Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations They are not encryption schemes

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

- Known plaintext attack: The adversary knows x and $F_{k}(x)$, where x is not chosen by the attacker

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

- Known plaintext attack: The adversary knows x and $F_{k}(x)$, where x is not chosen by the attacker
- Chosen plaintext attack: The attacker can query F_{k} (with values of its choice)

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations
They are not encryption schemes
Nevertheless some terminology is also used for block ciphers:

- Known plaintext attack: The adversary knows x and $F_{k}(x)$, where x is not chosen by the attacker
- Chosen plaintext attack: The attacker can query F_{k} (with values of its choice)
- Chosen ciphertext attack: The attacker can query both F_{k} and F_{k}^{-1} (with values of its choice)

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}\left(x^{\prime}\right)$)

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}\left(x^{\prime}\right)$)
- On average $\approx \ell / 2$ bits change between $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$
- The position of the changing bits looks "random"

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}\left(x^{\prime}\right)$)
- On average $\approx \ell / 2$ bits change between $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$
- The position of the changing bits looks "random"

How do we achieve this?

- Substitution Permutation Networks (SPNs)
- Feistel Networks

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}\left(x^{\prime}\right)$)
- On average $\approx \ell / 2$ bits change between $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$
- The position of the changing bits looks "random"

How do we achieve this?

- Substitution Permutation Networks (SPNs)
- Feistel Networks

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps
Two types of steps:

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps
Two types of steps:

- Confusion: A small change in the input produces a small "random" change in the output

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps
Two types of steps:

- Confusion: A small change in the input produces a small "random" change in the output
- Diffusion: The bits in the input are mixed so that a local change is spread throughout the block

Confusion

There are many random permutations

- Recall that $\left|\operatorname{Perm}_{\ell}\right|=\left(2^{\ell}\right)$!
- How many bits are needed to identify one of these permutations?

Confusion

There are many random permutations

- Recall that $\left|\operatorname{Perm}_{\ell}\right|=\left(2^{\ell}\right)$!
- How many bits are needed to identify one of these permutations?

$$
\log \left(2^{\ell}!\right) \geq \log \left(\frac{2^{\ell}}{e}\right)^{2^{\ell}}=2^{\ell} \cdot\left(\ell-\log _{2} e\right)
$$

Confusion

There are many random permutations

- Recall that \mid Perm $_{\ell} \mid=\left(2^{\ell}\right)$!
- How many bits are needed to identify one of these permutations?

$$
\log \left(2^{\ell}!\right) \geq \log \left(\frac{2^{\ell}}{e}\right)^{2^{\ell}}=2^{\ell} \cdot\left(\ell-\log _{2} e\right)
$$

- Unfeasible even for small values of ℓ

Example: For block lengths of $\ell=32$ bits, we need keys of $\approx 16 \mathrm{~GB}$

Confusion

There are many random permutations

- Recall that $\left|\operatorname{Perm}_{\ell}\right|=\left(2^{\ell}\right)$!
- How many bits are needed to identify one of these permutations?

$$
\log \left(2^{\ell}!\right) \geq \log \left(\frac{2^{\ell}}{e}\right)^{2^{\ell}}=2^{\ell} \cdot\left(\ell-\log _{2} e\right)
$$

- Unfeasible even for small values of ℓ

Example: For block lengths of $\ell=32$ bits, we need keys of $\approx 16 \mathrm{~GB}$

Idea: Build a "random" permutation on long inputs by using many "random" permutations on short inputs

Example: To store 8 permutations over $\{0,1\}^{8}$ we need less than $8 \cdot\left(8 \cdot 2^{8}\right) \mathrm{b}=2 \mathrm{~KB}$

Confusion

Consider a keyed PRP F_{k} with a block length 64 bits defined as follows: (the length is just an example)

$$
F_{k}(x)=f_{k_{1}}\left(x_{1}\right)\left\|f_{k_{2}}\left(x_{2}\right)\right\| f_{k_{3}}\left(x_{3}\right)\|\ldots\| f_{k_{8}}\left(x_{8}\right)
$$

where $x=x_{1}\left\|x_{2}\right\| x_{3}\|\ldots\| x_{8}, k=k_{1}\left\|k_{2}\right\| k_{3}\|\ldots\| k_{8}$, all x_{i} are 8 -bit long, and all $f_{k_{i}}$ are permutations

Confusion

Consider a keyed PRP F_{k} with a block length 64 bits defined as follows: (the length is just an example)

$$
F_{k}(x)=f_{k_{1}}\left(x_{1}\right)\left\|f_{k_{2}}\left(x_{2}\right)\right\| f_{k_{3}}\left(x_{3}\right)\|\ldots\| f_{k_{8}}\left(x_{8}\right)
$$

where $x=x_{1}\left\|x_{2}\right\| x_{3}\|\ldots\| x_{8}, k=k_{1}\left\|k_{2}\right\| k_{3}\|\ldots\| k_{8}$, all x_{i} are 8 -bit long, and all $f_{k_{i}}$ are permutations

Input x :

Output $F_{k}(x)$:

Confusion

Consider a keyed PRP F_{k} with a block length 64 bits defined as follows: (the length is just an example)

$$
F_{k}(x)=f_{k_{1}}\left(x_{1}\right)\left\|f_{k_{2}}\left(x_{2}\right)\right\| f_{k_{3}}\left(x_{3}\right)\|\ldots\| f_{k_{8}}\left(x_{8}\right)
$$

where $x=x_{1}\left\|x_{2}\right\| x_{3}\|\ldots\| x_{8}, k=k_{1}\left\|k_{2}\right\| k_{3}\|\ldots\| k_{8}$, all x_{i} are 8 -bit long, and all $f_{k_{i}}$ are permutations

Input x :

Output $F_{k}(x)$:

Is F a good PRP?

Confusion

Consider a keyed PRP F_{k} with a block length 64 bits defined as follows: (the length is just an example)

$$
F_{k}(x)=f_{k_{1}}\left(x_{1}\right)\left\|f_{k_{2}}\left(x_{2}\right)\right\| f_{k_{3}}\left(x_{3}\right)\|\ldots\| f_{k_{8}}\left(x_{8}\right)
$$

where $x=x_{1}\left\|x_{2}\right\| x_{3}\|\ldots\| x_{8}, k=k_{1}\left\|k_{2}\right\| k_{3}\|\ldots\| k_{8}$, all x_{i} are 8 -bit long, and all $f_{k_{i}}$ are permutations

Input x :

Output $F_{k}(x)$:

Is F a good PRP?
No! A local change in the input produces a local change in the output

Confusion

Consider a keyed PRP F_{k} with a block length 64 bits defined as follows: (the length is just an example)

$$
F_{k}(x)=f_{k_{1}}\left(x_{1}\right)\left\|f_{k_{2}}\left(x_{2}\right)\right\| f_{k_{3}}\left(x_{3}\right)\|\ldots\| f_{k_{8}}\left(x_{8}\right)
$$

where $x=x_{1}\left\|x_{2}\right\| x_{3}\|\ldots\| x_{8}, k=k_{1}\left\|k_{2}\right\| k_{3}\|\ldots\| k_{8}$, all x_{i} are 8 -bit long, and all $f_{k_{i}}$ are permutations

Input x :

Output $F_{k}(x)$:

Is F a good PRP?
No! A local change in the input produces a local change in the output

Adding diffusion

We use a mixing permutation π to add diffusion
We move a generic bit in the i-th position of the input to the $\pi(i)$-th position of the output

Adding diffusion

We use a mixing permutation π to add diffusion
We move a generic bit in the i-th position of the input to the $\pi(i)$-th position of the output

Adding diffusion

We use a mixing permutation π to add diffusion
We move a generic bit in the i-th position of the input to the $\pi(i)$-th position of the output How many permutations π for block length ℓ ?
"Only" ℓ !

Adding diffusion

We use a mixing permutation π to add diffusion
We move a generic bit in the i-th position of the input to the $\pi(i)$-th position of the output How many permutations π for block length ℓ ?
"Only" ℓ !
Can be encoded using $\log \ell!\leq \ell \log \ell$ bits

Adding diffusion

We use a mixing permutation π to add diffusion
We move a generic bit in the i-th position of the input to the $\pi(i)$-th position of the output

How many permutations π for block length ℓ ?
Can be encoded using $\log \ell!\leq \ell \log \ell$ bits
"Only" ℓ !
In practice the mixing permutation does not depend on the key and is carefully designed and fixed

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?
Yes, proceed backwards:

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?
Yes, proceed backwards:

- The mixing permutation is... a permutation, and hence invertible

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?
Yes, proceed backwards:

- The mixing permutation is... a permutation, and hence invertible
- Each function $f_{k_{i}}$ is also a permutation, and hence invertible

Substitution Permutation Networks

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

Is the function computed by this SPN a good PRP?
No

Substitution Permutation Networks

Is the function computed by this SPN a good PRP? No

- The mixing permutation is fixed. An adversary can always undo the last step!

Substitution Permutation Networks

Is the function computed by this SPN a good PRP? No

- The mixing permutation is fixed. An adversary can always undo the last step!
- We have already argued that $F_{k}(x)$ is not a good PRP.

Substitution Permutation Networks

This is called a round

Is the function computed by this SPN a good PRP? No

- The mixing permutation is fixed. An adversary can always undo the last step!
- We have already argued that $F_{k}(x)$ is not a good PRP.

Substitution Permutation Networks

This is called a round

Is the function computed by this SPN a good PRP? No

- The mixing permutation is fixed. An adversary can always undo the last step!
- We have already argued that $F_{k}(x)$ is not a good PRP.

What if we do another round with fresh functions $f_{k_{i}}$?

Substitution Permutation Networks

Substitution Permutation Networks

Substitution Permutation Networks

Substitution Permutation Networks

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

Is the function computed by this SPN a good PRP? No...

Substitution Permutation Networks

Is the function computed by this SPN a good PRP?
No... but it is "better" than before

Substitution Permutation Networks

Is the function computed by this SPN a good PRP? No... but it is "better" than before
More rounds!

Substitution Permutation Networks

Is the function computed by this SPN a good PRP? No... but it is "better" than before

More rounds!

Observation: the overall permutation remains invertible regardless of the number of rounds

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing
- The functions S_{i} are called S-boxes (from substitution boxes)

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing
- The functions S_{i} are called S-boxes (from substitution boxes)
- The key $k=k_{1}\left\|k_{2}\right\| k_{3} \| \ldots$ is called sub-key or round key

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing
- The functions S_{i} are called S-boxes (from substitution boxes)
- The key $k=k_{1}\left\|k_{2}\right\| k_{3} \| \ldots$ is called sub-key or round key
- Different rounds use different round keys

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing
- The functions S_{i} are called S-boxes (from substitution boxes)
- The key $k=k_{1}\left\|k_{2}\right\| k_{3} \| \ldots$ is called sub-key or round key
- Different rounds use different round keys
- The key of the whole block cipher is called the master key

Substitution Permutation Networks

- Using random functions f is unpractical

The key size would be manageable, but still quite large

- We restrict ourselves to functions f that have a particular form:

$$
f_{k, i}(x)=S_{i}\left(k_{i} \oplus x_{i}\right)
$$

- The XOR-ing operation is called key mixing
- The functions S_{i} are called \mathbf{S}-boxes (from substitution boxes)
- The key $k=k_{1}\left\|k_{2}\right\| k_{3} \| \ldots$ is called sub-key or round key
- Different rounds use different round keys
- The key of the whole block cipher is called the master key
- The round keys are derived from the master key according to a key schedule

Input

| 8 bits |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sample structure of a 2-round block cipher

Input

Sample structure of a 2-round block cipher

> Sample structure of a 2-round block cipher

Sample structure of a 2-round block cipher

Sample structure of a 2-round block cipher

Round 1

Sample structure of a 2 -round block cipher

Round 1

Sample structure of a 2 -round block cipher

Round 1

After the last round, we perform one final key mixing step
(recall that it is useless to apply a mixing permutation as the last step)

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve the avalanche effect

- Even a small difference in the input should eventually (over multiple
 rounds) propagate to the entire output

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve the avalanche effect

- Even a small difference in the input should eventually (over multiple
 rounds) propagate to the entire output

For S-boxes:

- Any 1-bit change in the input should cause ≥ 2 bits to change in the output
- This adds confusion

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve the avalanche effect

- Even a small difference in the input should eventually (over multiple
 rounds) propagate to the entire output

For S-boxes:

- Any 1-bit change in the input should cause ≥ 2 bits to change in the output
- This adds confusion

For the mixing permutation:

- A bit output from a S-box should be fed into a different S-box into the next round
- This adds diffusion

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

The adversary can recover the key from a single input-output pair $x, y=F_{k}(x)$

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

The adversary can recover the key from a single input-output pair $x, y=F_{k}(x)$

- Invert the mixing permutation (it is fixed and known to the attacker)

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

The adversary can recover the key from a single input-output pair $x, y=F_{k}(x)$

- Invert the mixing permutation (it is fixed and known to the attacker)
- Invert the S-boxes, the computed value will be exactly $z=x \oplus k$

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

The adversary can recover the key from a single input-output pair $x, y=F_{k}(x)$

- Invert the mixing permutation (it is fixed and known to the attacker)
- Invert the S-boxes, the computed value will be exactly $z=x \oplus k$
- The (round and master) key is $k=z \oplus x=(x \oplus k) \oplus x$

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2nd mixing sub-key from x^{\prime} and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1 st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2nd mixing sub-key from x^{\prime} and y
- This provides 2^{n} candidate pairs of keys. Use multiple input-output pairs to eliminate the wrong pairs

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1 st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2 nd mixing sub-key from x^{\prime} and y
- This provides 2^{n} candidate pairs of keys. Use multiple input-output pairs to eliminate the wrong pairs
- Time: $\approx 2^{n}=\sqrt{2^{N}}$ to recover the master key of length $N=2 n$

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1 st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2nd mixing sub-key from x^{\prime} and y
- This provides 2^{n} candidate pairs of keys. Use multiple input-output pairs to eliminate the wrong pairs
- Time: $\approx 2^{n}=\sqrt{2^{N}}$ to recover the master key of length $N=2 n$
- Altough this is not polynomially bounded, we would like all (known) attacks to take time $\approx 2^{N}$

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1 st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2 nd mixing sub-key from x^{\prime} and y
- This provides 2^{n} candidate pairs of keys. Use multiple input-output pairs to eliminate the wrong pairs
- Time: $\approx 2^{n}=\sqrt{2^{N}}$ to recover the master key of length $N=2 n$
- Altough this is not polynomially bounded, we would like all (known) attacks to take time $\approx 2^{N}$

- Attacks faster than bruteforce might be symptoms of more fundamental weaknesses

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the concatenation of two independent sub-keys

- Try all possible 1 st sub-keys. For each of them use the input x to determine the input x^{\prime} to the final mixing step
- Use the previous strategy to recover the 2 nd mixing sub-key from x^{\prime} and y
- This provides 2^{n} candidate pairs of keys. Use multiple input-output pairs to eliminate the wrong pairs
- Time: $\approx 2^{n}=\sqrt{2^{N}}$ to recover the master key of length $N=2 n$
- Altough this is not polynomially bounded, we would like all (known) attacks to take time $\approx 2^{N}$
- Attacks faster than bruteforce might be symptoms of more fundamental weaknesses

Indeed... we can design a better attack!

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1st mixing sub-key that contributes to the input of some S-box

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1st S-box

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1 st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1st S-box
- The output of the S-box is XOR-ed with some bits of the 2 nd mixing sub-key to produce (part of) the output

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1 st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1st S-box
- The output of the S-box is XOR-ed with some bits of the $2 n d$ mixing sub-key to produce (part of) the output
- We know which bits of the 2 nd mixing sub-key are used!

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1 st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1st S-box
- The output of the S-box is XOR-ed with some bits of the $2 n d$ mixing sub-key to produce (part of) the output
- We know which bits of the 2 nd mixing sub-key are used!
- We can recover the value of these bits by XOR-ing the S-box output with the corresponding bits of y

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1st S-box
- The output of the S-box is XOR-ed with some bits of the $2 n d$ mixing sub-key to produce (part of) the output
- We know which bits of the 2 nd mixing sub-key are used!
- We can recover the value of these bits by XOR-ing the S-box output with the corresponding bits of y
- Each guess produces a candidate value for some bits
 in the 2nd mixing sub-key: use multiple input-output pairs to find the right one

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1 st S-box
- The output of the S-box is XOR-ed with some bits of the 2 nd mixing sub-key to produce (part of) the output
- We know which bits of the $2 n d$ mixing sub-key are used!
- We can recover the value of these bits by XOR-ing the S-box output with the corresponding bits of y
- Each guess produces a candidate value for some bits
 in the 2nd mixing sub-key: use multiple input-output pairs to find the right one
We can break each group of key bits independently! (Repeat for each S-box)

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1 st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1 st S-box
- The output of the S-box is XOR-ed with some bits of the 2 nd mixing sub-key to produce (part of) the output
- We know which bits of the $2 n d$ mixing sub-key are used!
- We can recover the value of these bits by XOR-ing the S-box output with the corresponding bits of y
- Each guess produces a candidate value for some bits in the 2nd mixing sub-key: use multiple input-output pairs to find the right one
We can break each group of key bits independently! (Repeat for each S-box)

A better key recovery attack against a full 1-round SPN

- Guess only the part of 1 st mixing sub-key that contributes to the input of some S-box
- This provides a candidate output value of the 1 st S-box
- The output of the S-box is XOR-ed with some bits of the 2 nd mixing sub-key to produce (part of) the output
- We know which bits of the $2 n d$ mixing sub-key are used!
- We can recover the value of these bits by XOR-ing the S-box output with the corresponding bits of y
- Each guess produces a candidate value for some bits in the 2nd mixing sub-key: use multiple input-output pairs to find the right one

We can break each group of key bits independently! (Repeat for each S-box)

Time: $\approx \#$ S-boxes $\cdot 2^{n / \# S \text {-boxes }}$
In the example: $\approx 8 \cdot 2^{8}=2^{11}$
(intead of 2^{64} of the previous attack or 2^{128} of a naive bruteforce)

Attacking more rounds

These attacks become more difficult as the number of rounds increases

Attacking more rounds

These attacks become more difficult as the number of rounds increases
The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

Attacking more rounds

These attacks become more difficult as the number of rounds increases
The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Attacking more rounds

These attacks become more difficult as the number of rounds increases
The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical
Good block ciphers based on SPNs need to use a large enough number of rounds

Attacking more rounds

These attacks become more difficult as the number of rounds increases
The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical
Good block ciphers based on SPNs need to use a large enough number of rounds
This is just a necessary condition for security: If the S-boxes or the mixing permutation are poorly designed, the block cipher might still be insecure (regardless of the number of rounds)!

Attacking more rounds

These attacks become more difficult as the number of rounds increases
The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical
Good block ciphers based on SPNs need to use a large enough number of rounds
This is just a necessary condition for security: If the S-boxes or the mixing permutation are poorly designed, the block cipher might still be insecure (regardless of the number of rounds)!

It's common to see results of the form:
"A reduced version of [block cipher] using X instead of Y rounds has been broken"

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}(x)$
- On average $\approx \ell / 2$ bits change between $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$
- The position of the changing bits looks "random"

How do we achieve this?

- Substitution Permutation Networks (SPNs)
- Feistel Networks

Designing Block Ciphers

- To design a block cipher, we want the computed function to be "indistinguishable" from a uniform permutation over $\{0,1\}^{\ell}$
- If x and x^{\prime} differ, even just by one bit, the outputs of $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$ should look unrelated (except for $F_{k}(x) \neq F_{k}(x)$
- On average $\approx \ell / 2$ bits change between $F_{k}(x)$ and $F_{k}\left(x^{\prime}\right)$
- The position of the changing bits looks "random"

How do we achieve this?

- Substitution Permutation Networks (SPNs)
- Feistel Networks

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

Not necessarily invertible!

- The keys of the round functions are the sub-keys determined by a master key of the whole block cipher

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

Not necessarily invertible!

- The keys of the round functions are the sub-keys determined by a master key of the whole block cipher
- Let ℓ be the block length. The keyed round function for the i-th round is

$$
\widehat{f}_{i}:\{0,1\}^{n} \times\{0,1\}^{\ell / 2} \rightarrow\{0,1\}^{\ell / 2}
$$

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

Not necessarily invertible!

- The keys of the round functions are the sub-keys determined by a master key of the whole block cipher
- Let ℓ be the block length. The keyed round function for the i-th round is

$$
\widehat{f}_{i}:\{0,1\}^{n} \times\{0,1\}^{\ell / 2} \rightarrow\{0,1\}^{\ell / 2}
$$

(Balanced) Feistel Networks

- Alternative approach to SPNs to build block ciphers
- Use non-invertible components to build an invertible permutation
- Just like SPNs, Fesistel networks work in multiple rounds
- Each round uses a keyed round function

Not necessarily invertible!

- The keys of the round functions are the sub-keys determined by a master key of the whole block cipher
- Let ℓ be the block length. The keyed round function for the i-th round is

$$
\widehat{f}_{i}:\{0,1\}^{n} \times\{0,1\}^{\ell / 2} \rightarrow\{0,1\}^{\ell / 2}
$$

- To keep notation simple, define $f_{i}:\{0,1\}^{\ell / 2} \rightarrow\{0,1\}^{\ell / 2}$ as $f_{i}(x)=\widehat{f}\left(k_{i}, x\right)$, where k_{i} is the i-th sub-key

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively
- Split each x_{i} into a "left side" L_{i} and a right side R_{i}, each of length $\ell / 2$
- $x_{i-1}=L_{i-1} \| R_{i-1}$

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively
- Split each x_{i} into a "left side" L_{i} and a right side R_{i}, each of length $\ell / 2$
- $x_{i-1}=L_{i-1} \| R_{i-1}$
- $L_{i}=R_{i-1}$

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively
- Split each x_{i} into a "left side" L_{i} and a right side R_{i}, each of length $\ell / 2$
- $x_{i-1}=L_{i-1} \| R_{i-1}$
- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively
- Split each x_{i} into a "left side" L_{i} and a right side R_{i}, each of length $\ell / 2$
- $x_{i-1}=L_{i-1} \| R_{i-1}$
- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$
- $x_{i}=L_{i} \| R_{i}$

Feistel Network Rounds

- Let x_{i-1} and x_{i} be the input and the output to/of the i-th round of the Feistel Network, respectively
- Split each x_{i} into a "left side" L_{i} and a right side R_{i}, each of length $\ell / 2$
- $x_{i-1}=L_{i-1} \| R_{i-1}$
- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$
- $x_{i}=L_{i} \| R_{i}$

Is a Feistel Network round invertible? (How?)

Inverting a Round of Feistel Network

- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$

Inverting a Round of Feistel Network

- $L_{i}=R_{i-1}$

- $R_{i-1}=L_{i}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$

Inverting a Round of Feistel Network

- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$

- $R_{i-1}=L_{i}$
- $L_{i-1}=R_{i} \oplus f_{i}\left(R_{i-1}\right)$

Inverting a Round of Feistel Network

- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f_{i}\left(R_{i-1}\right)$

- $R_{i-1}=L_{i}$
- $L_{i-1}=R_{i} \oplus f_{i}\left(R_{i-1}\right)=R_{i} \oplus f_{i}\left(L_{i}\right)$

Inverting a Round of Feistel Network

Let F be a keyed function defined by a Feistel network. Then regardless of the key schedule, the round functions \widehat{f}_{i}, and the number of rounds, F_{k} is a permutation for any k.

Inverting a Round of Feistel Network

F^{-1} is the same as F once the "left"
and "right" sides are swapped!
How to invert multiple rounds?

Let F be a keyed function defined by a Feistel network. Then regardless of the key schedule, the round functions \widehat{f}_{i}, and the number of rounds, F_{k} is a permutation for any k.

Security of 1-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{1} \| R_{1} \\
& L_{1}=R_{0} \\
& R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right)
\end{aligned}
$$

Is this a Pseudorandom permutation?

Security of 1-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{1} \| R_{1} \\
& L_{1}=R_{0} \\
& R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right)
\end{aligned}
$$

Is this a Pseudorandom permutation?

- No! $F_{k}(x)$ can be easily distinguished from a random permutation

How?

Security of 1-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{1} \| R_{1} \\
& L_{1}=R_{0} \\
& R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right)
\end{aligned}
$$

- No! $F_{k}(x)$ can be easily distinguished from a random permutation

How?

- The adversary can simply query $x=0^{\ell}$ and check whether the left $\ell / 2$ bits of $F_{k}(x)$ are all 0 (or use any other string x and check whether the left half of $F_{k}(x)$ is equal to the right half of x)

Security of 2-Round Feistel Networks

$F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2}$

Security of 2-Round Feistel Networks

$F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2}$
$L_{2}=R_{1}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right)
\end{aligned}
$$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
& R_{2}=L_{1} \oplus f_{2}\left(R_{1}\right)
\end{aligned}
$$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
& \\
& \begin{aligned}
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right)
\end{aligned}
\end{aligned}
$$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
& R_{2}=L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
$$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
L_{2} \oplus L_{2}^{\prime}
$$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
& \begin{aligned}
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs
$L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$
$L_{2} \oplus L_{2}^{\prime}=L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right)$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
L_{2} \oplus L_{2}^{\prime}=L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right)
$$

How can we exploit this?

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& L_{2}=R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
& R_{2}=L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$
$L_{2} \oplus L_{2}^{\prime}=L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right)$

How can we exploit this?
Pick $R_{0}=R_{0}^{\prime}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
\begin{aligned}
L_{2} \oplus L_{2}^{\prime} & =L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right) \\
& =L_{0} \oplus L_{0}^{\prime}
\end{aligned}
$$

How can we exploit this? Pick $R_{0}=R_{0}^{\prime}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
\begin{aligned}
L_{2} \oplus L_{2}^{\prime} & =L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right) \\
& =L_{0} \oplus L_{0}^{\prime}
\end{aligned}
$$

How can we exploit this? Pick $R_{0}=R_{0}^{\prime}$
This is easy to distinguish from a random function. E.g., pick $L_{0}=0^{\ell / 2}$ and $L_{0}^{\prime}=1^{\ell / 2}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
\begin{aligned}
L_{2} \oplus L_{2}^{\prime} & =L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right) \\
& =L_{0} \oplus L_{0}^{\prime} \\
& =0^{\ell / 2} \oplus 1^{\ell / 2}
\end{aligned}
$$

How can we exploit this? Pick $R_{0}=R_{0}^{\prime}$
This is easy to distinguish from a random function. E.g., pick $L_{0}=0^{\ell / 2}$ and $L_{0}^{\prime}=1^{\ell / 2}$

Security of 2-Round Feistel Networks

$$
\begin{aligned}
& F_{k}\left(L_{0} \| R_{0}\right)=L_{2} \| R_{2} \\
& \begin{aligned}
L_{2} & =R_{1}=L_{0} \oplus f_{1}\left(R_{0}\right) \\
R_{2} & =L_{1} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(R_{1}\right) \\
& =R_{0} \oplus f_{2}\left(L_{0} \oplus f_{1}\left(R_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Is this a Pseudorandom permutation?
No! Consider two different inputs $L_{0} \| R_{0}$ and $L_{0}^{\prime} \| R_{0}^{\prime}$

$$
\begin{aligned}
L_{2} \oplus L_{2}^{\prime} & =L_{0} \oplus f_{1}\left(R_{0}\right) \oplus L_{0}^{\prime} \oplus f_{1}\left(R_{0}^{\prime}\right) \\
& =L_{0} \oplus L_{0}^{\prime} \\
& =0^{\ell / 2} \oplus 1^{\ell / 2}=1^{\ell / 2}
\end{aligned}
$$

How can we exploit this? Pick $R_{0}=R_{0}^{\prime}$
This is easy to distinguish from a random function. E.g., pick $L_{0}=0^{\ell / 2}$ and $L_{0}^{\prime}=1^{\ell / 2}$

Security of 3-Round Feistel Networks

Is this a pseudorandom permutation?

Security of 3-Round Feistel Networks

Is this a pseudorandom permutation?

- Yes!
(If $f_{i}=F_{k_{i}}$ for some pseudorandom function F and the keys k_{i} are chosen independently at random)

Security of 3-Round Feistel Networks

Is this a pseudorandom permutation?

- Yes!
(If $f_{i}=F_{k_{i}}$ for some pseudorandom function F and the keys k_{i} are chosen independently at random)

Is this a strong pseudorandom permutation?

Security of 3-Round Feistel Networks

Is this a pseudorandom permutation?

- Yes!
(If $f_{i}=F_{k_{i}}$ for some pseudorandom function F and the keys k_{i} are chosen independently at random)

Is this a strong pseudorandom permutation?

- No
- But 4-round Feistel networks are!

