
Passive vs Active Attacks

So far we have mainly considered passive attacks

• At best, it influences Alice and Bob’s choice of the plaintexts , but it never tampers with the data in
transit

• The attacker simply observed the ciphertexts transmitted over the communication channel

We now consider active attacks:

• The attacker has full control over the channel

Passive vs Active Attacks

We now consider active attacks:

• The attacker has full control over the channel

Passive vs Active Attacks

• Can alter the message contents

We now consider active attacks:

• The attacker has full control over the channel

Passive vs Active Attacks

• Can alter the message contents

• Can drop messages

We now consider active attacks:

• The attacker has full control over the channel

Passive vs Active Attacks

• Can alter the message contents

• Can drop messages

• Can forge new messages

Denial of Service

An adversary this powerful can always stop any communication between Alice and Bob (by simply
dropping all messages). . .

Denial of Service

An adversary this powerful can always stop any communication between Alice and Bob (by simply
dropping all messages). . .

. . . and there is nothing we can do about it!

Denial of Service

An adversary this powerful can always stop any communication between Alice and Bob (by simply
dropping all messages). . .

. . . and there is nothing we can do about it!

We are interested in what security guarantees we can achieve when communication does happen

Secrecy vs Integrity

There are two important guarantees we would like to achieve against an active adversary

Secrecy vs Integrity

There are two important guarantees we would like to achieve against an active adversary

Secrecy:

• This is what we have been concerned with so far (against passive adversaries).

• The adversary should not be able to (easily) learn (any information about) the plaintexts

Secrecy vs Integrity

There are two important guarantees we would like to achieve against an active adversary

Secrecy:

• This is what we have been concerned with so far (against passive adversaries).

• The adversary should not be able to (easily) learn (any information about) the plaintexts

Integrity (& Authentication):

• The adversary is not able to tamper with the messages

• The message originated from the intended party

• The message has not been modified in transit

Secrecy vs Integrity

There are two important guarantees we would like to achieve against an active adversary

Secrecy:

• This is what we have been concerned with so far (against passive adversaries).

• The adversary should not be able to (easily) learn (any information about) the plaintexts

Integrity (& Authentication):

• The adversary is not able to tamper with the messages

• The message originated from the intended party

• The message has not been modified in transit

Integrity and Secrecy are orthogonal concerns

Secrecy vs Integrity

The price of the stock is $42.00

• Not a secret information!

• No need to encrypt

• Need to check that it comes from a trusted party

• Need to check that the amount has not been tampered with

Buy!

Encryption schemes for Integrity?

In all the schemes we have seen so far:

• A modified ciphertext can be decrypted without any issue (and it yields a different plaintext)

• Any random string is a valid ciphertext!

• Some of these ciphers are malleable! A change to the ciphertext results in a predictable change to
the plaintext.

Encryption schemes for Integrity?

In all the schemes we have seen so far:

The adversary can send a random ciphertext to Bob and pretend it comes from Alice

• A modified ciphertext can be decrypted without any issue (and it yields a different plaintext)

• Any random string is a valid ciphertext!

• Bob will see a random plaintext

• Some of these ciphers are malleable! A change to the ciphertext results in a predictable change to
the plaintext.

Encryption schemes for Integrity?

In all the schemes we have seen so far:

The adversary can send a random ciphertext to Bob and pretend it comes from Alice

• A modified ciphertext can be decrypted without any issue (and it yields a different plaintext)

• Any random string is a valid ciphertext!

• Bob will see a random plaintext

• Is it a concern?

• Some of these ciphers are malleable! A change to the ciphertext results in a predictable change to
the plaintext.

Encryption schemes for Integrity?

In all the schemes we have seen so far:

The adversary can send a random ciphertext to Bob and pretend it comes from Alice

• A modified ciphertext can be decrypted without any issue (and it yields a different plaintext)

• Any random string is a valid ciphertext!

• Bob will see a random plaintext

• Is it a concern?

• Not all plaintexts are written in natural language

• For some applications all plaintexts are “good” plaintexts (think, e.g., of a file upload)

• Some of these ciphers are malleable! A change to the ciphertext results in a predictable change to
the plaintext.

Encryption schemes for Integrity?

Encryption schemes are not the right tool to guarantee integrity

In all the schemes we have seen so far:

The adversary can send a random ciphertext to Bob and pretend it comes from Alice

• A modified ciphertext can be decrypted without any issue (and it yields a different plaintext)

• Any random string is a valid ciphertext!

• Bob will see a random plaintext

• Is it a concern?

• Not all plaintexts are written in natural language

• For some applications all plaintexts are “good” plaintexts (think, e.g., of a file upload)

• Some of these ciphers are malleable! A change to the ciphertext results in a predictable change to
the plaintext.

The right tool are Message Authentication Codes

Message Authentication Codes (MACs)

The right tool are Message Authentication Codes

Message Authentication Codes (MACs)

• Alice sends a message m along with some extra information t, called tag

⟨m, t⟩

The right tool are Message Authentication Codes

Message Authentication Codes (MACs)

• Alice sends a message m along with some extra information t, called tag

• Bob checks whether the tag t is a valid tag for message m

⟨m, t⟩

The right tool are Message Authentication Codes

Message Authentication Codes (MACs)

• Alice sends a message m along with some extra information t, called tag

• Bob checks whether the tag t is a valid tag for message m

⟨m, t⟩

Security?

The right tool are Message Authentication Codes

Message Authentication Codes (MACs)

• Alice sends a message m along with some extra information t, called tag

• Bob checks whether the tag t is a valid tag for message m

⟨m, t⟩

• Intuitively, no (efficient) adversary can forge t

Security?

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is a triple of algorithms (Gen,Mac,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a key k. We assume that |k| ≥ n.

Gen k

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is a triple of algorithms (Gen,Mac,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a key k. We assume that |k| ≥ n.

• Mac is a probabilistic polynomial-time tag-generation algorithm that
takes as input a key k and a message m ∈ {0,1}∗ and outputs a tag
t ∈ {0,1}∗.

Gen k

Mackm

k

t

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is a triple of algorithms (Gen,Mac,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a key k. We assume that |k| ≥ n.

• Mac is a probabilistic polynomial-time tag-generation algorithm that
takes as input a key k and a message m ∈ {0,1}∗ and outputs a tag
t ∈ {0,1}∗.

• Vrfy is a deterministic polynomial-time verification algorithm that takes
as input a key k, a message m ∈ {0,1}∗, and a tag t ∈ {0,1}∗, and
outputs a single bit b. If b = 1 then the tag is valid (for k and m),
otherwise (b = 0) the tag is invalid.

Gen k

Mackm

k

t

Vrfyk
m

k

t b

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is a triple of algorithms (Gen,Mac,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a key k. We assume that |k| ≥ n.

• Mac is a probabilistic polynomial-time tag-generation algorithm that
takes as input a key k and a message m ∈ {0,1}∗ and outputs a tag
t ∈ {0,1}∗.

• Vrfy is a deterministic polynomial-time verification algorithm that takes
as input a key k, a message m ∈ {0,1}∗, and a tag t ∈ {0,1}∗, and
outputs a single bit b. If b = 1 then the tag is valid (for k and m),
otherwise (b = 0) the tag is invalid.

Gen k

Mackm

k

t

Vrfyk
m

k

t b

Correctness: We require that Vrfyk(m,Mack(m)) = 1 for all possible messages m and keys k output
by Gen(1n).

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is a triple of algorithms (Gen,Mac,Vrfy)

• Gen is a probabilistic polynomial-time key-generation algorithm that
takes 1n as input and outputs a key k. We assume that |k| ≥ n.

• Mac is a probabilistic polynomial-time tag-generation algorithm that
takes as input a key k and a message m ∈ {0,1}∗ and outputs a tag
t ∈ {0,1}∗.

• Vrfy is a deterministic polynomial-time verification algorithm that takes
as input a key k, a message m ∈ {0,1}∗, and a tag t ∈ {0,1}∗, and
outputs a single bit b. If b = 1 then the tag is valid (for k and m),
otherwise (b = 0) the tag is invalid.

If Mac is only defined for messages m ∈ {0, 1}ℓ(n) we call (Gen,Mac,Vrfy) a fixed-length MAC for
messages of length ℓ(n).

Gen k

Mackm

k

t

Vrfyk
m

k

t b

Correctness: We require that Vrfyk(m,Mack(m)) = 1 for all possible messages m and keys k output
by Gen(1n).

Message Authentication Codes (MACs)

In the special case in which Mac is a deterministic algorithm, we can use the following canonical
verification algorithm:

Vrfyk(m, t):

• et ← Mack(m)

• If et = t:

• Return b = 1

• Return b = 0

• Else:

Message Authentication Codes (MACs)

How do we formally define security for MACs?

Message Authentication Codes (MACs)

How do we formally define security for MACs?

Threat Model: Adaptive chosen message attack

• The attacker can induce the sender to authenticate any number of
messages of the attacker’s choice

Message Authentication Codes (MACs)

How do we formally define security for MACs?

Threat Model: Adaptive chosen message attack

• The attacker can induce the sender to authenticate any number of
messages of the attacker’s choice

Security Goal: Existential unforgeability

• No efficient attacker should be able to provide a valid tag for any message that was not previously
authenticated by the sender, except with negligible probability.

The Message Authentication Experiment

• A key k is generated using Gen(1n)

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-forgeA,Π(n):

The Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-forgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

The Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

• The adversary outputs a pair (m, t) such that (*) no query with the message m has been performed

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-forgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

(m, t)

The Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

• The adversary outputs a pair (m, t) such that (*) no query with the message m has been performed

• The outcome of the experiment is 1 if (*) holds and Vrfyk(m, t) = 1. Otherwise the outcome is 0.

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-forgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

(m, t)

Secure MACs

Definition: A message authentication code Π is existentially unforgeable under an adaptive
chosen-message attack (is secure) if, for every probabilistic polynomial-time adversary A,
there is a negligible function ε such that:

Pr[Mac-forgeA,Π(n) = 1] ≤ ε(n)

Replay attacks

Alice’s
Bank

Replay attacks

Send $10.00 to Adversary + TAG

Alice’s
Bank

Replay attacks

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Alice’s
Bank

Replay attacks

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Alice’s
Bank

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Send $10.00 to Adversary + TAG

Replay attacks
Our security definition does not prevent replay attacks

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Reply attacks need to be dealt with at a higher level

• How to handle replayed/repeated messages depends on the application

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Reply attacks need to be dealt with at a higher level

• How to handle replayed/repeated messages depends on the application

Typical approaches:

• The sender sends the current time along with the message. The recipient discards old messages.

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Reply attacks need to be dealt with at a higher level

• How to handle replayed/repeated messages depends on the application

Typical approaches:

• The sender sends the current time along with the message. The recipient discards old messages.

Drawbacks:

• Replay can still happen in a short window of time.

• Clocks need to be available and synchronized (this is not trivial in embedded systems).

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Reply attacks need to be dealt with at a higher level

• How to handle replayed/repeated messages depends on the application

Typical approaches:

• The sender sends the current time along with the message. The recipient discards old messages.

Drawbacks:

• Replay can still happen in a short window of time.

• Clocks need to be available and synchronized (this is not trivial in embedded systems).

• The sender keeps a counter C, sends the current value of C along with the message, and increments
C. The recipient checks that the counters of the received messages are increasing.

Replay attacks
Our security definition does not prevent replay attacks

• No stateless mechanism can prevent them!

Reply attacks need to be dealt with at a higher level

• How to handle replayed/repeated messages depends on the application

Typical approaches:

• The sender sends the current time along with the message. The recipient discards old messages.

Drawbacks:

• Replay can still happen in a short window of time.

• Clocks need to be available and synchronized (this is not trivial in embedded systems).

• The sender keeps a counter C, sends the current value of C along with the message, and increments
C. The recipient checks that the counters of the received messages are increasing.

Drawbacks:

• Need to keep track of the counter

• Needs to handle messages delivered out of order

A fixed-length MAC

Intuition: We want some keyed function Mack(·) such that, even if we know m1,m2, . . . , and
Mack(m1),Mack(m2), . . . it is infeasible to predict Mack(m) for some m ̸∈ {m1,m2, . . . }

A fixed-length MAC

Intuition: We want some keyed function Mack(·) such that, even if we know m1,m2, . . . , and
Mack(m1),Mack(m2), . . . it is infeasible to predict Mack(m) for some m ̸∈ {m1,m2, . . . }

We already have a function with this property. . .

A fixed-length MAC

Intuition: We want some keyed function Mack(·) such that, even if we know m1,m2, . . . , and
Mack(m1),Mack(m2), . . . it is infeasible to predict Mack(m) for some m ̸∈ {m1,m2, . . . }

We already have a function with this property. . .

Let Mack be a pseudorandom function!

A fixed-length MAC

Intuition: We want some keyed function Mack(·) such that, even if we know m1,m2, . . . , and
Mack(m1),Mack(m2), . . . it is infeasible to predict Mack(m) for some m ̸∈ {m1,m2, . . . }

We already have a function with this property. . .

Let Mack be a pseudorandom function!

• Gen(1n) returns a random key for F

Given a length-preserving keyed function F , we can build the following MAC Π:

• Mack(m) returns Fk(m)

• Vrfyk(m, t) is the canonical verification algorithm (output 1 iff Fk(m) = t and 0 otherwise)

A fixed-length MAC

Intuition: We want some keyed function Mack(·) such that, even if we know m1,m2, . . . , and
Mack(m1),Mack(m2), . . . it is infeasible to predict Mack(m) for some m ̸∈ {m1,m2, . . . }

We already have a function with this property. . .

Let Mack be a pseudorandom function!

• Gen(1n) returns a random key for F

Given a length-preserving keyed function F , we can build the following MAC Π:

• Mack(m) returns Fk(m)

• Vrfyk(m, t) is the canonical verification algorithm (output 1 iff Fk(m) = t and 0 otherwise)

Theorem: If F is a pseudorandom function, then the MAC Π constructed from F as above
is secure.

Theorem: If F is a pseudorandom function, then the MAC Π constructed from F is secure.

Proof of security

Usual proof strategy:

• Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with
non-negligible probability

• Use A to build a distinguisher D that tells F apart from a random function f with a
non-negligible gap.

Theorem: If F is a pseudorandom function, then the MAC Π constructed from F is secure.

Proof of security

Usual proof strategy:

• Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with
non-negligible probability

• Use A to build a distinguisher D that tells F apart from a random function f with a
non-negligible gap.

Definition: An efficient, length preserving, keyed function F : {0, 1}n ×{0, 1}n → {0, 1}n
is a pseudorandom function if for all probabilistic polynomial-time distinguishers D,
there is a negligible function ε such that:

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� ≤ ε(n)

Reminder:

Distinguisher
D

...

O

Evaluates
Fk

Output (0 or 1)

“World 0”:

Distinguisher
D

...

O

Evaluates
f

Output (0 or 1)

“World 1”:

k is chosen u.a.r.
in {0, 1}n

f is chosen u.a.r.
in Funcn

DFk(·)(1n)

Df(·)(1n)

Reminder: distinguishers for pseudorandom functions

Denotes the kind of oracle
D is interacting with

D wants to tell “World 0”
apart from “World 1”

Proof of security

Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with non-negligible
probability ε(n)

Proof of security

Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with non-negligible
probability ε(n)

W.l.o.g., assume if A outputs a pair (m, t) then A never queried its MAC oracle with m

Proof of security

Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with non-negligible
probability ε(n)

We build a distinguisher D for F as follows:

Distinguisher DΦ(1n):

• Simulate the execution of A

W.l.o.g., assume if A outputs a pair (m, t) then A never queried its MAC oracle with m

Proof of security

Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with non-negligible
probability ε(n)

We build a distinguisher D for F as follows:

Distinguisher DΦ(1n):

• Simulate the execution of A
• Whenever A queries its oracle with a message m′:

• Query Φ with m′ and obtain a response t′

• Answer t′ to A (say that t′ is a tag for m′)

W.l.o.g., assume if A outputs a pair (m, t) then A never queried its MAC oracle with m

Proof of security

Assume that there is some polynomial-time adversary A that wins Mac-forgeA,Π(n) with non-negligible
probability ε(n)

We build a distinguisher D for F as follows:

Distinguisher DΦ(1n):

• Simulate the execution of A
• Whenever A queries its oracle with a message m′:

• Query Φ with m′ and obtain a response t′

• Answer t′ to A (say that t′ is a tag for m′)

• Whenever A outputs (m, t) (at the end of its execution):

• Query Φ with m and obtain a response t∗

• Return 1 iff t∗ = t (return 0 otherwise)

W.l.o.g., assume if A outputs a pair (m, t) then A never queried its MAC oracle with m

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1]

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)]

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)] = 2−ℓ

We are using the fact that
f(m) was never queried!

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)] = 2−ℓ

We are using the fact that
f(m) was never queried!

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[Mac-forgeA,Π(n) = 1]− 2−ℓ
��

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)] = 2−ℓ

We are using the fact that
f(m) was never queried!

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[Mac-forgeA,Π(n) = 1]− 2−ℓ
�� ≥ ε(n)− 2−ℓ

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)] = 2−ℓ

We are using the fact that
f(m) was never queried!

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[Mac-forgeA,Π(n) = 1]− 2−ℓ
�� ≥ ε(n)− 2−ℓ

Non-negligible!

Proof of security

When Φ = F , DΦ behaves exactly as the Mac-forgeA,Π(n) experiment

Pr[DF (·)(1n) = 1] = Pr[Mac-forgeA,Π(n) = 1]

When Φ = f , Df behaves exactly as the Mac-forgeA,eΠ(n) experiment

Let eΠ be the MAC constructed (as described before) from a function f chosen u.a.r. from Funcn

Pr[Df(·)(1n) = 1] = Pr[Mac-forgeA,eΠ(n) = 1] = Pr[t = f(m)] = 2−ℓ

We are using the fact that
f(m) was never queried!

�� Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
�� =

�� Pr[Mac-forgeA,Π(n) = 1]− 2−ℓ
�� ≥ ε(n)− 2−ℓ

Non-negligible!

=⇒ F is not a pseudorandom function! □

Drawbacks

This construction only works for messages having the same length as the inputs to F

Drawbacks

This construction only works for messages having the same length as the inputs to F

Existing practical construction of pseudorandom functions (i.e., block ciphers) take short, fixed-length,
inputs

• E.g., AES has a 128-bit block size

Drawbacks

This construction only works for messages having the same length as the inputs to F

Existing practical construction of pseudorandom functions (i.e., block ciphers) take short, fixed-length,
inputs

• E.g., AES has a 128-bit block size

=⇒ In practice, the construction only works for short, fixed length, messages

How do we get a MAC for arbitrary length messages?

Drawbacks

This construction only works for messages having the same length as the inputs to F

Existing practical construction of pseudorandom functions (i.e., block ciphers) take short, fixed-length,
inputs

• E.g., AES has a 128-bit block size

=⇒ In practice, the construction only works for short, fixed length, messages

Domain extension for MACs

How do we get a MAC for arbitrary length messages?

Domain Extension for MACS

A first idea:

m = m1 m2 m3 m4 m5

Split the message into blocks m1,m2 . . . of length ℓ

Domain Extension for MACS

A first idea:

m = m1 m2 m3 m4 m5

Split the message into blocks m1,m2 . . . of length ℓ

Mack Mack Mack Mack Mack

MAC each block separately, i.e., ti ← Mack(mi)

Domain Extension for MACS

A first idea:

m = m1 m2 m3 m4 m5

Split the message into blocks m1,m2 . . . of length ℓ

Mack Mack Mack Mack Mack

t1 t2 t3 t4 t5

MAC each block separately, i.e., ti ← Mack(mi)

Output t1 ∥ t2∥ t3 ∥ . . .

m =

m1 m2 m3 m4

Do not

Does it work?

Domain Extension for MACS

attack. Commence retreat. t1 t2 t3 t4

m =

m1 m2 m3 m4

Do not

Does it work?

Domain Extension for MACS

attack. Commence retreat. t1 t2 t3 t4

No

m =

m1 m2 m3 m4

Do not

Does it work?

Domain Extension for MACS

attack. Commence retreat. t1 t2 t3 t4

Do not attack.retreat. Commence

m1 m3m4 m2

m = t1 t4 t3 t2

No

m =

m1 m2 m3 m4

Do not

Does it work?

Domain Extension for MACS

attack. Commence retreat. t1 t2 t3 t4

Do not attack.retreat. Commence

m1 m3m4 m2

m = t1 t4 t3 t2

• Vulnerable to block re-ordering attacks

No

m =

m1 m2 m3 m4

Do not

Does it work?

Domain Extension for MACS

attack. Commence retreat. t1 t2 t3 t4

Do not attack.retreat. Commence

m1 m3m4 m2

m = t1 t4 t3 t2

• Vulnerable to block re-ordering attacks

No

• We can prevent such attacks by adding a block index to each block

Domain Extension for MACS

Is the resulting MAC secure?

Attack immediately after dawn

⟨1⟩ Attack ⟨2⟩ immediately ⟨3⟩ after ⟨4⟩ dawn t1 t2 t3 t4

Domain Extension for MACS

Is the resulting MAC secure?

Attack immediately after dawn

⟨1⟩ Attack ⟨2⟩ immediately ⟨3⟩ after ⟨4⟩ dawn t1 t2 t3 t4

⟨1⟩ Attack ⟨2⟩ immediately t1 t2

Domain Extension for MACS

Is the resulting MAC secure?

Attack immediately after dawn

⟨1⟩ Attack ⟨2⟩ immediately ⟨3⟩ after ⟨4⟩ dawn t1 t2 t3 t4

⟨1⟩ Attack ⟨2⟩ immediately t1 t2

• Vulnerable to truncation attacks

Domain Extension for MACS

Is the resulting MAC secure?

Attack immediately after dawn

⟨1⟩ Attack ⟨2⟩ immediately ⟨3⟩ after ⟨4⟩ dawn t1 t2 t3 t4

⟨1⟩ Attack ⟨2⟩ immediately t1 t2

• Vulnerable to truncation attacks

• We can prevent such attacks by adding the message length to each block

Domain Extension for MACS

Is the resulting MAC secure?

⟨27, 1⟩ Fire ⟨27, 2⟩ John Doe ⟨27, 3⟩ for his ⟨27, 4⟩ theft t11 t12 t13 t14

Domain Extension for MACS

Is the resulting MAC secure?

⟨27, 1⟩ Fire ⟨27, 2⟩ John Doe ⟨27, 3⟩ for his ⟨27, 4⟩ theft

⟨27, 1⟩ Give ⟨27, 2⟩ our team ⟨27, 3⟩ a big ⟨27, 4⟩ project

⟨27, 1⟩ Kyle ⟨27, 2⟩ objected ⟨27, 3⟩ to your ⟨27, 4⟩ raise

t11 t12 t13 t14

t21 t22 t33 t44

t31 t32 t33 t44

Domain Extension for MACS

Is the resulting MAC secure?

⟨27, 1⟩ Fire ⟨27, 2⟩ John Doe ⟨27, 3⟩ for his ⟨27, 4⟩ theft

⟨27, 1⟩ Give ⟨27, 2⟩ our team ⟨27, 3⟩ a big ⟨27, 4⟩ project

⟨27, 1⟩ Kyle ⟨27, 2⟩ objected ⟨27, 3⟩ to your ⟨27, 4⟩ raise

t11 t12 t13 t14

t21 t22 t33 t44

t31 t32 t33 t44

⟨27, 1⟩ Give ⟨27, 2⟩ John Doe ⟨27, 4⟩ a big ⟨27, 4⟩ raise t21 t12 t33 t44

Domain Extension for MACS

Is the resulting MAC secure?

⟨27, 1⟩ Fire ⟨27, 2⟩ John Doe ⟨27, 3⟩ for his ⟨27, 4⟩ theft

⟨27, 1⟩ Give ⟨27, 2⟩ our team ⟨27, 3⟩ a big ⟨27, 4⟩ project

⟨27, 1⟩ Kyle ⟨27, 2⟩ objected ⟨27, 3⟩ to your ⟨27, 4⟩ raise

t11 t12 t13 t14

t21 t22 t33 t44

t31 t32 t33 t44

⟨27, 1⟩ Give ⟨27, 2⟩ John Doe ⟨27, 4⟩ a big ⟨27, 4⟩ raise t21 t12 t33 t44

• Vulnerable to mix-and-match attacks

Domain Extension for MACS

Is the resulting MAC secure?

⟨27, 1⟩ Fire ⟨27, 2⟩ John Doe ⟨27, 3⟩ for his ⟨27, 4⟩ theft

⟨27, 1⟩ Give ⟨27, 2⟩ our team ⟨27, 3⟩ a big ⟨27, 4⟩ project

⟨27, 1⟩ Kyle ⟨27, 2⟩ objected ⟨27, 3⟩ to your ⟨27, 4⟩ raise

t11 t12 t13 t14

t21 t22 t33 t44

t31 t32 t33 t44

⟨27, 1⟩ Give ⟨27, 2⟩ John Doe ⟨27, 4⟩ a big ⟨27, 4⟩ raise t21 t12 t33 t44

• Vulnerable to mix-and-match attacks

• We can prevent such attacks by choosing a random message ID and adding it to each block

Domain Extension for MACS

We can use ℓ/4 bits for for each of the message ID, message length, block index, and for the actual
payload:

Domain Extension for MACS

We can use ℓ/4 bits for for each of the message ID, message length, block index, and for the actual
payload:

Let Π=(Gen,Mack(m),Vrfyk) be a MAC for messages of length ℓ and define Π′=(Gen′,Mac′k(m),Vrfy′k)
as:

Domain Extension for MACS

We can use ℓ/4 bits for for each of the message ID, message length, block index, and for the actual
payload:

Let Π=(Gen,Mack(m),Vrfyk) be a MAC for messages of length ℓ and define Π′=(Gen′,Mac′k(m),Vrfy′k)
as:

Gen′(1n): return Gen(1n)

Domain Extension for MACS

We can use ℓ/4 bits for for each of the message ID, message length, block index, and for the actual
payload:

• Choose r uniformly at random from {0, 1}ℓ/4
Mac′k(m):

• Split m into blocks m1,m2,m3, . . . ,md of
ℓ/4 bits each (pad the final block, if needed)

Let Π=(Gen,Mack(m),Vrfyk) be a MAC for messages of length ℓ and define Π′=(Gen′,Mac′k(m),Vrfy′k)
as:

Gen′(1n): return Gen(1n)

• For each i = 1, 2, . . . , d

• ti ← Mack(⟨r⟩ ∥ ⟨|m|⟩ ∥ ⟨i⟩ ∥mi)

• Output the tag t = r ∥ t1 ∥ t2 ∥ . . . ∥ td

(with |m| < 2ℓ/4)

Domain Extension for MACS

We can use ℓ/4 bits for for each of the message ID, message length, block index, and for the actual
payload:

• Choose r uniformly at random from {0, 1}ℓ/4
Mac′k(m):

• Split m into blocks m1,m2,m3, . . . ,md of
ℓ/4 bits each (pad the final block, if needed)

Let Π=(Gen,Mack(m),Vrfyk) be a MAC for messages of length ℓ and define Π′=(Gen′,Mac′k(m),Vrfy′k)
as:

Gen′(1n): return Gen(1n)

• For each i = 1, 2, . . . , d

• ti ← Mack(⟨r⟩ ∥ ⟨|m|⟩ ∥ ⟨i⟩ ∥mi)

• Output the tag t = r ∥ t1 ∥ t2 ∥ . . . ∥ td

Verfy′
k(m, t):

• Split m into blocks m1,m2,m3, . . . ,md of
ℓ/4 bits each

• Parse t as r ∥ t1 ∥ t2 ∥ . . . ∥ td

• For each i = 1, 2, . . . , d

• Check Vrfyk(⟨r⟩ ∥ ⟨|m|⟩ ∥ ⟨i⟩ ∥mi, ti) = 1

• Output 1 iff all checks passed
(and 0 otherwise)

(with |m| < 2ℓ/4)

Domain Extension for MACS

Theorem: if Π is a secure fixed-length MAC for messages of length ℓ, then Π′ is a secure
MAC for arbitrary-length messages.

• Choose r uniformly at random from {0, 1}ℓ/4
Mac′k(m):

• Split m into blocks m1,m2,m3, . . . ,md of
ℓ/4 bits each (pad the final block, if needed)

Gen′(1n): return Gen(1n)

• For each i = 1, 2, . . . , d

• ti ← Mack(⟨r⟩ ∥ ⟨|m|⟩ ∥ ⟨i⟩ ∥mi)

• Output the tag t = r ∥ t1 ∥ t2 ∥ . . . ∥ td

Verfy′
k(m, t):

• Split m into blocks m1,m2,m3, . . . ,md of
ℓ/4 bits each

• Parse t as r ∥ t1 ∥ t2 ∥ . . . ∥ td

• For each i = 1, 2, . . . , d

• Check Vrfyk(⟨r⟩ ∥ ⟨|m|⟩ ∥ ⟨i⟩ ∥mi, ti) = 1

• Output 1 iff all checks passed
(and 0 otherwise)

(with |m| < 2ℓ/4)

Domain Extension for MACS

We have shown that we can obtain a MAC for arbitrarily lengh messages from a block cipher by:

• Constructing a MAC Π for fixed-length messages from the block cipher

• Using the previous construction to transform Π into a MAC Π′ for arbitrary-length messages

Domain Extension for MACS

We have shown that we can obtain a MAC for arbitrarily lengh messages from a block cipher by:

• To compute the tag for a message of length |m|, we need ≈ 4|m|
ℓ evaluations of the block cipher

• Constructing a MAC Π for fixed-length messages from the block cipher

• Using the previous construction to transform Π into a MAC Π′ for arbitrary-length messages

Unfortunately this approach has some drawbacks in practice:

Domain Extension for MACS

We have shown that we can obtain a MAC for arbitrarily lengh messages from a block cipher by:

• To compute the tag for a message of length |m|, we need ≈ 4|m|
ℓ evaluations of the block cipher

• Constructing a MAC Π for fixed-length messages from the block cipher

• Using the previous construction to transform Π into a MAC Π′ for arbitrary-length messages

Unfortunately this approach has some drawbacks in practice:

• The computed tag is long (i.e., longer than 4|m| bits)

(Basic) CBC-MAC for fixed length messages
We can do better by using a construction similar to the ciphertext block chaining (CBC) mode used for
block ciphers.

The construction only works for messages of some fixed length n ·ℓ(n), where n is the block length of Fk

Gen′(1n): return a random key for F

(Basic) CBC-MAC for fixed length messages
We can do better by using a construction similar to the ciphertext block chaining (CBC) mode used for
block ciphers.

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

m =

Mack(m):

• Parse m as ℓ(n) blocks
m1,m2,m3, . . . ,mℓ(n) of n bits each

The construction only works for messages of some fixed length n ·ℓ(n), where n is the block length of Fk

• For i = 1, . . . , ℓ(n)

• t0 ← 0n

• ti ← Fk(ti−1 ⊕mi)

• Output the tag t = tℓ(n)

Gen′(1n): return a random key for F

(Basic) CBC-MAC for fixed length messages
We can do better by using a construction similar to the ciphertext block chaining (CBC) mode used for
block ciphers.

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

m =

The construction only works for messages of some fixed length n ·ℓ(n), where n is the block length of Fk

Vrfyk(m, t):

• If |m| ̸= n · ℓ(n):
• Return 0

• Otherwise: (canonical verification)

• Return 1 iff t = Mack(m)
(and 0 otherwise)

(Basic) CBC-MAC for fixed length messages
We can do better by using a construction similar to the ciphertext block chaining (CBC) mode used for
block ciphers.

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

Some differences with CBC mode for block ciphers:

• No IV (notice that CBC-MAC is deterministic)

• Only the final invocation of the block cipher is output

m =

The construction only works for messages of some fixed length n ·ℓ(n), where n is the block length of Fk

Vrfyk(m, t):

• If |m| ̸= n · ℓ(n):
• Return 0

• Otherwise: (canonical verification)

• Return 1 iff t = Mack(m)
(and 0 otherwise)

(Basic) CBC-MAC for fixed length messages
We can do better by using a construction similar to the ciphertext block chaining (CBC) mode used for
block ciphers.

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

m =

Theorem: Let ℓ be a polynomial. If F is a pseudorandom function with block length n, then
Basic CBC-MAC is a secure MAC for messages of length ℓ(n) · n.

The construction only works for messages of some fixed length n ·ℓ(n), where n is the block length of Fk

Vrfyk(m, t):

• If |m| ̸= n · ℓ(n):
• Return 0

• Otherwise: (canonical verification)

• Return 1 iff t = Mack(m)
(and 0 otherwise)

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

m =

t0

IV

⊕

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m

⊕

Fk

tt0

IV

• Pick an arbitrary message m, and obtain the tag t0 ∥ t

Mac(m):

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m

⊕

Fk

tt0

IV

• Pick an arbitrary message m, and obtain the tag t0 ∥ t

m

⊕

Fkt0

t

Mac(m): Vrfy(m, t0∥t):

?
= t

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m

⊕

Fk

tt0

IV

• Pick an arbitrary message m, and obtain the tag t0 ∥ t

t0

⊕

Fkm

t

Mac(m): Vrfy(t0,m∥t):

?
= t

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m

⊕

Fk

tt0

IV

• Pick an arbitrary message m, and obtain the tag t0 ∥ t

• Output the message t0 and the tag m ∥ t

t0

⊕

Fkm

t

Mac(m): Vrfy(t0,m∥t):

?
= t

Basic CBC-MAC: some caveats (1/3)

If we modify the construction to take an IV, then the MAC is no longer secure!

m

⊕

Fk

tt0

IV

• Pick an arbitrary message m, and obtain the tag t0 ∥ t

• Output the message t0 and the tag m ∥ t

t0

⊕

Fkm

t

Mac(m):

The forgery is
successful

Vrfy(t0,m∥t):

?
= t

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t =

m =

t1 t2 t3 t4

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

Mac(m):

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m):

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2 t′2 = Fk(t2 ⊕m1 ⊕ t′1)

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2 t′2 = Fk(t2 ⊕m1 ⊕ t′1) = Fk(m1)

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2 t′2 = Fk(t2 ⊕m1 ⊕ t′1) = Fk(m1) = t1

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2 t′2 = Fk(t2 ⊕m1 ⊕ t′1) = Fk(m1) = t1 t′1∥t′2 = t2∥t1

If all invocations of F contribute to the output, then the MAC is no longer secure!

Basic CBC-MAC: some caveats (2/3)

m1

Fk

m2

⊕

Fk

t =

m =

t1 t2

• Pick an arbitrary message m1∥m2, and obtain the tag t1 ∥ t2
• Output the message (t1 ⊕m2) ∥ (t2 ⊕m1) and the tag t2 ∥ t1

Mac(m): t1 ⊕m2

Fk

⊕

Fk

t′1 t′2

t2 ⊕m1

t′1 = Fk(t1 ⊕m2) = t2 t′2 = Fk(t2 ⊕m1 ⊕ t′1) = Fk(m1) = t1 t′1∥t′2 = t2∥t1

The forgery is
successful

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

m1

Fk

m2

⊕

Fk

m1 ⊕ t

⊕

Fk

m2

⊕

Fk

t′

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

m1

Fk

m2

⊕

Fk

m1 ⊕ t

⊕

Fk

m2

⊕

Fk

t′

t

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

m1

Fk

m2

⊕

Fk

m1 ⊕ t

⊕

Fk

m2

⊕

Fk

t′

t

m1

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

m1

Fk

m2

⊕

Fk

m1 ⊕ t

⊕

Fk

m2

⊕

Fk

t′

t

m1

Basic CBC-MAC: some caveats (3/3)
If the length of the message is not fixed, then Basic CBC mac is no longer secure!

• The sender and the receiver need to agree on the length parameter ℓ in advance

m1

Fk

m2

⊕

Fk

m =

t

Mac(m):

• Pick an arbitrary message m1∥m2, and obtain the tag t

• Output the message m1 ∥m2 ∥ (m1 ⊕ t) ∥m2 and the tag t

m1

Fk

m2

⊕

Fk

m1 ⊕ t

⊕

Fk

m2

⊕

Fk

t′

t

m1

t′ = t
The forgery is
successful

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 1:

• Encode the message length m as a n-bit string, and prepend it to m

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

|m|

Fk

⊕

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 1:

• Encode the message length m as a n-bit string, and prepend it to m

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

|m|

Fk

⊕

• Canonical verification

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 1:

• Encode the message length m as a n-bit string, and prepend it to m

m1

Fk

m2 m3 m4

⊕ ⊕ ⊕

Fk Fk Fk

t

|m|

Fk

⊕

• Canonical verification Note that appending |m| to m is not secure

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 2:

• Gen(1n):

• Choose two independent keys k1, k2 for F

• Return k1 ∥ k2

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 2:

• Gen(1n):

• Mack(m):

• Compute the tag t′ for m using the Basic
CBC-MAC using key k1

• Output the tag t = Fk2
(t′)

• Choose two independent keys k1, k2 for F

• Return k1 ∥ k2

m1

Fk1

m2 m3 m4

⊕ ⊕ ⊕⊕

Fk1
Fk1

Fk1

Fk2

t

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 2:

• Gen(1n):

• Mack(m):

• Compute the tag t′ for m using the Basic
CBC-MAC using key k1

• Output the tag t = Fk2
(t′)

• Choose two independent keys k1, k2 for F

• Return k1 ∥ k2

• Canonical verification

m1

Fk1

m2 m3 m4

⊕ ⊕ ⊕⊕

Fk1
Fk1

Fk1

Fk2

t

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 2:

• Gen(1n):

• Mack(m):

• Compute the tag t′ for m using the Basic
CBC-MAC using key k1

• Output the tag t = Fk2
(t′)

• Choose two independent keys k1, k2 for F

• Return k1 ∥ k2

Drawback: need to use two keys

m1

Fk1

m2 m3 m4

⊕ ⊕ ⊕⊕

Fk1
Fk1

Fk1

Fk2

t

CBC-MAC for arbitrary length messages

Basic CBC-MAC can be extended to handle arbitrary-length messages

Option 2:

• Gen(1n):

• Mack(m):

• Compute the tag t′ for m using the Basic
CBC-MAC using key k1

• Output the tag t = Fk2
(t′)

• Choose two independent keys k1, k2 for F

• Return k1 ∥ k2

Drawback: need to use two keys

Advantage: There is no need to know the length of m in advance (Mack is a streaming algorithm)

m1

Fk1

m2 m3 m4

⊕ ⊕ ⊕⊕

Fk1
Fk1

Fk1

Fk2

t

Strongly secure MACs

• Our definition of secure MACs could still allow the adversary to output a new valid tag t′ for a
message m that was previously authenticated (with some tag t ̸= t′)

Strongly secure MACs

• Our definition of secure MACs could still allow the adversary to output a new valid tag t′ for a
message m that was previously authenticated (with some tag t ̸= t′)

• Most of the time this is not a concern

After all, the sender authenticated m at some point

Strongly secure MACs

• Our definition of secure MACs could still allow the adversary to output a new valid tag t′ for a
message m that was previously authenticated (with some tag t ̸= t′)

• Most of the time this is not a concern

After all, the sender authenticated m at some point

• Nevertheless, sometimes it is useful to guarantee that the adversary cannot even re-tag an already
authenticated message

Strongly secure MACs

• Our definition of secure MACs could still allow the adversary to output a new valid tag t′ for a
message m that was previously authenticated (with some tag t ̸= t′)

• Most of the time this is not a concern

After all, the sender authenticated m at some point

• Nevertheless, sometimes it is useful to guarantee that the adversary cannot even re-tag an already
authenticated message

• We can modify our message authentication experiment (and security definition) to account for this

The Strong Message Authentication Experiment

• A key k is generated using Gen(1n)

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-sforgeA,Π(n):

The Strong Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-sforgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

The Strong Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

• The adversary outputs a pair (m, t) such that (*) no query with message m and answer t has been
performed

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-sforgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

(m, t)

The Strong Message Authentication Experiment

• The adversary can interact with an oracle that can be queried with a message m′ and outputs tag t′

obtained by running Mack(m
′)

• A key k is generated using Gen(1n)

• The adversary outputs a pair (m, t) such that (*) no query with message m and answer t has been
performed

• The outcome of the experiment is 1 if (*) holds and Vrfyk(m, t) = 1. Otherwise the outcome is 0.

Let Π = (Gen,Mac,Vrfy) be a MAC. We name the following experiment Mac-sforgeA,Π(n):

MAC oracle m′

t′t′ ← Mack(m
′)

(m, t)

Strongly Secure MACs

Definition: A message authentication code Π is strongly secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Mac-sforgeA,Π(n) = 1] ≤ ε(n)

Strongly Secure MACs

Definition: A message authentication code Π is strongly secure if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Mac-sforgeA,Π(n) = 1] ≤ ε(n)

Good news:

All deterministic secure MACs that use canonical verification are also strongly secure.

