
Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker

• Chosen plaintext attack: The attacker can query Fk (with values of its choice)

Block Ciphers

Recall that a block ciphers is a (practical implementation of) keyed pseudorandom permutations

They are not encryption schemes

Nevertheless some terminology is also used for block ciphers:

• Known plaintext attack: The adversary knows x and Fk(x), where x is not chosen by the
attacker

• Chosen plaintext attack: The attacker can query Fk (with values of its choice)

• Chosen ciphertext attack: The attacker can query both Fk and F−1
k (with values of its choice)

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x
′))

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x
′))

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x
′))

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

How do we achieve this?

• Substitution Permutation Networks (SPNs)

• Feistel Networks

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x
′))

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

How do we achieve this?

• Substitution Permutation Networks (SPNs)

• Feistel Networks

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps

Two types of steps:

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps

Two types of steps:

• Confusion: A small change in the input produces a small “random” change
in the output

Substitution Permutation Networks (SPNs)

The input will be mangled in multiple steps

Two types of steps:

• Confusion: A small change in the input produces a small “random” change
in the output

• Diffusion: The bits in the input are mixed so that a local change is spread
throughout the block

Confusion

There are many random permutations

• Recall that |Permℓ| = (2ℓ)!

• How many bits are needed to identify one of these permutations?

Confusion

There are many random permutations

• Recall that |Permℓ| = (2ℓ)!

• How many bits are needed to identify one of these permutations?

log(2ℓ!) ≥ log

�
2ℓ

e

�2ℓ

= 2ℓ · (ℓ− log2 e)

Confusion

There are many random permutations

• Recall that |Permℓ| = (2ℓ)!

• How many bits are needed to identify one of these permutations?

log(2ℓ!) ≥ log

�
2ℓ

e

�2ℓ

= 2ℓ · (ℓ− log2 e)

• Unfeasible even for small values of ℓ

Example: For block lengths of ℓ = 32 bits, we need keys of ≈ 16GB

Confusion

Idea: Build a “random” permutation on long inputs by using many “random” permutations on short
inputs

There are many random permutations

• Recall that |Permℓ| = (2ℓ)!

• How many bits are needed to identify one of these permutations?

log(2ℓ!) ≥ log

�
2ℓ

e

�2ℓ

= 2ℓ · (ℓ− log2 e)

• Unfeasible even for small values of ℓ

Example: For block lengths of ℓ = 32 bits, we need keys of ≈ 16GB

Example: To store 8 permutations over {0, 1}8 we need less than 8 · (8 · 28) b = 2 KB

Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

(the length is just an example)

Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x:

Output Fk(x): 8 bits

8 bits

(the length is just an example)

Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

Is F a good PRP?

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x:

Output Fk(x): 8 bits

8 bits

(the length is just an example)

Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

Is F a good PRP?

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x:

Output Fk(x):

No! A local change in the input produces a local change in the output

8 bits

8 bits

(the length is just an example)

Confusion

Consider a keyed PRP Fk with a block length 64 bits defined as follows:

Fk(x) = fk1
(x1) ∥ fk2

(x2) ∥fk3
(x3) ∥ . . . ∥ fk8

(x8)

where x = x1∥x2∥x3∥ . . . ∥x8, k = k1∥k2∥k3∥ . . . ∥k8, all xi are 8-bit long, and all fki
are permutations

Is F a good PRP?

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x:

Output Fk(x):

No! A local change in the input produces a local change in the output

8 bits

8 bits

Confusion but no diffusion

(the length is just an example)

Adding diffusion
We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

Adding diffusion
We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Adding diffusion
We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

How many permutations π for block length ℓ? “Only” ℓ!

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Adding diffusion
We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

How many permutations π for block length ℓ? “Only” ℓ!

Can be encoded using log ℓ! ≤ ℓ log ℓ bits

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Adding diffusion
We use a mixing permutation π to add diffusion

We move a generic bit in the i-th position of the input to the π(i)-th position of the output

How many permutations π for block length ℓ? “Only” ℓ!

Can be encoded using log ℓ! ≤ ℓ log ℓ bits
In practice the mixing permutation does not depend
on the key and is carefully designed and fixed

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

Output

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

Output

Yes, proceed backwards:

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

Output

Yes, proceed backwards:

• The mixing permutation is... a permutation, and hence invertible

π−1

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

We have a Substitution Permutation Network (SPN)

Is this a PRP (i.e., is this invertible)?

Output

Yes, proceed backwards:

• The mixing permutation is... a permutation, and hence invertible

• Each function fki
is also a permutation, and hence invertible

π−1

f−1
ki

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

No

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

No

• The mixing permutation is fixed. An adversary can always undo the last step!

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

No

• The mixing permutation is fixed. An adversary can always undo the last step!

• We have already argued that Fk(x) is not a good PRP.

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

No

• The mixing permutation is fixed. An adversary can always undo the last step!

• We have already argued that Fk(x) is not a good PRP.





This is called a
round

fk1
fk2

fk3
fk4

fk5
fk6

fk7
fk8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input x

Fk(x) 8 bits

8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits8 bits

mixing
permutation π

. . .

Output

Is the function computed by this SPN a good PRP?

Substitution Permutation Networks

No

• The mixing permutation is fixed. An adversary can always undo the last step!

• We have already argued that Fk(x) is not a good PRP.

What if we do another round with fresh functions fki
?





This is called a
round

Substitution Permutation Networks

f

8 bitsInput x 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Is the function computed by this SPN a good PRP?

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Is the function computed by this SPN a good PRP? No. . .

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Is the function computed by this SPN a good PRP? No. . . but it is “better” than before

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Is the function computed by this SPN a good PRP? No. . . but it is “better” than before

More rounds!

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Substitution Permutation Networks

f

8 bitsInput x

Output

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f
Each function f has

its own key

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

f f f f f f f

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Is the function computed by this SPN a good PRP? No. . . but it is “better” than before

More rounds!

Each function f has its own key
(chosen independently from the

ones of the 1st round)

Observation: the overall permutation remains invertible regardless of the number of rounds

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

• The key k = k1 ∥ k2 ∥ k3 ∥ . . . is called sub-key or round key

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

• The key k = k1 ∥ k2 ∥ k3 ∥ . . . is called sub-key or round key

• Different rounds use different round keys

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

• The key k = k1 ∥ k2 ∥ k3 ∥ . . . is called sub-key or round key

• Different rounds use different round keys

• The key of the whole block cipher is called the master key

Substitution Permutation Networks

• Using random functions f is unpractical

The key size would be manageable, but still quite large

• We restrict ourselves to functions f that have a particular form:

fk,i(x) = Si(ki ⊕ xi)

• The XOR-ing operation is called key mixing

• The functions Si are called S-boxes (from substitution boxes)

• The key k = k1 ∥ k2 ∥ k3 ∥ . . . is called sub-key or round key

• Different rounds use different round keys

• The key of the whole block cipher is called the master key

• The round keys are derived from the master key according to a key schedule

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bitsInput
Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

Input
Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Input

S-boxes (round 1)

Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .mixing

permutation 1

Input

S-boxes (round 1)

Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .mixing

permutation 1

Input




Round 1S-boxes (round 1)

Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .mixing

permutation 1

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 2 mixing (XOR the sub-key with input)

S′
1 S′

2 S′
3 S′

4 S′
5 S′

6 S′
7 S′

8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
mixing

permutation 2
. . .

Input




Round 1





Round 2

S-boxes (round 1)

S-boxes (round 2)

Sample structure of a
2-round block cipher

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .mixing

permutation 1

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 2 mixing (XOR the sub-key with input)

S′
1 S′

2 S′
3 S′

4 S′
5 S′

6 S′
7 S′

8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
mixing

permutation 2
. . .

Sub-key 3 mixing (XOR the sub-key with input)

Input

Output
8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits





Round 1





Round 2

After the last round, we perform
one final key mixing step
(recall that it is useless to apply a
mixing permutation as the last step)

S-boxes (round 1)

S-boxes (round 2)

Sample structure of a
2-round block cipher

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve
the avalanche effect

• Even a small difference in the input should eventually (over multiple
rounds) propagate to the entire output

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve
the avalanche effect

• Even a small difference in the input should eventually (over multiple
rounds) propagate to the entire output

For S-boxes:

• Any 1-bit change in the input should cause ≥ 2 bits to change in the output

• This adds confusion

The Avalanche Effect

We want to design the S-boxes and the mixing permutation to achieve
the avalanche effect

• Even a small difference in the input should eventually (over multiple
rounds) propagate to the entire output

For S-boxes:

• Any 1-bit change in the input should cause ≥ 2 bits to change in the output

• This adds confusion

For the mixing permutation:

• A bit output from a S-box should be fed into a different S-box into the next
round

• This adds diffusion

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .





Fk(·)

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

The adversary can recover the key from a single input-output pair x, y = Fk(x) How?





Fk(·)

x =

y =

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

The adversary can recover the key from a single input-output pair x, y = Fk(x) How?

• Invert the mixing permutation (it is fixed and known to the attacker)





Fk(·)

x =

y =

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

The adversary can recover the key from a single input-output pair x, y = Fk(x) How?

• Invert the mixing permutation (it is fixed and known to the attacker)

• Invert the S-boxes, the computed value will be exactly z = x⊕ k





Fk(·)

x =

y =

Key recovery attack against a simplified 1-round SPN

Simple case: 1-round SPN and no final key mixing step

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

The adversary can recover the key from a single input-output pair x, y = Fk(x) How?

• Invert the mixing permutation (it is fixed and known to the attacker)

• Invert the S-boxes, the computed value will be exactly z = x⊕ k

• The (round and master) key is k = z ⊕ x = (x⊕ k)⊕ x





Fk(·)

x =

y =

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• This provides 2n candidate pairs of keys. Use
multiple input-output pairs to eliminate the wrong
pairs

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• This provides 2n candidate pairs of keys. Use
multiple input-output pairs to eliminate the wrong
pairs

• Time: ≈ 2n =
√
2N to recover the master key of

length N = 2n

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• This provides 2n candidate pairs of keys. Use
multiple input-output pairs to eliminate the wrong
pairs

• Time: ≈ 2n =
√
2N to recover the master key of

length N = 2n

— Altough this is not polynomially bounded, we
would like all (known) attacks to take time ≈ 2N

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• This provides 2n candidate pairs of keys. Use
multiple input-output pairs to eliminate the wrong
pairs

• Time: ≈ 2n =
√
2N to recover the master key of

length N = 2n

— Altough this is not polynomially bounded, we
would like all (known) attacks to take time ≈ 2N

— Attacks faster than bruteforce might be
symptoms of more fundamental weaknesses

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

Key recovery attack against a full 1-round SPN

Consider now a full 1-round SPN (with the final key mixing step), in which the master key is just the
concatenation of two independent sub-keys

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Try all possible 1st sub-keys. For each of them use
the input x to determine the input x′ to the final
mixing step

• This provides 2n candidate pairs of keys. Use
multiple input-output pairs to eliminate the wrong
pairs

• Time: ≈ 2n =
√
2N to recover the master key of

length N = 2n

— Altough this is not polynomially bounded, we
would like all (known) attacks to take time ≈ 2N

— Attacks faster than bruteforce might be
symptoms of more fundamental weaknesses Indeed... we can design a better attack!

• Use the previous strategy to recover the 2nd mixing
sub-key from x′ and y

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

• Each guess produces a candidate value for some bits
in the 2nd mixing sub-key: use multiple
input-output pairs to find the right one

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

We can break each group of key bits independently!
(Repeat for each S-box)

• Each guess produces a candidate value for some bits
in the 2nd mixing sub-key: use multiple
input-output pairs to find the right one

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

We can break each group of key bits independently!
(Repeat for each S-box)

• Each guess produces a candidate value for some bits
in the 2nd mixing sub-key: use multiple
input-output pairs to find the right one

Time: ≈ #S-boxes · 2n/#S-boxes

A better key recovery attack against a full 1-round SPN

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Sub-key 1 mixing (XOR the sub-key with input)

S1 S2 S3 S4 S5 S6 S7 S8

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
. . .

Sub-key 2 mixing (XOR the sub-key with input)

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

• Guess only the part of 1st mixing sub-key that
contributes to the input of some S-box

• This provides a candidate output value of the 1st
S-box

• The output of the S-box is XOR-ed with some bits
of the 2nd mixing sub-key to produce (part of) the
output

• We know which bits of the 2nd mixing sub-key are
used!

• We can recover the value of these bits by XOR-ing
the S-box output with the corresponding bits of y

We can break each group of key bits independently!
(Repeat for each S-box)

• Each guess produces a candidate value for some bits
in the 2nd mixing sub-key: use multiple
input-output pairs to find the right one

Time: ≈ #S-boxes · 2n/#S-boxes

In the example: ≈ 8 · 28 = 211

(intead of 264 of the previous attack or
2128 of a naive bruteforce)

Attacking more rounds

These attacks become more difficult as the number of rounds increases

Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Good block ciphers based on SPNs need to use a large enough number of rounds

Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Good block ciphers based on SPNs need to use a large enough number of rounds

This is just a necessary condition for security: If the S-boxes or the mixing permutation are poorly
designed, the block cipher might still be insecure (regardless of the number of rounds)!

Attacking more rounds

These attacks become more difficult as the number of rounds increases

The more the rounds, the more a small change in the input affects the whole output (avalanche effect)

At some points these attacks become impractical

Good block ciphers based on SPNs need to use a large enough number of rounds

This is just a necessary condition for security: If the S-boxes or the mixing permutation are poorly
designed, the block cipher might still be insecure (regardless of the number of rounds)!

It’s common to see results of the form:

“A reduced version of [block cipher] using X instead of Y rounds has been broken”

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x)

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

How do we achieve this?

• Substitution Permutation Networks (SPNs)

• Feistel Networks

Designing Block Ciphers

• To design a block cipher, we want the computed function to be “indistinguishable” from a uniform
permutation over {0, 1}ℓ

• If x and x′ differ, even just by one bit, the outputs of Fk(x) and Fk(x
′) should look unrelated

(except for Fk(x) ̸= Fk(x)

• On average ≈ ℓ/2 bits change between Fk(x) and Fk(x
′)

• The position of the changing bits looks “random”

How do we achieve this?

• Substitution Permutation Networks (SPNs)

• Feistel Networks

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

• The keys of the round functions are the sub-keys determined by a master key of the whole block
cipher

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

• The keys of the round functions are the sub-keys determined by a master key of the whole block
cipher

• Let ℓ be the block length. The keyed round function for the i-th round is

bfi : {0, 1}n × {0, 1}ℓ/2 → {0, 1}ℓ/2

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

• The keys of the round functions are the sub-keys determined by a master key of the whole block
cipher

• Let ℓ be the block length. The keyed round function for the i-th round is

bfi : {0, 1}n × {0, 1}ℓ/2 → {0, 1}ℓ/2

(Balanced) Feistel Networks

• Alternative approach to SPNs to build block ciphers

• Use non-invertible components to build an invertible permutation

• Just like SPNs, Fesistel networks work in multiple rounds

• Each round uses a keyed round function
Not necessarily invertible!

• The keys of the round functions are the sub-keys determined by a master key of the whole block
cipher

• To keep notation simple, define fi : {0, 1}ℓ/2 → {0, 1}ℓ/2 as fi(x) = bf(ki, x), where ki is the i-th
sub-key

• Let ℓ be the block length. The keyed round function for the i-th round is

bfi : {0, 1}n × {0, 1}ℓ/2 → {0, 1}ℓ/2

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {
• xi−1 = Li−1 ∥Ri−1

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

Li

• Li = Ri−1

• xi−1 = Li−1 ∥Ri−1

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Ri

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• xi−1 = Li−1 ∥Ri−1

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• xi−1 = Li−1 ∥Ri−1

• xi = Li ∥Ri

Feistel Network Rounds

• Let xi−1 and xi be the input and the output to/of the i-th round of the Feistel Network, respectively

• Split each xi into a “left side” Li and a right side Ri, each of length ℓ/2

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• xi−1 = Li−1 ∥Ri−1

• xi = Li ∥Ri

Is a Feistel Network round
invertible? (How?)

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

⊕fi

Li−1

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

• Li−1 = Ri ⊕ fi(Ri−1)

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

⊕fi

Li−1xi−1 =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

• Li−1 = Ri ⊕ fi(Ri−1) = Ri ⊕ fi(Li)

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

⊕fi

Li−1xi−1 =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

• Li−1 = Ri ⊕ fi(Ri−1) = Ri ⊕ fi(Li)

Let F be a keyed function defined by a Feistel network. Then regardless of the key
schedule, the round functions bfi, and the number of rounds, Fk is a permutation for any k.

xi−1 = Li−1 Ri−1

ℓ/2z }| { ℓ/2z }| {

fi⊕

Li Rixi =

Inverting a Round of Feistel Network

Li Rixi =

Ri−1

⊕fi

Li−1xi−1 =

• Li = Ri−1

• Ri = Li−1 ⊕ fi(Ri−1)

• Ri−1 = Li

• Li−1 = Ri ⊕ fi(Ri−1) = Ri ⊕ fi(Li)

Let F be a keyed function defined by a Feistel network. Then regardless of the key
schedule, the round functions bfi, and the number of rounds, Fk is a permutation for any k.

F−1 is the same as F once the “left”
and “right” sides are swapped!

How to invert multiple rounds?

Security of 1-Round Feistel Networks

x = x0 = L0 R0

f1⊕

L1 R1Fk(x) = x1 =
Is this a Pseudorandom permutation?

L1 = R0

R1 = L0 ⊕ f1(R0)

Fk(L0 ∥R0) = L1 ∥R1

Security of 1-Round Feistel Networks

x = x0 = L0 R0

f1⊕

L1 R1Fk(x) = x1 =
Is this a Pseudorandom permutation?

• No! Fk(x) can be easily distinguished from a random permutation

How?

L1 = R0

R1 = L0 ⊕ f1(R0)

Fk(L0 ∥R0) = L1 ∥R1

Security of 1-Round Feistel Networks

x = x0 = L0 R0

f1⊕

L1 R1Fk(x) = x1 =
Is this a Pseudorandom permutation?

• No! Fk(x) can be easily distinguished from a random permutation

How?

• The adversary can simply query x = 0ℓ and check whether the left ℓ/2 bits of Fk(x) are all 0

(or use any other string x and check whether the left half of Fk(x) is equal to the right half of x)

L1 = R0

R1 = L0 ⊕ f1(R0)

Fk(L0 ∥R0) = L1 ∥R1

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0)

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this?

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this? Pick R0 = R′

0

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this? Pick R0 = R′

0

= L0 ⊕ L′
0

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this? Pick R0 = R′

0

= L0 ⊕ L′
0 This is easy to distinguish from a random

function. E.g., pick L0 = 0ℓ/2 and L′
0 = 1ℓ/2

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this? Pick R0 = R′

0

= L0 ⊕ L′
0 This is easy to distinguish from a random

function. E.g., pick L0 = 0ℓ/2 and L′
0 = 1ℓ/2

= 0ℓ/2 ⊕ 1ℓ/2

Security of 2-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x2 =

x1 =

Fk(L0 ∥R0) = L2 ∥R2

L2 = R1 = L0 ⊕ f1(R0)

R2 = L1 ⊕ f2(R1)

= R0 ⊕ f2(R1)

= R0⊕f2(L0⊕f1(R0))

Is this a Pseudorandom permutation?

No! Consider two different inputs
L0∥R0 and L′

0∥R′
0

L2 ⊕ L′
2 = L0 ⊕ f1(R0)⊕ L′

0 ⊕ f1(R
′
0) How can we exploit this? Pick R0 = R′

0

= L0 ⊕ L′
0 This is easy to distinguish from a random

function. E.g., pick L0 = 0ℓ/2 and L′
0 = 1ℓ/2

= 0ℓ/2 ⊕ 1ℓ/2 = 1ℓ/2

Security of 3-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x3 =

x1 =

f3⊕

L3 R3

x2 =

Is this a pseudorandom permutation?

Security of 3-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x3 =

x1 =

f3⊕

L3 R3

x2 =

Is this a pseudorandom permutation?

• Yes!

(If fi = Fki
for some pseudorandom function F and

the keys ki are chosen independently at random)

Security of 3-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x3 =

x1 =

f3⊕

L3 R3

x2 =

Is this a pseudorandom permutation?

• Yes!

(If fi = Fki
for some pseudorandom function F and

the keys ki are chosen independently at random)

Is this a strong pseudorandom permutation?

Security of 3-Round Feistel Networks

L0 R0

f1⊕

L1 R1

f2⊕

L2 R2

x = x0 =

Fk(x) = x3 =

x1 =

f3⊕

L3 R3

x2 =

Is this a pseudorandom permutation?

• Yes!

(If fi = Fki
for some pseudorandom function F and

the keys ki are chosen independently at random)

Is this a strong pseudorandom permutation?

• No

• But 4-round Feistel networks are!

