
Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes



Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker



Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker

• Chosen plaintext attack: The attacker can query Fk (with values of its choice)



Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker

• Chosen plaintext attack: The attacker can query Fk (with values of its choice)

• Chosen ciphertext attack: The attacker can query both Fk and F−1
k (with values of its choice)
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Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps

Two types of steps:

• Confusion: A small change in the input produces a small “random” change
in the output

• Diffusion: The bits in the input are mixed so that a local change is spread
throughout the block
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Confusion

Idea: Build a “random” permutation on long inputs by using many “random” permutations on short
inputs

There are many random permutations

• Recall that |Permℓ| = (2ℓ)!

• How many bits are needed to identify one of these permutations?

log(2ℓ!) ≥ log

�
2ℓ

e

�2ℓ

= 2ℓ · (ℓ− log2 e)

• Unfeasible even for small values of ℓ

Example: For block lengths of ℓ = 32 bits, we need keys of ≈ 16GB

Example: To store 8 permutations over {0, 1}8 we need less than 8 · (8 · 28) b = 2 KB
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Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

Is F a good PRP?

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x:

Output Fk(x):

No! A local change in the input produces a local change in the output

8 bits

8 bits

Confusion but no diffusion

(the length is just an example)
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We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

How many permutations π for block length ℓ? “Only” ℓ!

Can be encoded using log ℓ! ≤ ℓ log ℓ bits
In practice the mixing permutation does not depend
on the key and is carefully designed and fixed
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Yes, proceed backwards:
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Is this a PRP (i.e., is this invertible)?

Output

Yes, proceed backwards:

• The mixing permutation is... a permutation, and hence invertible

π−1
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We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

Output

Yes, proceed backwards:

• The mixing permutation is... a permutation, and hence invertible

• Each function fki
is also a permutation, and hence invertible

π−1

f−1
ki
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No

• The mixing permutation is fixed. An adversary can always undo the last step!

• We have already argued that Fk(x) is not a good PRP.

What if we do another round with fresh functions fki
?
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ones of the 1st round)

Observation: the overall permutation remains invertible regardless of the number of rounds
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Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

• The key k = k1 ∥ k2 ∥ k3 ∥ . . . is called sub-key or round key

• Different rounds use different round keys

• The key of the whole block cipher is called the master key

• The round keys are derived from the master key according to a key schedule
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The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve
the avalanche effect

• Even a small difference in the input should eventually (over multiple
rounds) propagate to the entire output

For S-boxes:

• Any 1-bit change in the input should cause ≥ 2 bits to change in the output

• This adds confusion

For the mixing permutation:

• A bit output from a S-box should be fed into a different S-box into the next
round

• This adds diffusion
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• Invert the mixing permutation (it is fixed and known to the attacker)
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• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

We can break each group of key bits independently!
(Repeat for each S-box)

• Each guess produces a candidate value for some bits
in the 2nd mixing sub-key: use multiple
input-output pairs to find the right one

Time: ≈ #S-boxes · 2n/#S-boxes

In the example: ≈ 8 · 28 = 211

(intead of 264 of the previous attack or
2128 of a naive bruteforce)
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Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Good block ciphers based on SPNs need to use a large enough number of rounds

This is just a necessary condition for security: If the S-boxes or the mixing permutation are poorly
designed, the block cipher might still be insecure (regardless of the number of rounds)!

It’s common to see results of the form:

“A reduced version of [block cipher] using X instead of Y rounds has been broken”
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• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x)

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

How do we achieve this?

• Substitution Permutation Networks (SPNs)
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(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

• The keys of the round functions are the sub-keys determined by a master key of the whole block
cipher

• To keep notation simple, define fi : {0, 1}ℓ/2 → {0, 1}ℓ/2 as fi(x) = bf(ki, x), where ki is the i-th
sub-key

• Let ℓ be the block length. The keyed round function for the i-th round is

bfi : {0, 1}n × {0, 1}ℓ/2 → {0, 1}ℓ/2
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Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• xi−1 = Li−1 ∥Ri−1

• xi = Li ∥Ri

Is a Feistel Network round
invertible? (How?)
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ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

⊕fi

Li−1xi−1 =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

• Li−1 = Ri ⊕ fi(Ri−1) = Ri ⊕ fi(Li)

Let F be a keyed function defined by a Feistel network. Then regardless of the key
schedule, the round functions bfi, and the number of rounds, Fk is a permutation for any k.

F−1 is the same as F once the “left”
and “right” sides are swapped!

How to invert multiple rounds?
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x = x0 = L0 R0

f1⊕

L1 R1Fk(x) = x1 =
Is this a Pseudorandom permutation?

• No! Fk(x) can be easily distinguished from a random permutation

How?

• The adversary can simply query x = 0ℓ and check whether the left ℓ/2 bits of Fk(x) are all 0

(or use any other string x and check whether the left half of Fk(x) is equal to the right half of x)

L1 = R0

R1 = L0 ⊕ f1(R0)

Fk(L0 ∥R0) = L1 ∥R1
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L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x3 =

x1 =

f3⊕

L3 R3

x2 =

Is this a pseudorandom permutation?

• Yes!

(If fi = Fki
for some pseudorandom function F and

the keys ki are chosen independently at random)

Is this a strong pseudorandom permutation?

• No

• But 4-round Feistel networks are!


