- $m_i = F_k^{-1}(c_i) \oplus c_{i-1}$





### **Decrypting:**

- To decrypt  $m_i$  we need  $c_{i-1}$
- $m_i = F_k^{-1}(c_i) \oplus c_{i-1}$





### **Decrypting:**

- To decrypt  $m_i$  we need  $c_{i-1}$
- $m_i = F_k^{-1}(c_i) \oplus c_{i-1}$

Drawback: Encryption must be done sequentially





### **Decrypting:**

- To decrypt  $m_i$  we need  $c_{i-1}$
- $m_i = F_k^{-1}(c_i) \oplus c_{i-1}$

**Drawback:** Encryption must be done sequentially

(but decryption can be done in parallel)

Is CBC mode CPA secure?

## Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!\*

### Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!\*

**Theorem:** If F is a pseudorandom permutation, then CBC mode is CPA-secure.



## Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!\*

**Theorem:** If F is a pseudorandom permutation, then CBC mode is CPA-secure.



\*But, depending on the implementation, it might be vulnerable to some subtle attacks (not really a fault of the encryption scheme, but something to be aware of)

### Chained CBC mode

There is a stateful variant of CBC called **chained CBC** that handles multiple messages as follows:

• When the first message is encrypted a random IV is chosen (like in CBC mode)



### Chained CBC mode

There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

- When the first message is encrypted a random IV is chosen (like in CBC mode)
- When a subsequent message needs to be encrypted, the last block of the previous ciphertext is used instead of a new IV





Is chained CBC mode CPA-secure?



Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m || m' ...



Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message m || m' ...

No!



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

The adversary convinces Alice to encrypt  $m' = c_0 \oplus x \oplus c_3$ 

If  $m_1 = x$  then  $c' = F_k(c_3 \oplus m')$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

If 
$$m_1 = x$$
 then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3)$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

If 
$$m_1 = x$$
 then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3) = F_k(c_0 \oplus x)$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

If 
$$m_1 = x$$
 then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3) = F_k(c_0 \oplus x) = F_k(c_0 \oplus m_1) = c_1$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

The adversary convinces Alice to encrypt  $m' = c_0 \oplus x \oplus c_3$ 

If  $m_1 = x$  then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3) = F_k(c_0 \oplus x) = F_k(c_0 \oplus m_1) = c_1$ If  $m_1 \neq x$  then  $c' = F_k(c_3 \oplus m')$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

The adversary convinces Alice to encrypt  $m' = c_0 \oplus x \oplus c_3$ 

If  $m_1 = x$  then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3) = F_k(c_0 \oplus x) = F_k(c_0 \oplus m_1) = c_1$ 

If  $m_1 \neq x$  then  $c' = F_k(c_3 \oplus m') = F_k(c_0 \oplus x)$ 



Suppose that the adversary observes c and knows that  $m_1$  is either x or y (e.g., x = ATTACK! and y = RETREAT)

The adversary convinces Alice to encrypt  $m' = c_0 \oplus x \oplus c_3$ 

If  $m_1 = x$  then  $c' = F_k(c_3 \oplus m') = F_k(c_3 \oplus c_0 \oplus x \oplus c_3) = F_k(c_0 \oplus x) = F_k(c_0 \oplus m_1) = c_1$ 

If  $m_1 \neq x$  then  $c' = F_k(c_3 \oplus m') = F_k(c_0 \oplus x) \neq F(c_0 \oplus m_1) = c_1$ 



#### **Encrypting:**

• A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$ 



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$
- $c_i = y_i \oplus m_i$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$
- $c_i = y_i \oplus m_i$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$
- $c_i = y_i \oplus m_i$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$
- $c_i = y_i \oplus m_i$



#### **Encrypting:**

- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext. Let  $y_0 = c_0 = IV$
- $y_i = F_k(y_{i-1})$
- $c_i = y_i \oplus m_i$

Can be thought of as a stream cipher (generate  $y_1, y_2, \ldots$  and XOR it with the message)



| $c_0 =  V $ $c_1$ $c_2$ $c_3$ |  |
|-------------------------------|--|
|-------------------------------|--|



- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$



- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$



- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$







- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$





- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$





- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$





#### Decrypting:

- $y_0 = c_0$
- $y_i = F_k(y_{i-1})$
- $m_i = y_i \oplus c_i$

Encryption and decryption must be done sequentially

Encryption and decryption must be done sequentially

• An optimization: the stream  $y_1, y_2, y_3, \ldots$  only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted

Encryption and decryption must be done sequentially

- An optimization: the stream  $y_1, y_2, y_3, \ldots$  only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length

Encryption and decryption must be done sequentially

- An optimization: the stream  $y_1, y_2, y_3, \ldots$  only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- *F* can be any PRF (not necessarily a PRP).

(notice that we never used  $F^{-1}$ )

Encryption and decryption must be done sequentially

- An optimization: the stream  $y_1, y_2, y_3, \ldots$  only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- F can be any PRF (not necessarily a PRP).

(notice that we never used  $F^{-1}$ )

Is OFB mode CPA-secure?

### Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream  $y_1, y_2, y_3, \ldots$  only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- F can be any PRF (not necessarily a PRP).

(notice that we never used  $F^{-1}$ )

Is OFB mode CPA-secure?

**Theorem:** If F is a pseudorandom function, then OFB mode is CPA-secure.

### Output Feedback (OFB) mode, stateful variant

The stateful variant of OFB (the final value  $y_i$  is used in place of  $y_0$  when the next message needs to be encrypted) is also **CPA-secure** 



### Output Feedback (OFB) mode, stateful variant

The stateful variant of OFB (the final value  $y_i$  is used in place of  $y_0$  when the next message needs to be encrypted) is also **CPA-secure** 



Can be viewed as a stream cipher

| m = | $m_1$ | $m_2$ | $m_3$ | $m_4$ |
|-----|-------|-------|-------|-------|
|     |       |       |       |       |

• Split the input to F into an IV and a counter

Can be viewed as a stream cipher

| $m = \boxed{m_1}$ | $m_2$ | $m_3$ | $m_4$ |
|-------------------|-------|-------|-------|
|-------------------|-------|-------|-------|

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$





### **Encrypting:**

• A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i

#### m = $m_1$ $m_2$ $m_3$ $m_4$ $\mathsf{IV} \parallel \langle 1 \rangle$ $\mathsf{IV} \parallel \langle 2 \rangle$ $\mathsf{IV} \parallel \langle 3 \rangle$ $F_k$ $F_k$ $F_k$ IV $\oplus$ $\oplus$ $c_0 = \mathsf{IV}$ $c_1$ $c_2$ $c_3$

- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i

#### m = $m_1$ $m_2$ $m_3$ $m_4$ $\mathsf{IV} \parallel \langle 1 \rangle$ $\mathsf{IV} \parallel \langle 2 \rangle$ $\mathsf{IV} \parallel \langle 3 \rangle$ $\mathsf{IV} \parallel \langle 4 \rangle$ $F_k$ $F_k$ $F_k$ $F_k$ IV $\oplus$ $\oplus$ $\oplus$ $c_0 = \mathsf{IV}$ $c_1$ $c_2$ $c_3$ $c_4$

- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i

#### $m_1$ $m_2$ $m_3$ m = $m_4$ $\mathsf{IV} \parallel \langle 1 \rangle$ $\mathsf{IV} \parallel \langle 2 \rangle$ $\mathsf{IV} \parallel \langle 3 \rangle$ $\mathbb{IV} \parallel \langle 4 \rangle$ $F_k$ $F_k$ $F_k$ $F_k$ IV $\oplus$ $\oplus$ $c_0 = \mathsf{IV}$ $c_1$ $c_3$ $c_4$ $c_2$

### **Encrypting:**

- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$

### Decrypting:

• Set the IV to the first block  $c_0$  of the ciphertext.

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
  - $\mathsf{IV} \in \{0,1\}^{3n/4}$
  - counter  $\in \{0,1\}^{n/4}$

 $\langle i \rangle$  Binary encoding of i



- A random IV is chosen and sent as the first block  $c_0$  of the ciphertext.
- $c_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus m_i$



### **Decrypting:**

- Set the IV to the first block  $c_0$  of the ciphertext.
- $m_i = F_k(\mathsf{IV} \parallel \langle i \rangle) \oplus c_i$

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV

- The length of the IV affects the security
- $\bullet\,$  The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!

- The length of the IV affects the security
- $\bullet\,$  The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)

- The length of the IV affects the security
- $\bullet\,$  The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- *F* can be any PRF (not necessarily a PRP)

(notice that we never used  $F^{-1}$ )

- The length of the IV affects the security
- $\bullet\,$  The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- F can be any PRF (not necessarily a PRP)

(notice that we never used  $F^{-1}$ )

Is CTR mode CPA-secure?

- The length of the IV affects the security
- $\bullet\,$  The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- *F* can be any PRF (not necessarily a PRP)

(notice that we never used  $F^{-1}$ )

Is CTR mode CPA-secure?

**Theorem:** If F is a pseudorandom function, then CTR mode is CPA-secure.

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- *F* can be any PRF (not necessarily a PRP)

(notice that we never used  $F^{-1}$ )

Is CTR mode CPA-secure?

**Theorem:** If F is a pseudorandom function, then CTR mode is CPA-secure.

• Remains secure even if IVs are not chosen u.a.r., in fact it suffices that IVs never repeat

 $\mathsf{IV} = 00...000, 00...001, 00...010, 00...011, ...$