
Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• It provides some sort of fingerprint of x

Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• Many applications, including private-key and public-key cryptography

• It provides some sort of fingerprint of x

Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• Many applications, including private-key and public-key cryptography

• It provides some sort of fingerprint of x

• You have probably encountered (non-cryptographic) hash function in hash tables

• Map elements to a small number of bins or slots

• As long as few elements collide, i.e., map to the same bin, we are happy (fast lookup time!)

Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• Many applications, including private-key and public-key cryptography

• It provides some sort of fingerprint of x

• You have probably encountered (non-cryptographic) hash function in hash tables

• Map elements to a small number of bins or slots

• As long as few elements collide, i.e., map to the same bin, we are happy (fast lookup time!)

• In cryptography, elements are chosen adversarially!

Cryptographic Hash Functions

Hash function (inf.): a function H that maps a long input string to a short, fixed-length, output string.

• Deterministically

• The output string is called digest
x ∈ {0, 1}∗ H y ∈ {0, 1}ℓ

Why?

• Many applications, including private-key and public-key cryptography

• It provides some sort of fingerprint of x

• You have probably encountered (non-cryptographic) hash function in hash tables

• Map elements to a small number of bins or slots

• As long as few elements collide, i.e., map to the same bin, we are happy (fast lookup time!)

• In cryptography, elements are chosen adversarially!

• In cryptography, even few collisions are bad!

Can we avoid collisions altogether?

H
{0, 1}∗ {0, 1}ℓ

Infinite domain
Finite range

Can we avoid collisions altogether?

H
{0, 1}∗ {0, 1}ℓ

Infinite domain
Finite range

Collisions are unavoidable! To find one, simply compute H(x) for 2ℓ + 1 distinct choices of x

Can we avoid collisions altogether?

H
{0, 1}∗ {0, 1}ℓ

Infinite domain
Finite range

Collisions are unavoidable! To find one, simply compute H(x) for 2ℓ + 1 distinct choices of x

Next best thing: Collisions are hard to find (by efficient adversaries)

Defining (Cryptographic) Hash Functions
Formally, hash functions need to be keyed functions

Defining (Cryptographic) Hash Functions
Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

Defining (Cryptographic) Hash Functions
Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

• Just like block and stream ciphers, the key length is controlled by a security parameter n

Defining (Cryptographic) Hash Functions

Definition: A hash function is a pair of polynomial-time algorithms H = (Gen, H):

Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

• Just like block and stream ciphers, the key length is controlled by a security parameter n

If Hs is defined only for inputs of length ℓ′(n) > ℓ(n), then we say that H is a
fixed-length hash function for inputs of length ℓ′(n) or a compression function.

• Gen: is a probabilistic algorithm that takes as input 1n and outputs a key s

• H: is a deterministic algorithm that takes as input x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}ℓ(n)

Defining (Cryptographic) Hash Functions

Definition: A hash function is a pair of polynomial-time algorithms H = (Gen, H):

Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

• Just like block and stream ciphers, the key length is controlled by a security parameter n

If Hs is defined only for inputs of length ℓ′(n) > ℓ(n), then we say that H is a
fixed-length hash function for inputs of length ℓ′(n) or a compression function.

• Gen: is a probabilistic algorithm that takes as input 1n and outputs a key s

• H: is a deterministic algorithm that takes as input x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}ℓ(n)

Important: The key s is not kept secret and is known by the adversary. We write Hs

(instead of Hs) to stress this

Defining (Cryptographic) Hash Functions

Definition: A hash function is a pair of polynomial-time algorithms H = (Gen, H):

Formally, hash functions need to be keyed functions

• An unkeyed function is just a fixed, deterministic function

• For any unkeyed function H, there are always two fixed messages m,m′ such that H(m) = H(m′)

• Trivial to find a collision: just output m,m′

• Just like block and stream ciphers, the key length is controlled by a security parameter n

If Hs is defined only for inputs of length ℓ′(n) > ℓ(n), then we say that H is a
fixed-length hash function for inputs of length ℓ′(n) or a compression function.

• Gen: is a probabilistic algorithm that takes as input 1n and outputs a key s

• H: is a deterministic algorithm that takes as input x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}ℓ(n)

Important: The key s is not kept secret and is known by the adversary. We write Hs

(instead of Hs) to stress this

Small abuse
of notation:
when Gen is
clear, we say
that H is a
hash function

The Hash Collision experiment

Let H = (Gen, H) be a Hash function. We name the following experiment Hash-collA,H(n):

• A key s is generated using Gen(1n)

• The adversary A is given s, and outputs x, x′ ∈ {0, 1}∗.
(If H is a fixed-length hash function then we require |x| = |x′| = ℓ(n))

• The outcome of the experiment is 1 if x ̸= x′ and Hs(x) = Hs(x′). Otherwise the outcome is 0.

The Hash Collision experiment

Let H = (Gen, H) be a Hash function. We name the following experiment Hash-collA,H(n):

• A key s is generated using Gen(1n)

• The adversary A is given s, and outputs x, x′ ∈ {0, 1}∗.
(If H is a fixed-length hash function then we require |x| = |x′| = ℓ(n))

• The outcome of the experiment is 1 if x ̸= x′ and Hs(x) = Hs(x′). Otherwise the outcome is 0.

Definition: A hash function H = (Gen, H) is collision resistant if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[Hash-collA,H(n) = 1] ≤ ε(n)

Weaker Notions of Security for Hash Functions

Some applications do not need fully-fledged collision resistance

Weaker Notions of Security for Hash Functions

Some applications do not need fully-fledged collision resistance

Some weaker security notions might suffice:

• Preimage resistance (inf.): Given a key s and a digest y = Hs(x), it is infeasible to find x′

such that Hs(x′) = y.

Weaker Notions of Security for Hash Functions

Some applications do not need fully-fledged collision resistance

Some weaker security notions might suffice:

• Preimage resistance (inf.): Given a key s and a digest y = Hs(x), it is infeasible to find x′

such that Hs(x′) = y.

• Second preimage resistance (inf.): Given a key s and a message x, it is infeasible to find
x′ ̸= x such that Hs(x′) = Hs(x).

Weaker Notions of Security for Hash Functions

Some applications do not need fully-fledged collision resistance

Some weaker security notions might suffice:

• Preimage resistance (inf.): Given a key s and a digest y = Hs(x), it is infeasible to find x′

such that Hs(x′) = y.

• Second preimage resistance (inf.): Given a key s and a message x, it is infeasible to find
x′ ̸= x such that Hs(x′) = Hs(x).

Collision resistance =⇒ Second preimage resistance =⇒ Preimage resistance

Attacking Hash Functions: Birthday Attack

What is the best generic attack for finding collisions, that does not depend on the specific choice of a
hash function H?

Let Hs : {0, 1} → {0, 1}ℓ be some hash function.

Attacking Hash Functions: Birthday Attack

What is the best generic attack for finding collisions, that does not depend on the specific choice of a
hash function H?

• For i = 1, . . . , q

• Keep a dictionary D:

• Compute yi = Hs(xi)

• Choose q distinct inputs x1, x2, . . . , xq

• If D contains some element (yi, xj) for some xj

• Success. Collision found: xi, xj

• Otherwise

• Break

• Add (yi, xi) to D

Let Hs : {0, 1} → {0, 1}ℓ be some hash function.

• Failure

Attacking Hash Functions: Birthday Attack

What is the best generic attack for finding collisions, that does not depend on the specific choice of a
hash function H?

• For i = 1, . . . , q

• Keep a dictionary D:

• Compute yi = Hs(xi)

• Choose q distinct inputs x1, x2, . . . , xq

• If D contains some element (yi, xj) for some xj

• Success. Collision found: xi, xj

• Otherwise

• Break

• Add (yi, xi) to D

Let Hs : {0, 1} → {0, 1}ℓ be some hash function.

• Failure

How is the success probability related
to the number q of evaluations of Hs?

Attacking Hash Functions: Birthday Attack

What is the best generic attack for finding collisions, that does not depend on the specific choice of a
hash function H?

• For i = 1, . . . , q

• Keep a dictionary D:

• Compute yi = Hs(xi)

• Choose q distinct inputs x1, x2, . . . , xq

• If D contains some element (yi, xj) for some xj

• Success. Collision found: xi, xj

• Otherwise

• Break

• Add (yi, xi) to D

• Model H as a random function

Let Hs : {0, 1} → {0, 1}ℓ be some hash function.

• Worst-case approach

• Failure

How is the success probability related
to the number q of evaluations of Hs?

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

• We have a bin for each string in {0, 1}ℓ, i.e., N = 2ℓ

In our case:

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

Bin 1 Bin 2 . . . Bin N

• We have a bin for each string in {0, 1}ℓ, i.e., N = 2ℓ

• The i-th ball is the string xi and it lands in bin Hs(xi)

In our case:

Balls into Bins

Can be thought of as a balls into bins experiment

Repeatedly throw a ball into a one out of N possible bins, chosen u.a.r.

We want to know: If we throw q balls, what’s the chance that some bin contains at least 2 balls?

Bin 1 Bin 2 . . . Bin N

• We have a bin for each string in {0, 1}ℓ, i.e., N = 2ℓ

• The i-th ball is the string xi and it lands in bin Hs(xi)

In our case:

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≤ q(q−1)
2N :

Let Colli,j denote the event “the i-th ball and the j-th ball land in the same bin”

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≤ q(q−1)
2N :

Pr[Coll] = Pr

 [

{i,j} : i̸=j

Colli,j

Let Colli,j denote the event “the i-th ball and the j-th ball land in the same bin”

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≤ q(q−1)
2N :

Pr[Coll] = Pr

 [

{i,j} : i̸=j

Colli,j

Let Colli,j denote the event “the i-th ball and the j-th ball land in the same bin”

≤
X

{i,j} : i̸=j

Pr [Colli,j]

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≤ q(q−1)
2N :

Pr[Coll] = Pr

 [

{i,j} : i̸=j

Colli,j

Let Colli,j denote the event “the i-th ball and the j-th ball land in the same bin”

≤
X

{i,j} : i̸=j

Pr [Colli,j] =
X

{i,j} : i̸=j

1

N

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≤ q(q−1)
2N :

Pr[Coll] = Pr

 [

{i,j} : i̸=j

Colli,j

Let Colli,j denote the event “the i-th ball and the j-th ball land in the same bin”

≤
X

{i,j} : i̸=j

Pr [Colli,j] =
X

{i,j} : i̸=j

1

N =
q(q − 1)

2N

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

= 1
�
1− 1

N

� �
1− 2

N

� �
1− q−1

N

�· · · . . . ·

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N
= e

− 1
N

q−1P
i=0

i

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N
= e

− 1
N

q−1P
i=0

i

= e−
q(q−1)

2N

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N
= e

− 1
N

q−1P
i=0

i

= e−
q(q−1)

2N

q(q−1)
2N ≤ q2

2N ≤ (
√
2N)2

2N = 1

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N
= e

− 1
N

q−1P
i=0

i

= e−
q(q−1)

2N ≤ 1− q(q − 1)

4N

For all 0 ≤ x ≤ 1, it holds that 1− x ≤ e−x ≤ 1− x
2 .

Probability of a collision

We will need:

Proof of Pr[Coll] ≥ q(q−1)
4N :

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

Let NoColli denote the event “the first i balls all land in different bins” (Pr[Coll] = 1− Pr[NoCollq])

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · Pr[NoColl3 | NoColl2] · . . . · Pr[NoCollq | NoCollq−1]

=

q−1Y

i=0

�
1− i

N

�
≤

q−1Y

i=0

e−i/N
= e

− 1
N

q−1P
i=0

i

= e−
q(q−1)

2N ≤ 1− q(q − 1)

4N

Pr[Coll] = 1− Pr[NoCollq] ≥
q(q − 1)

4N
. □

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

• To achieve a constant success probability of finding a collision it suffices to choose q =
√
N .

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

• To achieve a constant success probability of finding a collision it suffices to choose q =
√
N .

• Recall that, in our case, we have N = 2ℓ

• Pick q =
√
2ℓ = 2ℓ/2

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

• To achieve a constant success probability of finding a collision it suffices to choose q =
√
N .

• Recall that, in our case, we have N = 2ℓ

• Pick q =
√
2ℓ = 2ℓ/2

• For block ciphers, if the key length was n, we wanted the best attack to take time ≈ 2n

Probability of a collision

Theorem: Let Coll denote the event “at least one bin contains at least 2 balls”.

If q ≤
√
2N , then q(q−1)

4N ≤ Pr[Coll] ≤ q(q−1)
2N .

• We have shown that, for q ≤
√
2N , we have Pr[Coll] = Θ(q2/N)

• To achieve a constant success probability of finding a collision it suffices to choose q =
√
N .

• Recall that, in our case, we have N = 2ℓ

• Pick q =
√
2ℓ = 2ℓ/2

• For block ciphers, if the key length was n, we wanted the best attack to take time ≈ 2n

• For hash functions, if we want to withstand attacks running in time ≈ 2n we need ℓ ≥ 2n

Birthday Attack: Finding Meaningful Collisions

The collisions found by the birthday attack do not seem very useful

• The colliding inputs are random binary strings

How do we generate meaningful collisions?

Birthday Attack: Finding Meaningful Collisions

The collisions found by the birthday attack do not seem very useful

• The colliding inputs are random binary strings

How do we generate meaningful collisions?

• We just need to generate two sets A and B of q = Θ(2ℓ/2) distinct messages

• The attack can be generalized to find a collision Hs(x) = Hs(x′) with x ∈ A and x′ ∈ B

Birthday Attack: Finding Meaningful Collisions

The collisions found by the birthday attack do not seem very useful

• The colliding inputs are random binary strings

How do we generate meaningful collisions?

• We just need to generate two sets A and B of q = Θ(2ℓ/2) distinct messages

• The attack can be generalized to find a collision Hs(x) = Hs(x′) with x ∈ A and x′ ∈ B

— A contains “innocent” looking messages

— B contains “nefarious” messages

Birthday Attack: Finding Meaningful Collisions

The collisions found by the birthday attack do not seem very useful

• The colliding inputs are random binary strings

How do we generate meaningful collisions?

• We just need to generate two sets A and B of q = Θ(2ℓ/2) distinct messages

• The attack can be generalized to find a collision Hs(x) = Hs(x′) with x ∈ A and x′ ∈ B

— A contains “innocent” looking messages

— B contains “nefarious” messages

A = {Today, This morning} I {took, went for} a {walk, stroll} in the city {center, park}. While

there, I {had, drank} {a coffee, an espresso} and ate a {cream, sweet} {doughnut, donut}. |A| = 28

B = This is to {inform, notify} you that I am {resigning, quitting} from my {job, position}
{effective immediately, at once}. Please {give, send} me my {final, last} paycheck as {soon, quickly}
as possible. {Goodbye, Regards}.

|B| = 28

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:

Cs(0, ε)?
yes no

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:

Cs(0, ε)?
yes

Cs(0, 0)? Cs(1, 0)?

no

yes no yes no

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:

Cs(0, ε)?
yes

Cs(0, 0)?

Cs(00, 0)? Cs(00, 1)?

Cs(00, 00)? Cs(01, 00)? Cs(00, 10)? Cs(01, 10)?

Cs(1, 0)?

Cs(10, 0)? Cs(10, 1)?

Cs(10, 00)? Cs(11, 00)? Cs(10, 10)? Cs(11, 10)?

no

yes no

yes no yes no

yes no

yes no yes no

...
...

...
...

...
...

...

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:

Cs(0, ε)?
yes

Cs(0, 0)?

Cs(00, 0)? Cs(00, 1)?

Cs(00, 00)? Cs(01, 00)? Cs(00, 10)? Cs(01, 10)?

Cs(1, 0)?

Cs(10, 0)? Cs(10, 1)?

Cs(10, 00)? Cs(11, 00)? Cs(10, 10)? Cs(11, 10)?

no

yes no

yes no yes no

yes no

yes no yes no

If P = NP, H is not a (collision resistant) hash function Hash functions exist =⇒ P ̸= NP

...
...

...
...

...
...

...

(Collision Resistant) Hash Functions... do they even exist?
Let Hs be any function that is computable in polynomial-time

This (decision)
problem is in NP

(the pair (x, y) is a
yes-certificate)

Consider the following decision problem Cs(α,β):

Are there two distinct strings x, y s.t. Hs(x) = Hs(y),
|x| = |y| = ℓ+ 1, x starts with α, and y starts with β?

If P = NP we can compute a collision for Hs in polynomial time as follows:

Cs(0, ε)?
yes

Cs(0, 0)?

Cs(00, 0)? Cs(00, 1)?

Cs(00, 00)? Cs(01, 00)? Cs(00, 10)? Cs(01, 10)?

Cs(1, 0)?

Cs(10, 0)? Cs(10, 1)?

Cs(10, 00)? Cs(11, 00)? Cs(10, 10)? Cs(11, 10)?

no

yes no

yes no yes no

yes no

yes no yes no

If P = NP, H is not a (collision resistant) hash function Hash functions exist =⇒ P ̸= NP

Pragmatic approach: Pretend that Hash functions exist & use practical constructions

...
...

...
...

...
...

...

Constructing a Hash Function

Step 1: Start with a collision-resistant compression function for
short, fixed-length, inputs

hs : {0, 1}ℓ′(n) → {0, 1}ℓ(n)

Constructing a Hash Function

Step 1: Start with a collision-resistant compression function for
short, fixed-length, inputs

hs : {0, 1}ℓ′(n) → {0, 1}ℓ(n)

For simplicity assume ℓ(n) = n and ℓ′(n) = n+ n′ with n′ > n

hs : {0, 1}n+n′ → {0, 1}n

hs{0, 1}n+n′ {0, 1}n

Constructing a Hash Function

Step 1: Start with a collision-resistant compression function for
short, fixed-length, inputs

Step 2: Domain extension

hs : {0, 1}ℓ′(n) → {0, 1}ℓ(n)

For simplicity assume ℓ(n) = n and ℓ′(n) = n+ n′ with n′ > n

hs : {0, 1}n+n′ → {0, 1}n

Use h to build a hash function H that accepts inputs of length up
to L = 2n

′ − 1

Hs :
LS

i=0

{0, 1}i → {0, 1}n

hs

Hs

{0, 1}n+n′ {0, 1}n

LS
i=0

{0, 1}i {0, 1}n

Constructing a Hash Function

Step 1: Start with a collision-resistant compression function for
short, fixed-length, inputs

Step 2: Domain extension

hs : {0, 1}ℓ′(n) → {0, 1}ℓ(n)

For simplicity assume ℓ(n) = n and ℓ′(n) = n+ n′ with n′ > n

hs : {0, 1}n+n′ → {0, 1}n

Use h to build a hash function H that accepts inputs of length up
to L = 2n

′ − 1

Hs :
LS

i=0

{0, 1}i → {0, 1}n

hs

Hs

Merkle-Damg̊ard Transform

M
er
k
le
-D

a
m
g̊
a
rd

T
ra
n
sf
o
rm

{0, 1}n+n′ {0, 1}n

LS
i=0

{0, 1}i {0, 1}n

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

• Compute Hs(x) by repeatedly evaluating hs

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

• Compute Hs(x) by repeatedly evaluating hs

— z0 = IV

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

• Compute Hs(x) by repeatedly evaluating hs

— z0 = IV

— For i = 1, . . . , B, compute zi ← hs(zi−1 ∥xi)

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

The Merkle-Damg̊ard Transform

Pick some fixed parameter λ ≤ n′, IV ∈ {0, 1}n. For x ∈ {0, 1}∗
with |x| < 2λ (and key s) compute Hs(x) as follows:

Ralph Merkle Ivan Damg̊ard

• Pad x so that it also encodes |x| and the new length
is a multiple of n′

— Append a 1 to x followed by as many 0s as needed
to obtain a length that is λ less than a multiple of n′

— Append |x| encoded as a binary string with λ bits

• Compute Hs(x) by repeatedly evaluating hs

— z0 = IV

— For i = 1, . . . , B, compute zi ← hs(zi−1 ∥xi)

— Parse the resulting string as a concatenation of B
blocks x1 ∥x2 ∥ . . . ∥xB where |xi| = n′.

— Output zB

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Proof:

We show if we can efficiently find a collision for Hs then we can also efficiently find a collision for hs.

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Proof:

We show if we can efficiently find a collision for Hs then we can also efficiently find a collision for hs.

Let x, x′ ∈ {0, 1}∗ such that x ̸= x′ and Hs(x) = Hs(x′).

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Proof:

We show if we can efficiently find a collision for Hs then we can also efficiently find a collision for hs.

Let x, x′ ∈ {0, 1}∗ such that x ̸= x′ and Hs(x) = Hs(x′).

Let x1, . . . , xB (resp. x′
1, . . . , x

′
B′) be the blocks obtained by padding x (resp. x′).

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Proof:

We show if we can efficiently find a collision for Hs then we can also efficiently find a collision for hs.

Let x, x′ ∈ {0, 1}∗ such that x ̸= x′ and Hs(x) = Hs(x′).

Let x1, . . . , xB (resp. x′
1, . . . , x

′
B′) be the blocks obtained by padding x (resp. x′).

Let z0, . . . , zB (resp. z′0, . . . , z
′
B′) be the intermediate outputs obtained while computing Hs(x) (resp.

Hs(x′)).

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Case 1: |x| ̸= |x′|

We have hs(zB−1∥xB) = hs(z′B−1∥x′
B′), and zB−1∥xB ̸= z′B−1∥x′

B′ (since xB ̸= x′
B)

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Case 2: |x| = |x′|

Let i be the largest index such that zi−1∥xi ̸= z′i−1∥x′
i (this index exists since x ̸= x′)

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Case 2: |x| = |x′|

Let i be the largest index such that zi−1∥xi ̸= z′i−1∥x′
i (this index exists since x ̸= x′)

We must have zi = z′i
(either i = B and this follows from the collision, or i < B and this is due to choice of i)

The Merkle-Damg̊ard Transform

hs

x1 x2 x3 x4 x5

|x|

IV
hs hs hs hs

z0 z1 z2 z3 z4 z5
Hs(x)

Theorem: if h is a collision-resistant hash function then H is a collision-resistant hash function.

Case 2: |x| = |x′|

Let i be the largest index such that zi−1∥xi ̸= z′i−1∥x′
i (this index exists since x ̸= x′)

We must have zi = z′i
(either i = B and this follows from the collision, or i < B and this is due to choice of i)

Then hs(zi−1∥xi) = zi = z′i = hs(z′i−1∥x′
i)

□

Length Extension Attack

Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

Length Extension Attack

Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

In length extension attack, an adversary that knows y = Hs(x) and the length |x| of x, is able to
compute Hs(x∥x′) for some (non-empty) x′, without needing to know x.

Length Extension Attack

Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

In length extension attack, an adversary that knows y = Hs(x) and the length |x| of x, is able to
compute Hs(x∥x′) for some (non-empty) x′, without needing to know x.

Since the adversary knows |x|, it is able to compute the padding π appended to x
(i.e., x∥π = x1∥ . . . ∥xB)

hs

xB−1 xB

|x|

IV
hs hs

z0 zB−1 y = zB
. . .

. . .

πz }| {
x1

Length Extension Attack

Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

In length extension attack, an adversary that knows y = Hs(x) and the length |x| of x, is able to
compute Hs(x∥x′) for some (non-empty) x′, without needing to know x.

Since the adversary knows |x|, it is able to compute the padding π appended to x
(i.e., x∥π = x1∥ . . . ∥xB)

Then, for any x′ = π∥x′′: Hs(x ∥x′) = Hs(x ∥π ∥x′′) = Hs(zB ∥x′′) = Hs(y ∥x′′)

hs

xB−1 xB

|x|

IV
hs hs

z0 zB−1 y = zB
. . .

. . .

πz }| {
x1

Length Extension Attack

Hash functions constructed using the Merkle-Damg̊ard transform are susceptible to length extension
attacks

In length extension attack, an adversary that knows y = Hs(x) and the length |x| of x, is able to
compute Hs(x∥x′) for some (non-empty) x′, without needing to know x.

Since the adversary knows |x|, it is able to compute the padding π appended to x
(i.e., x∥π = x1∥ . . . ∥xB)

Then, for any x′ = π∥x′′: Hs(x ∥x′) = Hs(x ∥π ∥x′′) = Hs(zB ∥x′′) = Hs(y ∥x′′)

hs

x′
1

hs

xB−1 xB

|x|

IV
hs hs

z0 zB−1 y = zB
. . .

. . .

πz }| {
x1

. . .

. . . |x|+|π|+|x′|

hs hs Hs(x ∥π ∥x′)

x′′+paddingz }| {

Hash Function in Practice
Practical construction of hash functions are unkeyed...

MD5

SHA1

SHA2

MD4
• 128 bit digest

• Birthday attack (µs), Preimage attack (theoretical)

• 128 bit digest

• Birthday attack (s), Preimage attack (theoretical)

• 160 bit digest

• Birthday attack (SHAttered: 110 years of computing time on GPU), improved chosen-prefix attacks

• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Keccak (SHA3)
• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Hash Function in Practice
Practical construction of hash functions are unkeyed...

MD5

SHA1

SHA2

MD4
• 128 bit digest

• Birthday attack (µs), Preimage attack (theoretical)

• 128 bit digest

• Birthday attack (s), Preimage attack (theoretical)

• 160 bit digest

• Birthday attack (SHAttered: 110 years of computing time on GPU), improved chosen-prefix attacks

• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Keccak (SHA3)
• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Merkle-Damg̊ard
Transform

Hash Function in Practice
Practical construction of hash functions are unkeyed...

MD5

SHA1

SHA2

MD4
• 128 bit digest

• Birthday attack (µs), Preimage attack (theoretical)

• 128 bit digest

• Birthday attack (s), Preimage attack (theoretical)

• 160 bit digest

• Birthday attack (SHAttered: 110 years of computing time on GPU), improved chosen-prefix attacks

• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Keccak (SHA3)
• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Merkle-Damg̊ard
Transform

Completely different
approach: sponge

construction

Hash Function in Practice
Practical construction of hash functions are unkeyed...

MD5

SHA1

SHA2

MD4
• 128 bit digest

• Birthday attack (µs), Preimage attack (theoretical)

• 128 bit digest

• Birthday attack (s), Preimage attack (theoretical)

• 160 bit digest

• Birthday attack (SHAttered: 110 years of computing time on GPU), improved chosen-prefix attacks

• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Keccak (SHA3)
• Actually a family of algorithms: 224, 256, 384, and 512 bit digests

• No significant known weaknesses

Merkle-Damg̊ard
Transform

Completely different
approach: sponge

construction

Applications of Hash Functions: Message Authentication

Reminder: we can construct a MAC for short, fixed-length, messages from a block cipher

• We used CBC-MAC to extend the domain to long messages

Applications of Hash Functions: Message Authentication

Reminder: we can construct a MAC for short, fixed-length, messages from a block cipher

• We used CBC-MAC to extend the domain to long messages

We can use hash functions instead!

Applications of Hash Functions: Message Authentication

Reminder: we can construct a MAC for short, fixed-length, messages from a block cipher

• We used CBC-MAC to extend the domain to long messages

We can use hash functions instead!

• HMAC

Two approaches:

• Hash-and-Mac

Applications of Hash Functions: Message Authentication

Reminder: we can construct a MAC for short, fixed-length, messages from a block cipher

• We used CBC-MAC to extend the domain to long messages

We can use hash functions instead!

• HMAC

Two approaches:

• Hash-and-Mac

Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Hash-and-Mac

Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Gen(1n):

Hash-and-Mac

• k ← Gen′(1n)

• s ← GenH(1n)

• Return (k, s)

Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Gen(1n):

• Return Mac′k(H
s(m))

Hash-and-Mac

• k ← Gen′(1n)

• s ← GenH(1n)

• Return (k, s)

Mac(k,s)(m):

Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Gen(1n):

• Return Mac′k(H
s(m)) • Return Vrfy′k(H

s(m), t)

Hash-and-Mac

• k ← Gen′(1n)

• s ← GenH(1n)

• Return (k, s)

Mac(k,s)(m): Vrfy(k,s)(m, t):

Suppose that we have:

• A fixed-length MAC Π′ = (Gen′,Mac′,Vrfy′) for messages of length ℓ

• A hash function H = (GenH , H) with ℓ-bit outputs

We can build a MAC Π for long messages:

Gen(1n):

• Return Mac′k(H
s(m)) • Return Vrfy′k(H

s(m), t)

Hash-and-Mac

• k ← Gen′(1n)

• s ← GenH(1n)

• Return (k, s)

Mac(k,s)(m): Vrfy(k,s)(m, t):

Theorem: if Π′ is a secure MAC for messages of length ℓ and H is collision resistant, then the
hash-and-mac construction Π is a secure MAC

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Let Q be the set of queries performed by A to its MAC oracle, and let (m∗, t) be the output of A
Define coll to be the event “there is a message m ∈ Q for which Hs(m) = Hs(m∗).

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Let Q be the set of queries performed by A to its MAC oracle, and let (m∗, t) be the output of A
Define coll to be the event “there is a message m ∈ Q for which Hs(m) = Hs(m∗).

ε(n) = Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA,Π(n) = 1 ∧ coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Let Q be the set of queries performed by A to its MAC oracle, and let (m∗, t) be the output of A
Define coll to be the event “there is a message m ∈ Q for which Hs(m) = Hs(m∗).

ε(n) = Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA,Π(n) = 1 ∧ coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

≤ Pr[coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

Hash-and-Mac: Proof of security

We will show that an adversary A that breaks the security of Π can be used to either break the security
of Π′ or to find a collision in H (possibly both).

Let A be a polynomial-time algorithm such that Pr[Mac-forgeA,Π(n) = 1] = ε(n) for some
non-negligible ε(n)

Let Q be the set of queries performed by A to its MAC oracle, and let (m∗, t) be the output of A
Define coll to be the event “there is a message m ∈ Q for which Hs(m) = Hs(m∗).

ε(n) = Pr[Mac-forgeA,Π(n) = 1] = Pr[Mac-forgeA,Π(n) = 1 ∧ coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

≤ Pr[coll] + Pr[Mac-forgeA,Π(n) = 1 ∧ coll]

At least one of the summands is non-negligible

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

— If such an i exists, return (m∗,mi)

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

— If such an i exists, return (m∗,mi)

— Otherwise “fail”.

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Pr[Hash-collA′,H(n) = 1] = Pr[coll]

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

— If such an i exists, return (m∗,mi)

— Otherwise “fail”.

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Pr[Hash-collA′,H(n) = 1] = Pr[coll]

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

— If such an i exists, return (m∗,mi)

— Otherwise “fail”.

Not negligible!

Hash-and-Mac: Proof of security (cont.)

If Pr[coll] is not negligible, consider the following adversary A′ that attacks H:

Pr[Hash-collA′,H(n) = 1] = Pr[coll]

Adversary A′(s):

• Choose k u.a.r. from {0, 1}n

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗,
compute ti ← Mac′k(H

s(mi)) and answer with ti

• When A outputs (m∗, t), check whether there is some mi

such that H(mi) = H(m∗)

— If such an i exists, return (m∗,mi)

— Otherwise “fail”.

Not negligible!

This contradicts the collision resistance of H!

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i =⇒ (h∗, t) is a valid forgery for Π′

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i =⇒ (h∗, t) is a valid forgery for Π′

Pr[Mac-forgeA′′,Π′(n)] ≥ Pr[Mac-forgeA,Π(n), coll]

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i =⇒ (h∗, t) is a valid forgery for Π′

Pr[Mac-forgeA′′,Π′(n)] ≥ Pr[Mac-forgeA,Π(n), coll]

Not negligible!

Hash-and-Mac: Proof of security (cont.)

If Pr[Mac-forgeA,Π(n) = 1, coll] is not negligible, consider the following adversary A′′ that attacks Π′:

Adversary A′′(1n):

• Run GenH(1n) to obtain s

• Run A(1n).

• When A requests a tag on the i-th message mi ∈ {0, 1}∗:
— Compute hi = Hs(mi)

— Request a tag ti for the message hi to the MAC oracle (for Π′)

— Answer with ti

• When A outputs (m∗, t), let h∗ = Hs(m∗) and output (h∗, t)

If A outputs a valid forgery (m∗, t) then Vrfy(k,s)(m
∗, t) = Vrfy′k(H

s(m∗), t) = Vrfy′k(h
∗, t) = 1

When coll does not occur, h∗ = H(m∗) ̸= H(mi) = hi for every i =⇒ (h∗, t) is a valid forgery for Π′

Pr[Mac-forgeA′′,Π′(n)] ≥ Pr[Mac-forgeA,Π(n), coll]

Not negligible!

This contradicts the unforgeability of Π′. □

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer

• Models attacks that are agnostic to the specific hash function being used

Hash Functions as Random Oracles

Some cryptographic constructions cannot be proven secure based only on the assumption that the hash
function is collision resistant

Stronger assumption: the Random Oracle model

• Model the hash function as a random function

• The hash function is an oracle:

• Whenever H(x) is computed for the first time, the oracle picks a random string y
and answers with y

• If H(x) is computed again (with the same x), then the oracle returns the same answer

• Models attacks that are agnostic to the specific hash function being used

In practice:

• Prove security in the Random Oracle model

• Replace the Random Oracle with a concrete hash function

• Cross your fingers. . .

Hash Functions as Random Oracles

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

Hash Functions as Random Oracles

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

• There are known (although convoluted) examples of encryption schemes that can be proven secure in
the Random Oracle model, but they are insecure when the oracle is replaced with any hash function

Hash Functions as Random Oracles

Pros:

• If an attack is found on the hash function, we can just replace the hash function

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

• There are known (although convoluted) examples of encryption schemes that can be proven secure in
the Random Oracle model, but they are insecure when the oracle is replaced with any hash function

Hash Functions as Random Oracles

Pros:

• If an attack is found on the hash function, we can just replace the hash function

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

• There are known (although convoluted) examples of encryption schemes that can be proven secure in
the Random Oracle model, but they are insecure when the oracle is replaced with any hash function

• There are no known “natural” schemes that have been attacked while proven secure in the Random
Oracle model

Hash Functions as Random Oracles

Pros:

• If an attack is found on the hash function, we can just replace the hash function

• A security proof is in the random oracle model is better than no security proof at all... maybe?

Cons:

• Hash functions are public (recall, no secret key).

• There is no such thing as a fixed function that is random!

• There are known (although convoluted) examples of encryption schemes that can be proven secure in
the Random Oracle model, but they are insecure when the oracle is replaced with any hash function

• There are no known “natural” schemes that have been attacked while proven secure in the Random
Oracle model

Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Virus scanners: There is no need to keep an explicit database of all malicious
files. It suffices to keep a database of their hashes

Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Virus scanners: There is no need to keep an explicit database of all malicious
files. It suffices to keep a database of their hashes

Deduplication: If two users upload the same file to a cloud provider, there is no
need to upload and store both files. The client sends a hash h of the file. If the
cloud provider already has a file with hash h, a pointer is added to existing copy.

Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Virus scanners: There is no need to keep an explicit database of all malicious
files. It suffices to keep a database of their hashes

Deduplication: If two users upload the same file to a cloud provider, there is no
need to upload and store both files. The client sends a hash h of the file. If the
cloud provider already has a file with hash h, a pointer is added to existing copy.

File synchronization: To synchronize two files between different machines, we
can first compute their hashes. If the hashes match, there is nothing to do.
Otherwise the files are split into chunks and only the chunks with different hashes
are updated.

Applications of Hash Functions: Fingerprinting & Deduplication
If H is a collision-resistant hash function, and x is a (part of) a file, then we can think of H(x) as a
unique identifier of that (part of the) file

Virus scanners: There is no need to keep an explicit database of all malicious
files. It suffices to keep a database of their hashes

Deduplication: If two users upload the same file to a cloud provider, there is no
need to upload and store both files. The client sends a hash h of the file. If the
cloud provider already has a file with hash h, a pointer is added to existing copy.

Peer-to-peer file sharing: Hashes are used to uniquely identify files (and
chunk of files) in peer-to-peer file-sharing networks.

File synchronization: To synchronize two files between different machines, we
can first compute their hashes. If the hashes match, there is nothing to do.
Otherwise the files are split into chunks and only the chunks with different hashes
are updated.

magnet:?xt=urn:btih:C9A337562CB0360FD6F5AB40FD2B1B81D5325DBD

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . .

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

• What if x is bad password? E.g., what if x is an English word?

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

• What if x is bad password? E.g., what if x is an English word?

• We can easily check H(x′) = y for all English words x.

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

• What if x is bad password? E.g., what if x is an English word?

• We can easily check H(x′) = y for all English words x.

• In fact, we can store all H(x′) in a rainbow table, to recover x in seconds!

/etc/shadow

Applications of Hash Functions: Password Hashing

Storing a password as a plaintext is dangerous!

• We can instead store a hash y = H(x) of the password x.

• When we need to check whether a string x is the correct password, we can instead check H(x) = y.

• If an attacker learns y, it still cannot efficiently recover x. . . assuming that x is a good password!

• What if x is bad password? E.g., what if x is an English word?

• We can easily check H(x′) = y for all English words x.

• In fact, we can store all H(x′) in a rainbow table, to recover x in seconds!

/etc/shadow

• Solution: pick a random string z called salt.

Compute y = H(z∥x) and store the pair (z, y).

Applications of Hash Functions: Key Derivation

• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

Applications of Hash Functions: Key Derivation

• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

• Sometimes it is more convenient for the parties to rely on some shared secret information x

• E.g., a passphrase, biometric data, . . .

Applications of Hash Functions: Key Derivation

• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

• Sometimes it is more convenient for the parties to rely on some shared secret information x

• E.g., a passphrase, biometric data, . . .

• Hash functions provide a way of using the shared secret to derive a (close to) uniform key, as long as
the shared secret comes from a “sufficiently random” (but not necessarily uniform) distribution

Applications of Hash Functions: Key Derivation

• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

• Sometimes it is more convenient for the parties to rely on some shared secret information x

• E.g., a passphrase, biometric data, . . .

• Hash functions provide a way of using the shared secret to derive a (close to) uniform key, as long as
the shared secret comes from a “sufficiently random” (but not necessarily uniform) distribution

Definition: a probability distribution D has m bits of min-entropy if, for every x, it holds that
Pr[X = x] ≤ 2−m, where X is a random variable with distribution D.

Intuitively: the most likely value of X happens with probability at most 2−m

Applications of Hash Functions: Key Derivation

• Typically, symmetric-key encryption schemes require the key k to be chosen from the uniform
distribution

• Sometimes it is more convenient for the parties to rely on some shared secret information x

• E.g., a passphrase, biometric data, . . .

• Hash functions provide a way of using the shared secret to derive a (close to) uniform key, as long as
the shared secret comes from a “sufficiently random” (but not necessarily uniform) distribution

Definition: a probability distribution D has m bits of min-entropy if, for every x, it holds that
Pr[X = x] ≤ 2−m, where X is a random variable with distribution D.

Intuitively: the most likely value of X happens with probability at most 2−m

• If H is a random oracle, then H(x) is uniform as long as the attacker does not query H with x.

• If an attacker makes q queries to H(·), it will query H with x with probability at most q · 2−m.

Choose k = H(x)

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

• Binding: it is infeasible (or even impossible) for the committer to output a commitment that can be
“opened” as two different messages m,m′

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

• Binding: it is infeasible (or even impossible) for the committer to output a commitment that can be
“opened” as two different messages m,m′

In some sense: a digital equivalent of placing a message in a sealed envelope (hiding),
which is opened at a later time

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

• Binding: it is infeasible (or even impossible) for the committer to output a commitment that can be
“opened” as two different messages m,m′

In some sense: a digital equivalent of placing a message in a sealed envelope (hiding),
which is opened at a later time

To commit to m:

• Pick a random string r and compute com = H(m ∥ r)

Applications of Hash Functions: Commitment Schemes

A commitment scheme allows a party to

• Commit to a value m

• At a later time, “open” the commitment to reveal m

The commitment scheme must be:

• Hiding: the commitment “reveals nothing” about m

• Binding: it is infeasible (or even impossible) for the committer to output a commitment that can be
“opened” as two different messages m,m′

In some sense: a digital equivalent of placing a message in a sealed envelope (hiding),
which is opened at a later time

To commit to m:

• Pick a random string r and compute com = H(m ∥ r)

To open the commitment:

• Send m and r. Given some m′ and r′ one can easily check whether com = H(m′ ∥ r′)

Applications of Hash Functions: Merkle Trees

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Applications of Hash Functions: Merkle Trees

Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Applications of Hash Functions: Merkle Trees

Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Drawback: Long message (and reveals all xj)

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Applications of Hash Functions: Merkle Trees

Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Drawback: Long message (and reveals all xj)

Solution 2:

• Compute and send h = ⟨H(x1), H(x2), . . . , H(xt)⟩
• Reveal xi and i, Bob checks H(xi) against the i-th hash in h

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Applications of Hash Functions: Merkle Trees

Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Drawback: Long message (and reveals all xj)

Solution 2:

• Compute and send h = ⟨H(x1), H(x2), . . . , H(xt)⟩
• Reveal xi and i, Bob checks H(xi) against the i-th hash in h

• Drawback: h is a long list of t hashes

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Applications of Hash Functions: Merkle Trees

Solution 1:

• Compute and send h = H(x1∥x2∥ . . . ∥xt)

• Reveal xi by providing all xj

• Drawback: Long message (and reveals all xj)

Solution 2:

• Compute and send h = ⟨H(x1), H(x2), . . . , H(xt)⟩
• Reveal xi and i, Bob checks H(xi) against the i-th hash in h

• Drawback: h is a long list of t hashes

• Alice wants to compute some fingerprint h of a list of strings ⟨x1, . . . , xt⟩ to send to Bob

• At a later time, Alice wants to convince Bob that xi was part of the list of strings

Solution 3: Merkle trees

Applications of Hash Functions: Merkle Trees

• Build a complete binary tree with t leaves

• Each node u stores a hash

Applications of Hash Functions: Merkle Trees

h1 = H(x1) h2 = H(x2) h3 = H(x3) h4 = H(x4) h5 = H(x5) h6 = H(x6) h7 = H(x7) h7 = H(x7)

x1 x2 x3 x4 x5 x6 x7 x8

• Build a complete binary tree with t leaves

• Each node u stores a hash

• The hash stored in the i-th leaf is H(xi)

Applications of Hash Functions: Merkle Trees

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

x1 x2 x3 x4 x5 x6 x7 x8

• Build a complete binary tree with t leaves

• Each node u stores a hash

• The hash stored in the i-th leaf is H(xi)

• The hash stored in an internal node with u
and v as children is H(hu∥hv)

Applications of Hash Functions: Merkle Trees

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

• Build a complete binary tree with t leaves

• Each node u stores a hash

• The hash stored in the i-th leaf is H(xi)

• The hash stored in an internal node with u
and v as children is H(hu∥hv)

Applications of Hash Functions: Merkle Trees

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

• Build a complete binary tree with t leaves

• Each node u stores a hash

• The hash stored in the i-th leaf is H(xi)

• The hash stored in an internal node with u
and v as children is H(hu∥hv)• The final hash of the whole list ⟨x1, . . . , xt⟩ is

the hash stored in the root.

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

• Alice only sends xi plus O(log t) short hashes

Advantages:

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

• Alice only sends xi plus O(log t) short hashes

• Bob still doesn’t know the values xj with j ̸= i

Advantages:

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

• Alice only sends xi plus O(log t) short hashes

• Bob still doesn’t know the values xj with j ̸= i

Advantages:

Commitment scheme with partial reveal!

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

Applications of Hash Functions: Merkle Trees

To convince Bob that xi was part of the hashed strings:

• Alice sends xi along with the hashes of all siblings of the vertices in the path from the i-th leaf to
the root

• Alice only sends xi plus O(log t) short hashes

• Bob still doesn’t know the values xj with j ̸= i

Advantages:

Commitment scheme with partial reveal!

h1,2 = H(h1∥h2)

h1 = H(x1) h2 = H(x2)

h3,4 = H(h3∥h4)

h3 = H(x3) h4 = H(x4)

h5,6 = H(h5∥h6)

h5 = H(x5) h6 = H(x6)

h7,8 = H(h7∥h8)

h7 = H(x7) h7 = H(x7)

h1,4 = H(h1,2∥h3,4) h5,8 = H(h5,6∥h7,8)

h1,8 = H(h1,4∥h5,8)

x1 x2 x3 x4 x5 x6 x7 x8

If H is collision resistant, then the hash function computed by the above Merkle tree construction is
collision resistant for any fixed t.

The construction can be generalized to handle nonconstant t.

Merkle Trees: Bitcon & SPV

• Each block of the blockchain contains list of transactions x1, . . . , xt

• The hash of the block is computed using a Merkle tree

In Bitcoin:

Credit: W. Dai, J. Deng, Q.
Wang, C. Cui, D. Zou, H. Jin

Merkle Trees: Bitcon & SPV

• Each block of the blockchain contains list of transactions x1, . . . , xt

• The hash of the block is computed using a Merkle tree

• Some nodes (called SPV nodes, from simple payment verification) only store
the hashes of the blocks in the blockchain (and not their contents)

In Bitcoin:

Credit: W. Dai, J. Deng, Q.
Wang, C. Cui, D. Zou, H. Jin

Merkle Trees: Bitcon & SPV

• Each block of the blockchain contains list of transactions x1, . . . , xt

• The hash of the block is computed using a Merkle tree

• Easy to convince a SPV node that a given transaction belongs to a block in the blockchain

• Some nodes (called SPV nodes, from simple payment verification) only store
the hashes of the blocks in the blockchain (and not their contents)

In Bitcoin:

Credit: W. Dai, J. Deng, Q.
Wang, C. Cui, D. Zou, H. Jin

