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Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• Many applications, including private-key and public-key cryptography

• It provides some sort of fingerprint of x

• You have probably encountered (non-cryptographic) hash function in hash tables

• Map elements to a small number of bins or slots

• As long as few elements collide, i.e., map to the same bin, we are happy (fast lookup time!)

• In cryptography, elements are chosen adversarially!

• In cryptography, even few collisions are bad!
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Can we avoid collisions altogether?

H
{0, 1}∗ {0, 1}ℓ

Infinite domain
Finite range

Collisions are unavoidable! To find one, simply compute H(x) for 2ℓ + 1 distinct choices of x

Next best thing: Collisions are hard to find (by efficient adversaries)
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Definition: A hash function is a pair of polynomial-time algorithms H = (Gen, H):

Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

• Just like block and stream ciphers, the key length is controlled by a security parameter n

If Hs is defined only for inputs of length ℓ′(n) > ℓ(n), then we say that H is a
fixed-length hash function for inputs of length ℓ′(n) or a compression function.

• Gen: is a probabilistic algorithm that takes as input 1n and outputs a key s

• H: is a deterministic algorithm that takes as input x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}ℓ(n)

Important: The key s is not kept secret and is known by the adversary. We write Hs

(instead of Hs) to stress this

Small abuse
of notation:
when Gen is
clear, we say
that H is a
hash function
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The Hash Collision experiment

Let H = (Gen, H) be a Hash function. We name the following experiment Hash-collA,H(n):

• A key s is generated using Gen(1n)

• The adversary A is given s, and outputs x, x′ ∈ {0, 1}∗.
(If H is a fixed-length hash function then we require |x| = |x′| = ℓ(n) )

• The outcome of the experiment is 1 if x ̸= x′ and Hs(x) = Hs(x′). Otherwise the outcome is 0.

Definition: A hash function H = (Gen, H) is collision resistant if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Hash-collA,H(n) = 1] ≤ ε(n)
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Weaker Notions of Security for Hash Functions

Some applications do not need fully-fledged collision resistance

Some weaker security notions might suffice:

• Preimage resistance (inf.): Given a key s and a digest y = Hs(x), it is infeasible to find x′

such that Hs(x′) = y.

• Second preimage resistance (inf.): Given a key s and a message x, it is infeasible to find
x′ ̸= x such that Hs(x′) = Hs(x).

Collision resistance =⇒ Second preimage resistance =⇒ Preimage resistance
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Attacking Hash Functions: Birthday Attack

What is the best generic attack for finding collisions, that does not depend on the specific choice of a
hash function H?

• For i = 1, . . . , q

• Keep a dictionary D:

• Compute yi = Hs(xi)

• Choose q distinct inputs x1, x2, . . . , xq

• If D contains some element (yi, xj) for some xj

• Success. Collision found: xi, xj

• Otherwise

• Break

• Add (yi, xi) to D

• Model H as a random function

Let Hs : {0, 1} → {0, 1}ℓ be some hash function.

• Worst-case approach

• Failure

How is the success probability related
to the number q of evaluations of Hs?
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Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

We want to know: If we throw q balls, what’s the chance that some bin contains at least 2 balls?

Bin 1 Bin 2 . . . Bin N

• We have a bin for each string in {0, 1}ℓ, i.e., N = 2ℓ

• The i-th ball is the string xi and it lands in bin Hs(xi)

In our case:
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Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.
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Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

• To achieve a constant success probability of finding a collision it suffices to choose q =
√
N .

• Recall that, in our case, we have N = 2ℓ

• Pick q =
√
2ℓ = 2ℓ/2

• For block ciphers, if the key length was n, we wanted the best attack to take time ≈ 2n

• For hash functions, if we want to withstand attacks running in time ≈ 2n we need ℓ ≥ 2n
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Birthday Attack: Finding Meaningful Collisions

The collisions found by the birthday attack do not seem very useful

• The colliding inputs are random binary strings

How do we generate meaningful collisions?

• We just need to generate two sets A and B of q = Θ(2ℓ/2) distinct messages

• The attack can be generalized to find a collision Hs(x) = Hs(x′) with x ∈ A and x′ ∈ B

— A contains “innocent” looking messages

— B contains “nefarious” messages

A = {Today, This morning} I {took, went for} a {walk, stroll} in the city {center, park}. While

there, I {had, drank} {a coffee, an espresso} and ate a {cream, sweet} {doughnut, donut}. |A| = 28

B = This is to {inform, notify} you that I am {resigning, quitting} from my {job, position}
{effective immediately, at once}. Please {give, send} me my {final, last} paycheck as {soon, quickly}
as possible. {Goodbye, Regards}.

|B| = 28
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Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:
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Cs(10, 0)? Cs(10, 1)?

Cs(10, 00)? Cs(11, 00)? Cs(10, 10)? Cs(11, 10)?

no

yes no

yes no yes no

yes no

yes no yes no

If P = NP, H is not a (collision resistant) hash function Hash functions exist =⇒ P ̸= NP

Pragmatic approach: Pretend that Hash functions exist & use practical constructions
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Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

• Compute Hs(x) by repeatedly evaluating hs

— z0 = IV

— For i = 1, . . . , B, compute zi ← hs(zi−1 ∥xi)

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

— Output zB
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Proof:

We show if we can efficiently find a collision for Hs then we can also efficiently find a collision for hs.

Let x, x′ ∈ {0, 1}∗ such that x ̸= x′ and Hs(x) = Hs(x′).

Let x1, . . . , xB (resp. x′
1, . . . , x

′
B′) be the blocks obtained by padding x (resp. x′).

Let z0, . . . , zB (resp. z′0, . . . , z
′
B′) be the intermediate outputs obtained while computing Hs(x) (resp.

Hs(x′)).
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Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Case 2: |x| = |x′|

Let i be the largest index such that zi−1∥xi ̸= z′i−1∥x′
i (this index exists since x ̸= x′)

We must have zi = z′i
(either i = B and this follows from the collision, or i < B and this is due to choice of i)

Then hs(zi−1∥xi) = zi = z′i = hs(z′i−1∥x′
i)

□
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Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

In length extension attack, an adversary that knows y = Hs(x) and the length |x| of x, is able to
compute Hs(x∥x′) for some (non-empty) x′, without needing to know x.

Since the adversary knows |x|, it is able to compute the padding π appended to x
(i.e., x∥π = x1∥ . . . ∥xB)

Then, for any x′ = π∥x′′: Hs(x ∥x′) = Hs(x ∥π ∥x′′) = Hs( zB ∥x′′ ) = Hs( y ∥x′′ )
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Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Gen(1n):

• Return Mac′k(H
s(m)) • Return Vrfy′k(H

s(m), t)

Hash-and-Mac

• k ← Gen′(1n)

• s ← GenH(1n)

• Return (k, s)

Mac(k,s)(m): Vrfy(k,s)(m, t):

Theorem: if Π′ is a secure MAC for messages of length ℓ and H is collision resistant, then the
hash-and-mac construction Π is a secure MAC
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We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Let Q be the set of queries performed by A to its MAC oracle, and let (m∗, t) be the output of A
Define coll to be the event “there is a message m ∈ Q for which Hs(m) = Hs(m∗).

ε(n) = Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA,Π(n) = 1 ∧ coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

≤ Pr[coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

At least one of the summands is non-negligible
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If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):
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If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:
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If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i =⇒ (h∗, t) is a valid forgery for Π′

Pr[Mac-forgeA′′,Π′(n)] ≥ Pr[Mac-forgeA,Π(n), coll]

Not negligible!

This contradicts the unforgeability of Π′. □



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer

• Models attacks that are agnostic to the specific hash function being used



Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer

• Models attacks that are agnostic to the specific hash function being used

In practice:

• Prove security in the Random Oracle model

• Replace the Random Oracle with a concrete hash function

• Cross your fingers. . .
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Hash Functions as Random Oracles

Pros:

• If an attack is found on the hash function, we can just replace the hash function

• A security proof is in the random oracle model is better than no security proof at all... maybe?

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

• There are known (although convoluted) examples of encryption schemes that can be proven secure in
the Random Oracle model, but they are insecure when the oracle is replaced with any hash function

• There are no known “natural” schemes that have been attacked while proven secure in the Random
Oracle model
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Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Virus scanners: There is no need to keep an explicit database of all malicious
files. It suffices to keep a database of their hashes

Deduplication: If two users upload the same file to a cloud provider, there is no
need to upload and store both files. The client sends a hash h of the file. If the
cloud provider already has a file with hash h, a pointer is added to existing copy.

Peer-to-peer file sharing: Hashes are used to uniquely identify files (and
chunk of files) in peer-to-peer file-sharing networks.

File synchronization: To synchronize two files between different machines, we
can first compute their hashes. If the hashes match, there is nothing to do.
Otherwise the files are split into chunks and only the chunks with different hashes
are updated.
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Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!
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Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

• What if x is bad password? E.g., what if x is an English word?

• We can easily check H(x′) = y for all English words x.

• In fact, we can store all H(x′) in a rainbow table, to recover x in seconds!

/etc/shadow

• Solution: pick a random string z called salt.

Compute y = H(z∥x) and store the pair (z, y).
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• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

• Sometimes it is more convenient for the parties to rely on some shared secret information x

• E.g., a passphrase, biometric data, . . .

• Hash functions provide a way of using the shared secret to derive a (close to) uniform key, as long as
the shared secret comes from a “sufficiently random” (but not necessarily uniform) distribution

Definition: a probability distribution D has m bits of min-entropy if, for every x, it holds that
Pr[X = x] ≤ 2−m, where X is a random variable with distribution D.

Intuitively: the most likely value of X happens with probability at most 2−m

• If H is a random oracle, then H(x) is uniform as long as the attacker does not query H with x.

• If an attacker makes q queries to H(·), it will query H with x with probability at most q · 2−m.

Choose k = H(x)
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A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

• Binding: it is infeasible (or even impossible) for the committer to output a commitment that can be
“opened” as two different messages m,m′

In some sense: a digital equivalent of placing a message in a sealed envelope (hiding),
which is opened at a later time

To commit to m:

• Pick a random string r and compute com = H(m ∥ r)

To open the commitment:

• Send m and r. Given some m′ and r′ one can easily check whether com = H(m′ ∥ r′)
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Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Drawback: Long message (and reveals all xj)

Solution 2:

• Compute and send h = ⟨H(x1), H(x2), . . . , H(xt)⟩
• Reveal xi and i, Bob checks H(xi) against the i-th hash in h

• Drawback: h is a long list of t hashes

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Solution 3: Merkle trees
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• Build a complete binary tree with t leaves

• Each node u stores a hash

• The hash stored in the i-th leaf is H(xi)

• The hash stored in an internal node with u
and v as children is H(hu∥hv)• The final hash of the whole list ⟨x1, . . . , xt⟩ is

the hash stored in the root.
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the root

• Alice only sends xi plus O(log t) short hashes

• Bob still doesn’t know the values xj with j ̸= i
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If H is collision resistant, then the hash function computed by the above Merkle tree construction is
collision resistant for any fixed t.

The construction can be generalized to handle nonconstant t.
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Merkle Trees: Bitcon & SPV

• Each block of the blockchain contains list of transactions x1, . . . , xt

• The hash of the block is computed using a Merkle tree

• Easy to convince a SPV node that a given transaction belongs to a block in the blockchain

• Some nodes (called SPV nodes, from simple payment verification) only store
the hashes of the blocks in the blockchain (and not their contents)

In Bitcoin:

Credit: W. Dai, J. Deng, Q.
Wang, C. Cui, D. Zou, H. Jin


