Stream ciphers (reminder)

A stream cipher is a pair of deterministic polynomial-time algorithms

- Init: takes a n-bit seed s, and possibly a n-bit initialization vector (IV), and outputs a state st
- Next: takes a state st and outputs a bit y and a new (updated) state st'

Idea: we can generate as many random bits as desired, by repeatedly calling Next

* In practice, Next can output multiple bits at once (e.g., a byte)

RC4

- Stands for Rivest Cipher 4
- Designed for performance in software

Ron Rivest (the R in RSA)

RC4

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does not use (L)FSRs
- Very simple (fits one slide!)

Ron Rivest (the R in RSA)

RC4

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does not use (L)FSRs
- Very simple (fits one slide!)
- No longer considered secure (especially if misused)!

Ron Rivest (the R in RSA)

RC4

- Stands for Rivest Cipher 4
- Designed for performance in software
- Construction does not use (L)FSRs
- Very simple (fits one slide!)
- No longer considered secure (especially if misused)!

Ron Rivest (the R in RSA)

- We will see how to attack it

RC4

The state consists of:

- An array S of 256 bytes, which will always be a permutation of $\{0, \ldots, 255\}$
- A pair of integers $i, j \in\{0, \ldots, 255\}$

RC4

The state consists of:

- An array S of 256 bytes, which will always be a permutation of $\{0, \ldots, 255\}$
- A pair of integers $i, j \in\{0, \ldots, 255\}$
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i] \quad(\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

RC4

The state consists of:

- An array S of 256 bytes, which will always be a permutation of $\{0, \ldots, 255\}$
- A pair of integers $i, j \in\{0, \ldots, 255\}$
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle):$
(returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$
[Demo]

Test vectors

Key length: 128 bits.
key: 0x0102030405060708090a0b0c0d0e0f10

		HEX		9 c 7 cc 9 a	60 9d	9328	cd e4 1b 97
DEC	16	HEX	$10:$	5248 c4 95	9014126 a	$6 \mathrm{6a} 84 \mathrm{f} 1$	1 d 1 a 9 e
DEC	240	HEX	f0	065902 e4	b6 20 f6	36 c8 58	$66432 f$
DEC	256	HEX	100	d3 9d 56 6b	c6 bc e3 01	076815	49 f3 87
DEC	496	HEX	f0	b6 d1 e6 c4	a5 e4 77 1c	ad 79538 d	f2 95 fb
DEC	512	HEX	200	c6 8c 1d 5c	559 ab 41	23 df 1d	52 a4 3b
DEC	752	HEX	2f0	c5 ec f8 8d	e8 97 fd 57	fe d3 0170	1b 82 a2
DEC	768	HEX	300	ec cb e1 3d	e1 fc c9 1c	11 a 0 b 2	0b c8 fa
DEC	1008	HEX	$f 0$	e7 a7 2574	f8 78 2a e2	6 ab cf 9e	bc d6 60
DEC	1024	HEX	00	bd f0 324 e	6083 dc c6	d3 ce dd 3c	a8 c5 3c
DEC	1520	HEX	570	b4 0110 c 4	19 0b 5622	a9 6116 b0	017 ed
DEC	1536	HEX	600	ff a0 b5 14	64 7e c0 4f	6306 b8 92	ae 6611
DEC	2032	HEX	$7 f 0$	d0 3d 1b c0	3 c d3 3d 70	df f9 fa 5d	71963 e
DEC	48	HEX	800	8a 441264	11 ea a7 8b	d5 1e 8d 87	a8 87 9b
DEC	3056	HEX	bf0	fa be b7 60	28 ad e2 d0	e4 8722	6c 4615
DEC	3072	HEX	c00	c0 5d 88 ab	d5 0357 f9	35 a6 3c 59	ee 5376
DEC	4080	HEX	ffo	ff $38265 c$	1642 c 1 ab	e8 d3 c2	$5 \mathrm{e} 57 \mathrm{2b}$
DEC	4096	HEX	1000:	a3 6a 4c 30	1 a e8 ac 13	61 0c cb	2256 ca

Output bias

Empirical distribution of the value of the 2nd output byte over 50000 samples (with keys chosen u.a.r.)

There is a bias towards 0 in the second byte output by RC4
(about twice as likely to be 0)

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$$
\begin{aligned}
& i=0 \\
& j=0
\end{aligned} \quad \begin{array}{ll|l}
0 & 1 & 2 \\
& \square & \\
\hline
\end{array} \cdots \begin{array}{|}
\hline
\end{array} \cdots \begin{array}{|}
\square
\end{array}
$$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$
$i=0$

$j=0$$\quad$| 0 | 1 | 2 | |
| :--- | :--- | :--- | :--- |
| | | | 0 |
| | \cdots | \square | \cdots |

$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle)$:
(returns a byte)

- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

- Return the byte y and the new state st $^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle)$:
(returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

- Return the byte y and the new state st $^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$$
\begin{aligned}
& l \\
& i=1 \\
& j=X
\end{aligned}
$$

$\operatorname{Next}(\mathrm{st}=\langle S, i, j\rangle): \quad$ 2nd call \quad (returns a byte)

- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$\operatorname{Next}(\mathrm{st}=\langle S, i, j\rangle): \quad$ 2nd call \quad (returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$\operatorname{Next}(\mathrm{st}=\langle S, i, j\rangle): \quad$ nd call \quad (returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$

- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$\operatorname{Next}(\mathrm{st}=\langle S, i, j\rangle): \quad$ 2nd call \quad (returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

\[

\]

$\operatorname{Next}($ st $=\langle S, i, j\rangle): \quad$ 2nd call \quad (returns a byte)

- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$$
\begin{aligned}
& \text { Next }(\text { st }=\langle S, i, j\rangle): \quad 2 \text { nd call } \quad \text { (returns a byte) } \\
& \text { - } i \leftarrow i+1(\bmod 256) \\
& \text { - } j \leftarrow j+S[i](\bmod 256) \\
& \text { - Swap } S[i] \text { and } S[j] \\
& \text { - } t=S[i]+S[j](\bmod 256) \longleftarrow \\
& \text { - } y \leftarrow S[t] \\
& \text { - Return the byte } y \text { and the new state } \text { st }^{\prime}=\langle S, i, j\rangle
\end{aligned}
$$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$$
\begin{aligned}
& \text { Next }(\text { st }=\langle S, i, j\rangle): \quad 2 \text { nd call } \quad \text { (returns a byte) } \\
& \text { - } i \leftarrow i+1(\bmod 256) \\
& \text { - } j \leftarrow j+S[i](\bmod 256) \\
& \text { - Swap } S[i] \text { and } S[j] \\
& \text { - } t=S[i]+S[j](\bmod 256) \\
& \text { - } y \leftarrow S[t] \\
& \text { - Return the byte } y \text { and the new state } \text { st }^{\prime}=\langle S, i, j\rangle
\end{aligned}
$$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

$$
\begin{aligned}
& \text { Next }(\text { st }=\langle S, i, j\rangle): \quad 2 \text { nd call } \quad \text { (returns a byte) } \\
& \text { - } i \leftarrow i+1(\bmod 256) \\
& \text { - } j \leftarrow j+S[i](\bmod 256) \\
& \text { - Swap } S[i] \text { and } S[j] \\
& \text { - } t=S[i]+S[j](\bmod 256) \\
& \text { - } y \leftarrow S[t] \\
& \text { - Return the byte } y \text { and the new state } \text { st }^{\prime}=\langle S, i, j\rangle
\end{aligned}
$$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$

\[

\]

- With probability $\approx \frac{255}{256} \approx 1$ we have that $S[2]$ is distributed "uniformly at random" after 2 iterations
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
(returns a byte)
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state st ${ }^{\prime}=\langle S, i, j\rangle$

Output bias: analysis

- Consider the state immediately after Init
- For simplicity, think of S as a uniform permutation over $\{0,1, \ldots, 255\}$
- With probability $\approx \frac{1}{256}$ we have $S[2]=0$
$i=2$
$j=X$

$t=X \quad$ Output byte $y=0$
- With probability $\approx \frac{255}{256} \approx 1$ we have that $S[2]$ is distributed "uniformly at random" after 2 iterations

Probability that the 2nd output byte is 0 :
$\approx \frac{1}{256}+1 \cdot \frac{1}{256}=\frac{2}{256}$
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle)$:
(returns a byte)

- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return the byte y and the new state $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

Output bias

- The output bias is indicative of structural problems with RC4
- Other biases have been found in other bytes of the RC4 state
- Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!

Output bias

- The output bias is indicative of structural problems with RC4
- Other biases have been found in other bytes of the RC4 state
- Severe enough to allow recovery of plaintext from ciphertext when RC4 is used for encryption!

In summary: Do not use RC4!

RC4 and IVs

RC4 is not designed to take an IV ... but programmers don't know it and use an IV anyway

SCIENCE FACT:

xkcd.com

RC4 and IVs

RC4 is not designed to take an IV
In practice an IV of some length ℓ (in bytes) is often used, together with a key k^{\prime} of $16-\ell$ bytes

$$
k=\mathrm{IV} \| k^{\prime}
$$

RC4 and IVs

RC4 is not designed to take an IV
In practice an IV of some length ℓ (in bytes) is often used, together with a key k^{\prime} of $16-\ell$ bytes

$$
k=\mathrm{IV} \| k^{\prime}
$$

In WEP: Wj Fi

- 3 -byte IV, 13 bytes key

RC4 and IVs

RC4 is not designed to take an IV
In practice an IV of some length ℓ (in bytes) is often used, together with a key k^{\prime} of $16-\ell$ bytes

$$
k=\mathrm{IV} \| k^{\prime}
$$

In WEP: Wj Fi

- 3 -byte IV, 13 bytes key
- Key recovery attack!

RC4 and IVs

RC4 is not designed to take an IV
In practice an IV of some length ℓ (in bytes) is often used, together with a key k^{\prime} of $16-\ell$ bytes

$$
k=\mathrm{IV} \| k^{\prime}
$$

In WEP: WiFi

- 3 -byte IV, 13 bytes key
- Key recovery attack!
- We show a simplified attack that recovers the first byte of the key (i.e., $k[3]$)

Key recovery attack

- Recall that IVs are not kept secret!

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
this is just one possibility
(attacks for other combinations are also known)

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)

k | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 3 255 X | | | |

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of 16 bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of $\mathbf{1 6}$ bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of $\mathbf{1 6}$ bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\operatorname{Init}(k$: array of $\mathbf{1 6}$ bytes):
- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

S | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 3 0 | $5+X$ | $\begin{array}{c}6+X \\ +\Psi\end{array}$ | |

$$
\begin{equation*}
5+X \tag{2}
\end{equation*}
$$1

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)

$\operatorname{Init}(k$: array of 16 bytes):

- $S \leftarrow[0,1,2, \ldots, 255]$
- $k \leftarrow \underbrace{k\|k\| \ldots \| k}_{16 \text { times }}$
- $j \leftarrow 0$
- For $i \leftarrow 0,1, \ldots, 255$:
- $j \leftarrow j+S[i]+k[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- Return $\langle S, i=0, j=0\rangle$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256)$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

$$
i=1
$$

k | | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 3 255 X | Ψ | | |

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256) \quad j=0$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

$$
\begin{aligned}
& i=1 \\
& j=0
\end{aligned}
$$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256) \quad j=0$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$
- $y \leftarrow S[t]$
- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

$$
\begin{aligned}
& i=1 \\
& j=0
\end{aligned}
$$

$$
t=3
$$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256) \quad j=0$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$

$$
t=3
$$

- $y \leftarrow S[t]$

$$
y=S[3]
$$

- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

$$
30 \begin{gathered}
\\
i=1 \\
j=0
\end{gathered} \quad k \begin{array}{|c|c|c|c|c|c}
\hline 3 & 255 & X & \Psi \\
\hline
\end{array}
$$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

Key recovery attack

- Recall that IVs are not kept secret!
- The adversary waits until the IV takes the form $\langle 3,255, X\rangle$ (for some value X)
- Happens with probability $\frac{1}{256^{2}}=\frac{1}{65536}$
this is just one possibility
(attacks for other combinations are also known)
$\boldsymbol{N e x t}(\mathrm{st}=\langle S, i, j\rangle) \mathbf{:}$
- $i \leftarrow i+1(\bmod 256)$
- $j \leftarrow j+S[i](\bmod 256) \quad j=0$
- Swap $S[i]$ and $S[j]$
- $t=S[i]+S[j](\bmod 256)$

$$
t=3
$$

- $y \leftarrow S[t]$

$$
y=S[3]
$$

- Return y and $\mathrm{st}^{\prime}=\langle S, i, j\rangle$

$$
30 \begin{gathered}
\\
i=1 \\
j=0
\end{gathered} \quad k \begin{array}{|l|l|l|l|l|}
\hline 3 & 255 & X & \Psi \\
\hline
\end{array}
$$

With probability $\approx 5 \%, S[3]$ is not modified in the remaining iterations of Init

What's the first byte output by Next (when $i=j=0$)?

$$
6+X+\Psi
$$

Key recovery attack

- 5% of the time the adversary sees $6+X+\Psi$
- Since X is known (it is part of the IV), the adversary can recover Ψ

Key recovery attack

- 5% of the time the adversary sees $6+X+\Psi$
- Since X is known (it is part of the IV), the adversary can recover Ψ
- Quite far from uniform: $\frac{1}{256} \approx 0.4 \%$

Key recovery attack

- 5% of the time the adversary sees $6+X+\Psi$
- Since X is known (it is part of the IV), the adversary can recover Ψ
- Quite far from uniform: $\frac{1}{256} \approx 0.4 \%$
- Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some probability)
- Guess the first byte of the key (with high confidence)

Key recovery attack

- 5% of the time the adversary sees $6+X+\Psi$
- Since X is known (it is part of the IV), the adversary can recover Ψ
- Quite far from uniform: $\frac{1}{256} \approx 0.4 \%$
- Wait for a sufficiently large number of IVs for which the first byte of the key is leaked (with some probability)
- Guess the first byte of the key (with high confidence)
- Repeat similar attacks to extract the next byte of the key, until the whole key is reconstructed

Key recovery attack

- 5% of the time the adversary sees $6+X+\Psi$
- Since X is k Aircrack-ng 1.3
- Quite far frol
- Wait for a su probability)
- Guess the fir
- Repeat simila

[00:00:00] Tested 3 keys (got 47448 IVs)

KB	depth	byte(vote)					
0	$0 /$	DC(66304)	F5 (58368)	F4(56576)	1F(55808)	EF(55040)	$28(54272)$
1	$0 /$	3F(71424)	7C(59648)	A2 (56320)	$\mathrm{AB}(56320)$	11(55296)	E0(55296)
2	$0 /$	73(64000)	5F(56064)	15(55552)	$29(55552)$	$32(55040)$	36 (54784)
3	0/	7A(67840)	D1(54784)	$0 E(54272)$	25 (54272)	49(53760)	99(53760)
4	0/	05(64000)	B1(57600)	B0(57088)	39 (56576)	34(55040)	63(54272)
5	$0 /$	FE(60160)	$38(57088)$	CC(56576)	$\mathrm{FB}(55552)$	E4(54528)	E6(54528)
6	0/	6C (61696)	AE (56576)	88(56320)	B6 (56320)	8B(55808)	EE(55040)
7	0/	BF (62208)	D8(60672)	FC(56320)	14(55808)	73(55808)	7C(55296)
8	$0 /$	68(65024)	09(56064)	31(56064)	30 (55296)	A0(55040)	8D (54528)
9	$0 /$	A6 (60160)	72(57856)	4F(56320)	5B(56320)	7F(56064)	$88(56064)$
10	$0 /$	07(58112)	AF (57344)	$27(56320)$	BB(56320)	4A(55040)	42(54528)
11	$0 /$	2F(57856)	E6(56832)	BD (56320)	B5 (55040)	$1 \mathrm{~F}(54272)$	DF (54272)
12	0/	DF (67072)	27 (57088)	35(56832)	FB(56832)	07(56576)	57(55040)

leaked (with some

KEY FOUND! [DC:3F:73:7A:05:FE:6C:BF:68:A6:6B:2F:DF]
Decrypted correctly: 100\%

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV

Daniel J.
Bernstein

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV
Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

Daniel J.
Bernstein

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV
Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation $P:\{0,1\}^{512} \rightarrow\{0,1\}^{512}$ on 512-bit strings

Daniel J. Bernstein

The permutation P is used to construct a keyed function with a 256 -bit key, 128 -bit inputs and 512-bit outputs

$$
F_{k}(x)=P(\text { constant }\|k\| x) \boxplus(\text { constant }\|k\| x)
$$

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV
Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation $P:\{0,1\}^{512} \rightarrow\{0,1\}^{512}$ on 512-bit strings

Daniel J.
Bernstein

The permutation P is used to construct a keyed function with a 256 -bit key, 128 -bit inputs and 512-bit outputs

$$
F_{k}(x)=P(\text { constant }\|k\| x) \boxplus(\text { constant }\|k\| x)
$$

\boxplus denotes word-wise modular addition (of 32-bit words)

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV
Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation $P:\{0,1\}^{512} \rightarrow\{0,1\}^{512}$ on 512-bit strings

Daniel J.
Bernstein

The permutation P is used to construct a keyed function with a 256 -bit key, 128 -bit inputs and 512-bit outputs

$$
F_{k}(x)=P(\text { constant }\|k\| x) \boxplus(\text { constant }\|k\| x)
$$

Output stream:

$$
F_{k}(\mathrm{IV} \|\langle 0\rangle), F_{k}(\mathrm{IV} \|\langle 1\rangle), F_{k}(\mathrm{IV} \|\langle 2\rangle), \ldots
$$

\boxplus denotes word-wise modular addition (of 32-bit words)
$\langle i\rangle=$ binary encoding of i with 64 bits

ChaCha20

Introduced in 2008. Secure replacement for RC4
Takes a 256 -bit key k and a 64 -bit IV
Relies on addition, rotations, and XOR of 32-bit words (all of which typically require just one assembly instruction)

The core of ChaCha20 is a fixed permutation $P:\{0,1\}^{512} \rightarrow\{0,1\}^{512}$ on 512-bit strings

Daniel J.
Bernstein

The permutation P is used to construct a keyed function with a 256 -bit key, 128 -bit inputs and 512-bit outputs

$$
F_{k}(x)=P(\text { constant }\|k\| x) \boxplus(\text { constant }\|k\| x)
$$

Output stream:

$$
F_{k}(\mathrm{IV} \|\langle 0\rangle), F_{k}(\mathrm{IV} \|\langle 1\rangle), F_{k}(\mathrm{IV} \|\langle 2\rangle), \ldots
$$

Not patented. Several public domain implementations available
\boxplus denotes word-wise modular addition (of 32-bit words)
$\langle i\rangle=$ binary encoding of i with 64 bits

Block Ciphers

A block cipher is.

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

Block Ciphers

A block cipher is... just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths
We consider $\ell_{\text {key }}(n)=n$ and $\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$
n is called the block length of F

Block Ciphers

A block cipher is. . . just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths
We consider $\ell_{\text {key }}(n)=n$ and $\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$
n is called the block length of F
We assume for simplicity that the message m to be encrypted can be split into blocks $m_{1}, m_{2}, m_{3}, \ldots$ of lengths exactly n

$$
m=\begin{array}{|l|l|l|l|l|l|l|}
\hline m_{1} & m_{2} & m_{3} & \cdots & & & \\
\hline
\end{array}
$$

Block Ciphers

A block cipher is. .. just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths
We consider $\ell_{\text {key }}(n)=n$ and $\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$
n is called the block length of F
We assume for simplicity that the message m to be encrypted can be split into blocks $m_{1}, m_{2}, m_{3}, \ldots$ of lengths exactly n

$$
m=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline m_{1} & m_{2} & m_{3} & \cdots & & & & \\
\hline
\end{array}
$$

What if the length of m is not a multiple of n ?

Block Ciphers

A block cipher is. .. just another name for a (possibly strong) pseudorandom permutation

$$
F:\{0,1\}^{\ell_{\text {key }}(n)} \times\{0,1\}^{\ell_{\text {in }}(n)} \rightarrow\{0,1\}^{\ell_{\text {out }}(n)}
$$

You can think of block ciphers as practical constructions of (candidate) pseudorandom permutations

Block ciphers typically only support a specific set of key/block lengths
We consider $\ell_{\text {key }}(n)=n$ and $\ell_{\text {in }}(n)=\ell_{\text {out }}(n)=n$
n is called the block length of F
We assume for simplicity that the message m to be encrypted can be split into blocks $m_{1}, m_{2}, m_{3}, \ldots$ of lengths exactly n
\square

$m=$| m_{1} | m_{2} | m_{3} | \cdots | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

What if the length of m is not a multiple of n ?

Block Ciphers

Recall that we can always build a stream cipher from a block cipher
For example:
$\operatorname{Init}(s, \mathrm{IV})$:

- Output $(s, \mathrm{IV}, 0)$

Next(st):

- Unpack the state in $(s, \mathrm{IV},\langle i\rangle)$
- Output the n bits $F_{s}(\mathrm{IV} \|\langle i\rangle)$ and the new state $(s, \mathrm{IV},\langle i+1\rangle)$

Block Ciphers

Recall that we can always build a stream cipher from a block cipher
For example:

Block Ciphers

Recall that we can always build a stream cipher from a block cipher
For example:

Block Ciphers: Modes of Operation

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation*)

Block Ciphers: Modes of Operation

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation*)

Block Ciphers: Modes of Operation

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation*)

- The ciphertext is (at least) twice as long as the plaintext

Block Ciphers: Modes of Operation

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation*)

- The ciphertext is (at least) twice as long as the plaintext
- Can we do better?

Block Ciphers: Modes of Operation

- We already have seen how to encrypt a message using a stream cipher.
- We have also seen how to encrypt a message using a block cipher (i.e., a pseudorandom permutation*)

- The ciphertext is (at least) twice as long as the plaintext
- Can we do better? Several options (modes of operations)

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

$$
m=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline m_{1} & m_{2} & m_{3} & \cdots & & & & \\
\hline
\end{array}
$$

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right) \quad$ Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?

No! Encryption is deterministic!

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?

No! Encryption is deterministic!

- Is it EAV-secure?

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?
- Is it EAV-secure?

No! Encryption is deterministic!
[Demo]

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?
- Is it EAV-secure?

No! Encryption is deterministic!
[Demo]

No! It's just a fancy substitution cipher!
(Frequency analysis)

Electronic Code Book (ECB) mode

First idea:

- Encrypt each block of the message independently

Encrypting: $c_{i}=F_{k}\left(m_{i}\right)$
Decrypting: $m_{i}=F_{k}^{-1}\left(c_{i}\right)$

- No ciphertext expansion!
- Is it CPA-secure?
- Is it EAV-secure?

No! Encryption is deterministic!
[Demo]
No! It's just a fancy substitution cipher!
(Frequency analysis)

Cipher Block Chaining (CBC) mode

$$
m=\begin{array}{|c|c|c|c|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext

Cipher Block Chaining (CBC) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext
- Each block m_{i} of the message is XORed with the previous ciphertext block before applying F_{k}

$$
c_{i}=F_{k}\left(c_{i-1} \oplus m_{i}\right)
$$

Cipher Block Chaining (CBC) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext
- Each block m_{i} of the message is XORed with the previous ciphertext block before applying F_{k}

$$
c_{i}=F_{k}\left(c_{i-1} \oplus m_{i}\right)
$$

Cipher Block Chaining (CBC) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext
- Each block m_{i} of the message is XORed with the previous ciphertext block before applying F_{k}

$$
c_{i}=F_{k}\left(c_{i-1} \oplus m_{i}\right)
$$

Cipher Block Chaining (CBC) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext
- Each block m_{i} of the message is XORed with the previous ciphertext block before applying F_{k}

$$
c_{i}=F_{k}\left(c_{i-1} \oplus m_{i}\right)
$$

Cipher Block Chaining (CBC) mode: Decrypting

$c_{0}=\mathrm{IV}$	c_{1}	c_{2}

Decrypting:

- To decrypt m_{i} we need c_{i-1}

Cipher Block Chaining (CBC) mode: Decrypting

Decrypting:

- To decrypt m_{i} we need c_{i-1}
- $m_{i}=F_{k}^{-1}\left(c_{i}\right) \oplus c_{i-1}$

Cipher Block Chaining (CBC) mode: Decrypting

Decrypting:

- To decrypt m_{i} we need c_{i-1}
- $m_{i}=F_{k}^{-1}\left(c_{i}\right) \oplus c_{i-1}$

Cipher Block Chaining (CBC) mode: Decrypting

Decrypting:

- To decrypt m_{i} we need c_{i-1}
- $m_{i}=F_{k}^{-1}\left(c_{i}\right) \oplus c_{i-1}$

Cipher Block Chaining (CBC) mode: Decrypting

Decrypting:

- To decrypt m_{i} we need c_{i-1}
- $m_{i}=F_{k}^{-1}\left(c_{i}\right) \oplus c_{i-1}$

Drawback: Encryption must be done sequentially

Cipher Block Chaining (CBC) mode: Decrypting

Decrypting:

- To decrypt m_{i} we need c_{i-1}
- $m_{i}=F_{k}^{-1}\left(c_{i}\right) \oplus c_{i-1}$

Drawback: Encryption must be done sequentially

Cipher Block Chaining (CBC) mode

Cipher Block Chaining (CBC) mode

Cipher Block Chaining (CBC) mode

Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-secure.

Cipher Block Chaining (CBC) mode

Is CBC mode CPA secure? Yes!*

Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-secure.

*But, depending on the implementation, it might be vulnerable to some subtle attacks (not really a fault of the encryption scheme, but something to be aware of)

Chained CBC mode

There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

- When the first message is encrypted a random IV is chosen (like in CBC mode)

Chained CBC mode

There is a stateful variant of CBC called chained CBC that handles multiple messages as follows:

- When the first message is encrypted a random IV is chosen (like in CBC mode)
- When a subsequent message needs to be encrypted, the last block of the previous ciphertext is used instead of a new IV

Security of Chained CBC mode

Is chained CBC mode CPA-secure?

Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message $m \| m^{\prime} \ldots$

Security of Chained CBC mode

Is chained CBC mode CPA-secure? We are just simulating CBC mode on a bigger message $m \| m^{\prime} \ldots$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)=F_{k}\left(c_{0} \oplus x\right)$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)=F_{k}\left(c_{0} \oplus x\right)=F_{k}\left(c_{0} \oplus m_{1}\right)=c_{1}$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)=F_{k}\left(c_{0} \oplus x\right)=F_{k}\left(c_{0} \oplus m_{1}\right)=c_{1}$
If $m_{1} \neq x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)=F_{k}\left(c_{0} \oplus x\right)=F_{k}\left(c_{0} \oplus m_{1}\right)=c_{1}$
If $m_{1} \neq x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{0} \oplus x\right)$

Security of Chained CBC mode

Suppose that the adversary observes c and knows that m_{1} is either x or y (e.g., $x=$ ATTACK! and $y=$ RETREAT)
The adversary convinces Alice to encrypt $m^{\prime}=c_{0} \oplus x \oplus c_{3}$
If $m_{1}=x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{3} \oplus c_{0} \oplus x \oplus c_{3}\right)=F_{k}\left(c_{0} \oplus x\right)=F_{k}\left(c_{0} \oplus m_{1}\right)=c_{1}$
If $m_{1} \neq x$ then $c^{\prime}=F_{k}\left(c_{3} \oplus m^{\prime}\right)=F_{k}\left(c_{0} \oplus x\right) \neq F\left(c_{0} \oplus m_{1}\right)=c_{1}$

Output Feedback (OFB) mode

$$
m=\begin{array}{|c|c|c|c|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$

Output Feedback (OFB) mode

$$
m=\begin{array}{|c|c|c|c|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$

Output Feedback (OFB) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $c_{i}=y_{i} \oplus m_{i}$

Output Feedback (OFB) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $c_{i}=y_{i} \oplus m_{i}$

Output Feedback (OFB) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $c_{i}=y_{i} \oplus m_{i}$

Output Feedback (OFB) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $c_{i}=y_{i} \oplus m_{i}$

Output Feedback (OFB) mode

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext. Let $y_{0}=c_{0}=\mathrm{IV}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $c_{i}=y_{i} \oplus m_{i}$

Can be thought of as a stream cipher (generate y_{1}, y_{2}, \ldots and XOR it with the message)

Output Feedback (OFB) mode

Decrypting:

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Output Feedback (OFB) mode

Decrypting:

- $y_{0}=c_{0}$
- $y_{i}=F_{k}\left(y_{i-1}\right)$
- $m_{i}=y_{i} \oplus c_{i}$

Encryption and decryption must be done sequentially

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream $y_{1}, y_{2}, y_{3}, \ldots$ only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream $y_{1}, y_{2}, y_{3}, \ldots$ only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream $y_{1}, y_{2}, y_{3}, \ldots$ only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- F can be any PRF (not necessarily a PRP).
(notice that we never used F^{-1})

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream $y_{1}, y_{2}, y_{3}, \ldots$ only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- F can be any PRF (not necessarily a PRP).
(notice that we never used F^{-1})

Is OFB mode CPA-secure?

Output Feedback (OFB) mode

Encryption and decryption must be done sequentially

- An optimization: the stream $y_{1}, y_{2}, y_{3}, \ldots$ only depends on the IV (and the key): it can be pre-computed before the message needs to be encrypted
- If the last block is not full, the ciphertext can be truncated to the plaintext length
- F can be any PRF (not necessarily a PRP).
(notice that we never used F^{-1})

Is OFB mode CPA-secure?

Theorem: If F is a pseudorandom function, then OFB mode is CPA-secure.

Output Feedback (OFB) mode, stateful variant

The stateful variant of OFB (the final value y_{i} is used in place of y_{0} when the next message needs to be encrypted) is also CPA-secure

Output Feedback (OFB) mode, stateful variant

The stateful variant of OFB (the final value y_{i} is used in place of y_{0} when the next message needs to be encrypted) is also CPA-secure

Counter (CTR) mode

Can be viewed as a stream cipher

$$
m=\begin{array}{|c|c|c|c|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

- Split the input to F into an IV and a counter

Counter (CTR) mode

Can be viewed as a stream cipher

$$
m=\begin{array}{|c|c|c|c|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

- Split the input to F into an IV and a counter

For example:

- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$

Counter (CTR) mode

Can be viewed as a stream cipher

$$
m=\begin{array}{|l|l|l|l|}
\hline m_{1} & m_{2} & m_{3} & m_{4} \\
\hline
\end{array}
$$

- Split the input to F into an IV and a counter

For example:

- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.

Decrypting:

- Set the IV to the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Counter (CTR) mode

Can be viewed as a stream cipher

- Split the input to F into an IV and a counter For example:
- IV $\in\{0,1\}^{3 n / 4}$
- counter $\in\{0,1\}^{n / 4}$
$\langle i\rangle$ Binary encoding of i

Encrypting:

- A random IV is chosen and sent as the first block c_{0} of the ciphertext.
- $c_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus m_{i}$

Decrypting:

- Set the IV to the first block c_{0} of the ciphertext.
- $m_{i}=F_{k}(\mathrm{IV} \|\langle i\rangle) \oplus c_{i}$

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- F can be any PRF (not necessarily a PRP)
(notice that we never used F^{-1})

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- F can be any PRF (not necessarily a PRP)
(notice that we never used F^{-1})
Is CTR mode CPA-secure?

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- F can be any PRF (not necessarily a PRP) (notice that we never used F^{-1})

Is CTR mode CPA-secure?

Theorem: If F is a pseudorandom function, then CTR mode is CPA-secure.

Counter (CTR) mode

- The length of the IV affects the security
- The length of the counter controls how many blocks can be sent with the same IV
- Both encryption and decryption can be done in parallel!
- If the last block is not full, the ciphertext can be truncated to the plaintext length (no padding needed)
- F can be any PRF (not necessarily a PRP) (notice that we never used F^{-1})

Is CTR mode CPA-secure?

Theorem: If F is a pseudorandom function, then CTR mode is CPA-secure.

- Remains secure even if IVs are not chosen u.a.r., in fact it suffices that IVs never repeat

$$
\mathrm{IV}=00 \ldots 000,00 \ldots 001,00 \ldots 010,00 \ldots 011, \ldots
$$

