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• Extremely well-designed, no structural weaknesses, no practical attack better than bruteforce

• Still considered insecure nowadays
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• The same round function bf is used in all rounds (with
different keys)

• The function ef takes a 48-bit sub-key and a 32-bit (half
the block length) input

bf : {0, 1}48 × {0, 1}32 → {0, 1}32

• The sub-keys are are formed by selecting and permuting a
subset of 48-bit from the 56-bit master key

• The bit selection rule and the permutations are public, the
only secret information is the master key itself
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• The function bf is called the DES mangler function

• First, the 32-bit input Ri to bf is expanded to a 48-bit
input by duplicating some of the bits

• We denote the result by R′
i = E(Ri) where E is called

the expansion function

• The rest of the function is just a one-round substitution
permutation network that operates on the expanded
input R′!

• The S-boxes take 6-bit inputs and produce 4-bit outputs

Note that the S-box is not a permutation

=⇒ The function computed by the SPN is not a permutation

This is not a problem, since Feistel networks do not require the
round function to be PRP
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Security of DES

• No practical attacks better than brute-force are known

There are some other attacks but they require huge amounts of plaintext

• The weakness of DES comes from the fact that the key length is too small

• This concern was raised as soon as DES was released, although the computing power needed to
break DES was not (readily) available

Brute force search over 256 kesys:

• In 1997: 96 days using thousands of computers (DESCHALL project)

41 days (distributed.net)

• In 1998: 56 hours using a specialized 250 000 $ Deep Crack machine built by FSF

• Nowadays: 22 hours using 48 FPGAs (crack.sh), > 100 000 $
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Security of DES

Another concern of DES is the fact that the block length ℓ is just 64 bits

• For example, we described CTR mode using 3ℓ/4 bits for the IV and ℓ/4 bits for the counter

• This means that an IVs are 48 bits long

• If IVs are chosen uniformly at random, a repetition occurrs after 224 ≈ 16M IVs with probability
> 60%

• Also, messages longer than 2ℓ/4 = 216 = 65536 blocks require changing IV

216 · 64b = 222b = 219B = 0.5MB

• Probability of collision > 60% after encrypting 8TB

(think, e.g., of full-disk encryption)
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Increasing the key length?

Two approaches:

• Option 1: structural modification to DES to directly increase the key length

Downside: DES has received extensive attention from the crypto community and withstood all*
attempts at attacks

If we modify DES, we lose all the confidence on its security we gained with the test of time

E.g., leave the key length of the round function the same but use a 128-bit master key and a
different key schedule

Alternatively, use a longer mixing sub-key in each round and modify the expansion function E and
the S-boxes to account for this

• Option 2: Build new block-ciphers that use (unmodified) DES as a black-box

E.g., double encryption? Triple encryption?

* There are some theoretical attacks but they are considered infeasible in practice
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Let F : {0, 1}n × {0, 1}ℓ → {0, 1}ℓ be a block-cipher (with key length n and block length ℓ)

(for DES n = 56, ℓ = 64)

We can define F ′ : {0, 1}2n × {0, 1}ℓ → {0, 1}ℓ as:

F ′
k1∥k2

(x) = Fk2(Fk1(x))

where k1, k2 ∈ {0, 1}n.

Is F ′ “twice as strong” as F?

If the best attack on F takes time ≈ 2n, does the best attack on F ′ take time ≈ 22n?
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There is a weakness that stems from the fact that F ′ can be “factored” into two independent
components

• Try all possible 2n choices for k1

Given a single input output pair (x, y), with y = F ′
k∗
1∥k∗

2
(x), the adversary can:

• For each k1, compute z = Fk1
(x)

• Store z in a dictionary with a fast lookup, keep k1 as satellite data

(easy solution: append all pairs (z, k1) to a list, then sort the list in time O(2npoly(n)))

• Try all possible 2n choices for k2

• For each k2, compute z = F−1
k2

(y)

• Check whether z is in the dictionary. If z is found retrieve the satellite data k1 and
output k1∥k2 as a candidate key for F ′
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Do we always output the real key k∗1∥k∗2?

• When the first loop considers k1 = k∗1 , the computed value z is z∗ = Fk∗
1
(x)

• When the second loop considers k2 = k∗2 , the computed value z is

Yes!

F−1
k∗
2
(y) = F−1

k∗
2
(F ′

k∗
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2
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k∗
2
(Fk∗

2
(Fk∗

1
(x) ) ) = Fk∗

1
(x) = z∗

• Therefore z∗ is found in the dictionary and k∗1∥k∗2 is output

This is not enough...
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How many other candidate keys are output?

• Let’s model each Fk1
and F−1

k2
as a uniform random function: Pr[Fk1

(x) = F−1
k2

(y)] = 2−ℓ

• Since there are 2n · 2n = 22n pairs (k1, k2), the expected number of candidates (other than k∗1∥k∗2)
is at most:

22n · 2−ℓ = 22n−ℓ

How to narrow the candidates down?

Repeat the attack with another pair (x, y) and look at the intersection of the candidates

Meet-in-the-middle attack

For Double-DES: we reduced the possible keys from 2112 to ≈ 248 in time ≈ 256 = 2n

(recall that we were hoping for 22n)

What’s the probability that a (wrong) pair of keys k1∥k2 is a candidate both times? ≈ 2−2ℓ

22n · 2−2ℓ = 22n−2ℓ < 1 for Double-DES
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Triple Encryption

Double encryption is not more secure than a single encryption...

What about triple encrption?

Two ways to define triple encryption:

• Using three keys: Pick three independent keys k1, k2, k3 ∈ {0, 1}n and let:

F ′′
k1∥k2∥k3

(x) = Fk3(Fk2(Fk1(x)))

One would hope for all attacks to take time ≈ 23n, but the scheme is still susceptible to a
meet-in the middle attack

How? Compute Fk2
(Fk1

(x)) and F−1
k3

(y) separately

Time: 22n (still an improvement over double encryption)
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• Using two keys: Pick two independent keys k1, k2 ∈ {0, 1}n and let:

F ′′
k1∥k2

(x) = Fk1(F
−1
k2

(Fk1(x)))

Triple Encryption

Backwards compatible with single encryption:

F ′′
k1∥k1

(x) = Fk1(F
−1
k1

(Fk1(x))) = Fk1(x)

The key length is now 2n.

If relatively few input-output pairs are known, then the best attack takes time 22n

Best possible given the key length!

There are better attacks when many input-output pairs are known. If 2t pairs are known then the
key can be recovered in time

≈ 2n+ℓ−t
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Triple encryption DES has been standardized in 1999 to try to overcome the small key-length of DES

• Two-key 3DES is no longer recommended (also due to the ≈ 2n+ℓ−t time known-plaintext attack)

• Three-key 3DES is still used, but it is advised to phase it out due to its small block length and the
fact that it is slow to compute



3DES

Triple encryption DES has been standardized in 1999 to try to overcome the small key-length of DES

• Two-key 3DES is no longer recommended (also due to the ≈ 2n+ℓ−t time known-plaintext attack)

• Three-key 3DES is still used, but it is advised to phase it out due to its small block length and the
fact that it is slow to compute

DES and 3DES have been superseded by the Advanced Encryption Standard (AES)
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• 5 finalist were selected, any of them would have been an excellent choice for the winner

• The public and each team that submitted a cipher tried to find vulnerabilities in the (other) ciphers

• AES (whose name was Rijndael) has been selected based in part on properties such as efficiency,
performance in hardware, flexibility, etc.

Joan DaemenVincent Rijmen



Advanced Encryption Standard (AES)

• Winner of a public competition by NIST (National Institute of Standards and Technology) in 1997

• 5 finalist were selected, any of them would have been an excellent choice for the winner

• The public and each team that submitted a cipher tried to find vulnerabilities in the (other) ciphers

• AES (whose name was Rijndael) has been selected based in part on properties such as efficiency,
performance in hardware, flexibility, etc.

No significant weaknesses currently known!

Joan DaemenVincent Rijmen
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• Block length of 128bits

• Key lengths of 128, 192, and 256 (three different variants of AES)

(vs. 64 of DES)

(vs. 56 of DES)

• Its structure is a (slightly modified) SPN

• The number of rounds and the key schedule depend on the chosen variant (i.e., on the chosen key
length)

• The input is interepreted as a 4× 4 matrix of bytes (4 · 4 · 8 = 128), called the state

x = b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 bi ∈ {0, 1}8
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Each round of the SPN modifies the state by performing the following operations:

Advanced Encryption Standard (AES)

1) AddRoundKey: A 128-bit subkey is derived from the master key, viewed as a 4× 4 matrix and
XOR-ed with the state. This is the only step that depends on the key.

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

⊕

The generic entry bi is updated to bi ⊕ ki
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b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

←



Each round of the SPN modifies the state by performing the following operations:

Advanced Encryption Standard (AES)

2) SubBytes: Each byte bi is replaced by another byte S(bi) where S is a single, fixed permutation on
{0, 1}8

S(b15)

S(b14)

S(b13)

S(b12)

S(b11)

S(b10)

S(b9)

S(b8)

S(b7)

S(b6)

S(b5)

S(b4)

S(b1)

S(b2)

S(b3)

S(b0)b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

←



Each round of the SPN modifies the state by performing the following operations:

Advanced Encryption Standard (AES)

3) ShiftRows: The bytes in each row in the matrix undergo a cyclic left shift. The i-th row, counting
from 0, is shifted by i places (row 0 is unaffected).
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b8

b9

b10

b11

b12

b13
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Each round of the SPN modifies the state by performing the following operations:

Advanced Encryption Standard (AES)

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15




b0
b1
b2
b3


 ←




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


 ·




b0
b1
b2
b3




Multiplication and additions are done over the finite field GF(28)

4) MixColumns: An invertible linear transformation is applied to each column. This transformation has
the property that if two inputs differ in b > 0 bytes, then the resulting outputs differ in at least 5− b
bytes.
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Advanced Encryption Standard (AES)

In the final round, the MixColumns step is replaced with AddRoundKey

This is because the SubBytes, MixRows, and MixColumns do not depend on the key

Without the final AddRoundKey step, an adversary could simply invert the last three steps of the last
round



Advanced Encryption Standard (AES)


