
A little (Computational) Number Theory and Group Theory

Public key cryptographic constructions require some notions of number theory and group theory

Number theory and group theory are huge fields

We will only see what’s needed for the following lectures

A little (Computational) Number Theory and Group Theory

Public key cryptographic constructions require some notions of number theory and group theory

Number theory and group theory are huge fields

We will only see what’s needed for the following lectures

Differently from the pure mathematics approach, we will also be interested in how quickly we can
solve various problems

In particular, we are interested in whether the problems at hand can be solved in polynomial time

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

• An elementary operation involving integers with b bits requires time Θ(b)

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

How do we store big (non-negative) integers in practice?

• An elementary operation involving integers with b bits requires time Θ(b)

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

How do we store big (non-negative) integers in practice?

• Arrays of digits

• E.g., each entry in the array is a byte and stores a digit in base 256

74 20681 92176241 108 31 42

• An elementary operation involving integers with b bits requires time Θ(b)

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

How do we store big (non-negative) integers in practice?

• Arrays of digits

• E.g., each entry in the array is a byte and stores a digit in base 256

74 20681 92

Encodes: 74·2568+241·2567+176·2566+81·2565+206·2564+92·2563+108·2562+31·256+42

176241 108 31 42

= 1382 474 571 160 304 230 186

• An elementary operation involving integers with b bits requires time Θ(b)

Representing Integers

In the the word-RAM model we assume that each integer is stored in a single memory word

This is not a good model for problems that deal with large numbers

Instead we use the logarithmic cost model

• Storing an integer n requires ≈ log n bits

How do we store big (non-negative) integers in practice?

• Arrays of digits

• E.g., each entry in the array is a byte and stores a digit in base 256

74 20681 92

Encodes: 74·2568+241·2567+176·2566+81·2565+206·2564+92·2563+108·2562+31·256+42

176241 108 31 42

= 1382 474 571 160 304 230 186 Requires 71 bits to represent (does not fit in a 64-bit word)

• An elementary operation involving integers with b bits requires time Θ(b)

Recall the difference between polynomial-time and pseudopolynomial-time algorithms

Representing Integers

An algorithm that takes an integer n and runs in time Θ(n) is not a polynomial-time algorithm

Running times are measured as a function of the input length

Recall the difference between polynomial-time and pseudopolynomial-time algorithms

Representing Integers

An algorithm that takes an integer n and runs in time Θ(n) is not a polynomial-time algorithm

Running times are measured as a function of the input length

• The running time is polynomial w.r.t. the value of the integer n

• It is not polynomial in the length of the input, i.e., the number of bits needed to represent n

• As a function of the input length η, the time complexity is Θ(2η)

• This is an exponential-time algorithm!

The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

• Adding n and m requires time O(log n+ logm)

• Multiplying n and m requires time O((logn) · (logm)) (can be improved)

The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

What about exponentiation?

• Given m and n, compute mn

• Adding n and m requires time O(log n+ logm)

• Multiplying n and m requires time O((logn) · (logm)) (can be improved)

The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

What about exponentiation?

• Given m and n, compute mn

Fix m = 2. Given n, compute 2n.

• What’s the size of the input?

• What’s the size of the output?

• Adding n and m requires time O(log n+ logm)

• Multiplying n and m requires time O((logn) · (logm)) (can be improved)

The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

What about exponentiation?

• Given m and n, compute mn

Fix m = 2. Given n, compute 2n.

• What’s the size of the input? Θ(logn)

• What’s the size of the output? Θ(n)

• Adding n and m requires time O(log n+ logm)

• Multiplying n and m requires time O((logn) · (logm)) (can be improved)

The grade-school algorithms for addition and multiplication (over big integers) run in polynomial-time

Representing Integers

What about exponentiation?

• Given m and n, compute mn

Fix m = 2. Given n, compute 2n.

• What’s the size of the input? Θ(logn)

• What’s the size of the output? Θ(n)

• We cannot even write out the result in polynomial-time

• Adding n and m requires time O(log n+ logm)

• Multiplying n and m requires time O((logn) · (logm)) (can be improved)

Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

• a mod N = r by definition

• a = b (mod N) is a shorthand for (a mod N) = (b mod N)

Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

• a mod N = r by definition

• a = b (mod N) is a shorthand for (a mod N) = (b mod N)

• a+ b mod N = ((a mod N) + (b mod N)) mod N

• a · b mod N = ((a mod N) · (b mod N)) mod N

We can reduce intermediate values during computation of additions and products:

Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

• a mod N = r by definition

• a = b (mod N) is a shorthand for (a mod N) = (b mod N)

• a+ b mod N = ((a mod N) + (b mod N)) mod N

• a · b mod N = ((a mod N) · (b mod N)) mod N

We can reduce intermediate values during computation of additions and products:

Example:

7236782 · 23392301 mod 100

Reminder: Modular arithmetic

Proposition: Let a be an integer and let N be a positive integer. There exist unique integers q, r for
which a = qN + r and 0 ≤ r < N .

• a mod N = r by definition

• a = b (mod N) is a shorthand for (a mod N) = (b mod N)

• a+ b mod N = ((a mod N) + (b mod N)) mod N

• a · b mod N = ((a mod N) · (b mod N)) mod N

We can reduce intermediate values during computation of additions and products:

Example:

7236782 · 23392301 mod 100 = 82 · 1 mod 100 = 82

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = ab/2 mod N and return x · x mod N

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = ab/2 mod N and return x · x mod N

• If b is odd: recursively compute x = a(b−1)/2 mod N and return x · x · a mod N

Reminder: Modular arithmetic

There are polynomial-time algorithms for:

• Modular reduction (given a and N , compute a mod N)

• Modular addition

• Modular multiplication

What about modular exponentiation?

Given an integer N > 0 and a, b ∈ {0, . . . , N − 1} compute ab mod N .

• We cannot simply compute ab and then perform modular reduction.

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = ab/2 mod N and return x · x mod N

• If b is odd: recursively compute x = a(b−1)/2 mod N and return x · x · a mod N

Recusion depth: O(log b)
The non-recursive part of each call involves a constant
number of polynomial-time operations

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

If b is invertible and xb = yb (mod N) then x = y (mod N)

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

• If b is invertible, then it has a unique inverse a ∈ {0, . . . , N − 1}.

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

• If b is invertible, then it has a unique inverse a ∈ {0, . . . , N − 1}.

Proof: Let a and a′ be inverses of b. ab = 1 = a′b (mod N) =⇒ a = a′ (mod N) □

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

• We denote the unique inverse of an invertible element b with b−1 (mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

• If b is invertible, then it has a unique inverse a ∈ {0, . . . , N − 1}.

Proof: Let a and a′ be inverses of b. ab = 1 = a′b (mod N) =⇒ a = a′ (mod N) □

A non-negative integer b is invertible modulo N ≥ 1 if there exists an integer a such that ab = ba = 1
(mod N)

• We denote the unique inverse of an invertible element b with b−1 (mod N)

Reminder: Modular arithmetic

• This is not necessarily true if b is not invertible: 1 · 2 = 3 · 2 (mod 4) but 1 ̸= 3 (mod 4)

Theorem: b is invertible modulo N if and only if b and N are coprime

Two integers a, b are coprime if gcd(a, b) = 1

If b is invertible and xb = yb (mod N) then x = y (mod N)

x = xba = yba = y (mod N)Proof: Let a be an inverse of b. □

• If b is invertible, then it has a unique inverse a ∈ {0, . . . , N − 1}.

Proof: Let a and a′ be inverses of b. ab = 1 = a′b (mod N) =⇒ a = a′ (mod N) □

Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

Bézout’s identity

Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

The extended Euclidean algorithm is able to compute gcd(a, b) and the integers X and Y in
polynomial time.

Bézout’s identity

Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

The extended Euclidean algorithm is able to compute gcd(a, b) and the integers X and Y in
polynomial time.

Bézout’s identity

If b is invertible modulo N how do we (efficiently) find b−1?

Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

The extended Euclidean algorithm is able to compute gcd(a, b) and the integers X and Y in
polynomial time.

Bézout’s identity

If b is invertible modulo N how do we (efficiently) find b−1?

• Let X and Y be such that XN + Y b = gcd(N, b) = 1

Bézout’s identity: Let a, b be positive integers. Then there exist integers X,Y such that
Xa+ Y b = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in
this way.

The extended Euclidean algorithm is able to compute gcd(a, b) and the integers X and Y in
polynomial time.

Bézout’s identity

If b is invertible modulo N how do we (efficiently) find b−1?

• Let X and Y be such that XN + Y b = gcd(N, b) = 1

• Since XN + Y b = 1 we have 0 + Y b = 1 (mod N) =⇒ Y is an inverse for b.

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Some consequences:

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □

Some consequences:

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □
• Each element has a unique inverse.

Some consequences:

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □
• Each element has a unique inverse.

Some consequences:

Proof: If g has inverses h and h′ then: h = h ◦ e = h ◦ (g ◦ h′) = (h ◦ g) ◦ h′ = e ◦ h′ = h′.
□

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □
• Each element has a unique inverse.

The order of a group is the cardinality |G| of G. If G is a finite set, then the group is finite.

Some consequences:

Proof: If g has inverses h and h′ then: h = h ◦ e = h ◦ (g ◦ h′) = (h ◦ g) ◦ h′ = e ◦ h′ = h′.
□

Group Theory: Some Definitions

A group is a pair (G, ◦), where G is a set, ◦ : G×G → G is a binary operation, and the following
conditions are satisfied:

• Existence of an identity: There is an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

• Associativity: For all a, b, c ∈ G, it holds that (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Existence of inverses: For all g ∈ G, there is some h ∈ G such that g ◦ h = h ◦ g = e

• Exactly one element e satisfies the first condition. This element is called the identity element.

Proof: Let e, f ∈ G be identity elements. We must have e = f . Indeed: e = e ◦ f = f . □
• Each element has a unique inverse.

The order of a group is the cardinality |G| of G. If G is a finite set, then the group is finite.

If the operation ◦ is commutative (i.e., a ◦ b = b ◦ a for all a, b ∈ G) then the group is Abelian.

Some consequences:

Proof: If g has inverses h and h′ then: h = h ◦ e = h ◦ (g ◦ h′) = (h ◦ g) ◦ h′ = e ◦ h′ = h′.
□

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Group

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Not a group. Not closed. 1 + (−1) = 0 ̸∈ Q \ {0}

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Not a group. Not closed. 1 + (−1) = 0 ̸∈ Q \ {0}

Group

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Not a group. Not closed. 1 + (−1) = 0 ̸∈ Q \ {0}

Group

Depends on N .
In general not a group (no inverses).

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Not a group. Not closed. 1 + (−1) = 0 ̸∈ Q \ {0}

Group

Depends on N .
In general not a group (no inverses).

Group

Examples
Which of these are groups?

• (Z,+)

• (Z, ·)

• (Q \ {0},+)

• (Q \ {0}, ·)

• ({0, 1}n,⊕)

• ({0},+)

• ({1, . . . , N − 1}, ◦) where a ◦ b = ab mod N

Group

Not a group. No inverse for 0, no inverse for 2, ...

Group

Not a group. Not closed. 1 + (−1) = 0 ̸∈ Q \ {0}

Group

Depends on N .
In general not a group (no inverses).

Group

In the following we will only consider finite Abelian groups!

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Inverse of an element g ∈ G −g g−1

a− b is a shorthand for a+ (−b)

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Inverse of an element g ∈ G −g g−1

a− b is a shorthand for a+ (−b)

Group exponentiation:

for m ∈ N and g ∈ G: g ◦ g ◦ · · · ◦ g| {z }
m times

mg or m · g gm

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Inverse of an element g ∈ G −g g−1

a− b is a shorthand for a+ (−b)

Group exponentiation:

for m ∈ N and g ∈ G: g ◦ g ◦ · · · ◦ g| {z }
m times

mg or m · g gm

0g = 0 g0 = 1

Group Theory: Additive and Multiplicative Notations

Depending on the context, it might be convenient to write the group operation as + or as ·
Keep in mind that they are not the regular addition or multiplication, but the group operation instead!

Additive notation Multiplicative notation

Group operation applied to a, b ∈ G: a+ b a · b or just ab

Identity element e: 0 1

Inverse of an element g ∈ G −g g−1

a− b is a shorthand for a+ (−b)

Group exponentiation:

for m ∈ N and g ∈ G: g ◦ g ◦ · · · ◦ g| {z }
m times

mg or m · g gm

g−1 ◦ g−1 ◦ · · · ◦ g−1

| {z }
m times

(−m)g = m(−g) = −(mg) g−m = (g−1)m = (gm)−1

0g = 0 g0 = 1

Group Theory: Efficient Group Exponentiation

Given g ∈ G and an integer b, how do we compute gb?

Group Theory: Efficient Group Exponentiation

Given g ∈ G and an integer b, how do we compute gb?

(Essentially) the same approach of modular exponentiation works

Group Theory: Efficient Group Exponentiation

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = gb/2 and return x · x

• If b is odd: recursively compute x = g(b−1)/2 mod N and return x · x · g

Given g ∈ G and an integer b, how do we compute gb?

(Essentially) the same approach of modular exponentiation works

If b < 0 then compute h = g−1 and then h−b. For b ≥ 0:

Group Theory: Efficient Group Exponentiation

Divide and conquer:

• If b = 0 return 1

• If b is even: recursively compute x = gb/2 and return x · x

• If b is odd: recursively compute x = g(b−1)/2 mod N and return x · x · g

Given g ∈ G and an integer b, how do we compute gb?

(Essentially) the same approach of modular exponentiation works

If b < 0 then compute h = g−1 and then h−b. For b ≥ 0:

If the group operation can be computed in polynomial-time, then group exponentiation can be
performed in polynomial-time

The group ZN under addition modulo N

Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

The group ZN under addition modulo N

Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

• Closure: follows from the fact that addition is performed modulo N .

The group ZN under addition modulo N

Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

• Closure: follows from the fact that addition is performed modulo N .

• Existence of the identity: The identity element is 0. Indeed g + 0 = 0 + g = g (mod N).

The group ZN under addition modulo N

Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

• Closure: follows from the fact that addition is performed modulo N .

• Existence of the identity: The identity element is 0. Indeed g + 0 = 0 + g = g (mod N).

• Associativity, Commutativity: Trivial from addition over the integers.

The group ZN under addition modulo N

Let ZN = {0, 1, . . . , N − 1}. The set ZN is an Abelian group under addition modulo N .

• Closure: follows from the fact that addition is performed modulo N .

• Existence of the identity: The identity element is 0. Indeed g + 0 = 0 + g = g (mod N).

• Associativity, Commutativity: Trivial from addition over the integers.

• Existence of inverses: The inverse of g is −g mod N (recall that −g mod N is an integer between
0 and N − 1).

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

The group Z∗
N under multiplication modulo N

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

The group Z∗
N under multiplication modulo N

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

The group Z∗
N under multiplication modulo N

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

• Existence of inverses: Since g ∈ Z∗
N we have gcd(g,N) = 1 and hence there is some

h ∈ {1, . . . , N − 1} such that gh = 1 (mod N).

The group Z∗
N under multiplication modulo N

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

• Existence of inverses: Since g ∈ Z∗
N we have gcd(g,N) = 1 and hence there is some

h ∈ {1, . . . , N − 1} such that gh = 1 (mod N).

The group Z∗
N under multiplication modulo N

Since h is invertible modulo N (the inverse is g), then gcd(h,N) = 1 and h ∈ Z∗
N .

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

• Closure: Pick a, b ∈ Z∗
N let a′, b′ be their inverses. Notice that ab mod N is invertible modulo N

(the inverse is a′b′)

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

• Existence of inverses: Since g ∈ Z∗
N we have gcd(g,N) = 1 and hence there is some

h ∈ {1, . . . , N − 1} such that gh = 1 (mod N).

The group Z∗
N under multiplication modulo N

Since h is invertible modulo N (the inverse is g), then gcd(h,N) = 1 and h ∈ Z∗
N .

Then gcd(ab mod N,N) = 1 hence ab mod N ∈ Z∗
N .

Let Z∗
N ={0 < x < N | gcd(x,N) = 1}. The set Z∗

N is an Abelian group under multiplication modulo N .

Intuition: We are removing the “problematic” elements (i.e., those without an inverse) from {1, . . . , N},

Consequence: If p is a prime number then {1, 2, . . . , p− 1} is an Abelian group under multiplication
modulo p.

• Closure: Pick a, b ∈ Z∗
N let a′, b′ be their inverses. Notice that ab mod N is invertible modulo N

(the inverse is a′b′)

• Existence of the identity: The identity element is 1 ∈ Z∗
N . Indeed g · 1 = 1 · g = g (mod N).

• Associativity, Commutativity: Trivial from multiplication over the integers.

• Existence of inverses: Since g ∈ Z∗
N we have gcd(g,N) = 1 and hence there is some

h ∈ {1, . . . , N − 1} such that gh = 1 (mod N).

The group Z∗
N under multiplication modulo N

Since h is invertible modulo N (the inverse is g), then gcd(h,N) = 1 and h ∈ Z∗
N .

Then gcd(ab mod N,N) = 1 hence ab mod N ∈ Z∗
N .

Order of Z∗
N

What’s the order of Z∗
N?

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

multiples of pϕ(pq) = # multiples of q
multiples of
both p and q

− − +pq − 1

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = # multiples of q
multiples of
both p and q

− − +pq − 1 |{p, 2p, . . . , (q − 1)p}|

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = # multiples of q
multiples of
both p and q

− − +pq − 1 (q − 1)

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) =
multiples of
both p and q

− − +pq − 1 (q − 1) (p− 1)

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)

= pq − q − p+ 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1)

Order of Z∗
N

What’s the order of Z∗
N?

Euler’s totient function (or Euler’s phi function): ϕ(N) is the number of positive integers a ≤ N
such that a and N are coprime.

ϕ(N) = |{a ∈ {1, . . . , N − 1} : gcd(a,N) = 1}| = |Z∗
N |

What’s the order of Z∗
p when p is prime?

|Z∗
p| = ϕ(p) = p− 1 All integers a = 1, . . . , p− 1 are such that gcd(a, p) = 1

What’s the order of Z∗
N when N = pq and p, q are distinct prime numbers?

ϕ(pq) = − − +pq − 1 (q − 1) 0(p− 1)

= pq − q − p+ 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1) = ϕ(p)ϕ(q)

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Then:

g1g2 . . . gm = (gg1)(gg2) . . . (ggm)

(Each side of the equation contains only distinct elements, since the order of G in m, all elements are multiplied)

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Then:

g1g2 . . . gm = (gg1)(gg2) . . . (ggm)

(Each side of the equation contains only distinct elements, since the order of G in m, all elements are multiplied)

= gm(g1g2 . . . gm)

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Then:

g1g2 . . . gm = (gg1)(gg2) . . . (ggm)

(Each side of the equation contains only distinct elements, since the order of G in m, all elements are multiplied)

= gm(g1g2 . . . gm)

Multiplying both sides by (g1g2 . . . gm)−1

(g1g2 . . . gm)−1(g1g2 . . . gm) = gm(g1g2 . . . gm)(g1g2 . . . gm)−1

Fermat’s little theorem

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Proof in the Abelian case:

Let G = {g1, g2, . . . , gm}.

Since ggi = ggj =⇒ g−1ggi = g−1ggj =⇒ gi = gj we have gi ̸= gj =⇒ ggi ̸= ggj

Then:

g1g2 . . . gm = (gg1)(gg2) . . . (ggm)

(Each side of the equation contains only distinct elements, since the order of G in m, all elements are multiplied)

= gm(g1g2 . . . gm)

Multiplying both sides by (g1g2 . . . gm)−1

(g1g2 . . . gm)−1(g1g2 . . . gm) = gm(g1g2 . . . gm)(g1g2 . . . gm)−11 = = gm

□

Fermat’s little theorem: examples

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

In ZN (under addition modulo N):

• For all a ∈ ZN , we have N · a = 0. a+ a+ · · ·+ a| {z }
N times

= Na = 0 (mod N).

Fermat’s little theorem: examples

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

In ZN (under addition modulo N):

• For all a ∈ ZN , we have N · a = 0. a+ a+ · · ·+ a| {z }
N times

= Na = 0 (mod N).

In Z∗
N (under multiplication modulo N):

• For all a ∈ Z∗
N , we have aϕ(N) = 1

• For all a ∈ Z∗
p where p is prime, we have ap−1 = 1

Fermat’s little theorem: corollaries

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Corollary: Let G be a finite group of order m > 1 and let g ∈ G. For any integer x, gx = gx mod m.

Fermat’s little theorem: corollaries

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Corollary: Let G be a finite group of order m > 1 and let g ∈ G. For any integer x, gx = gx mod m.

Proof: Write x as qm+ r with r ∈ {0, . . . ,m− 1}. gx = gqm+r = (gm)q · gr = 1q · gr = gr. □

Fermat’s little theorem: corollaries

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Corollary: Let G be a finite group of order m > 1 and let g ∈ G. For any integer x, gx = gx mod m.

Proof: Write x as qm+ r with r ∈ {0, . . . ,m− 1}. gx = gqm+r = (gm)q · gr = 1q · gr = gr. □

Corollary: Let G be a finite group of order m > 1. Let e > 0 be an integer, and define the function
f : G → G as fe(g) = ge. If gcd(e,m) = 1 then

• 1) fe is a permutation;

• 2) f−1
e (g) = fd(g) = gd, where d is the inverse of e modulo m.

Fermat’s little theorem: corollaries

Theorem: Let G be a finite group of order m and let g ∈ G. Then gm = 1.

Corollary: Let G be a finite group of order m > 1 and let g ∈ G. For any integer x, gx = gx mod m.

Proof: Write x as qm+ r with r ∈ {0, . . . ,m− 1}. gx = gqm+r = (gm)q · gr = 1q · gr = gr. □

Corollary: Let G be a finite group of order m > 1. Let e > 0 be an integer, and define the function
f : G → G as fe(g) = ge. If gcd(e,m) = 1 then

• 1) fe is a permutation;

• 2) f−1
e (g) = fd(g) = gd, where d is the inverse of e modulo m.

Proof: We just need to show 2) since this implies that fe injective and surjective, i.e., a bijection.

fd(fe(g)) = (ge)d = ged = ged mod m = g1 mod m = g. □

Roadmap

Use the tools from number theory and group theory to...

• Find some problem that is easy to solve given some secret information but “hard” to solve otherwise

• Use the “hardness” of this problem to build secure public-key schemes

Roadmap

Use the tools from number theory and group theory to...

• Find some problem that is easy to solve given some secret information but “hard” to solve otherwise

• Use the “hardness” of this problem to build secure public-key schemes

The “hard” problems will be:

• Related to prime numbers and factoring

• Related to cyclic groups

Roadmap

Use the tools from number theory and group theory to...

• Find some problem that is easy to solve given some secret information but “hard” to solve otherwise

• Use the “hardness” of this problem to build secure public-key schemes

The “hard” problems will be:

• Related to prime numbers and factoring

• Related to cyclic groups

Generating Prime numbers

We will be interested in working with prime numbers

The security parameter n will be related to the number of bits of the prime numbers

A n-bit number is an integer between 2n and 2n+1 − 1 (i.e., its binary representation has n digits and
the most significant bit is 1).

Generating Prime numbers

We will be interested in working with prime numbers

How do we efficiently generate a random prime number with n bits?

The security parameter n will be related to the number of bits of the prime numbers

A n-bit number is an integer between 2n and 2n+1 − 1 (i.e., its binary representation has n digits and
the most significant bit is 1).

Generating Prime numbers

We will be interested in working with prime numbers

How do we efficiently generate a random prime number with n bits?

The security parameter n will be related to the number of bits of the prime numbers

A n-bit number is an integer between 2n and 2n+1 − 1 (i.e., its binary representation has n digits and
the most significant bit is 1).

• Suppose that we can check whether a number is prime in polynomial time

Generating Prime numbers

We will be interested in working with prime numbers

How do we efficiently generate a random prime number with n bits?

The security parameter n will be related to the number of bits of the prime numbers

A n-bit number is an integer between 2n and 2n+1 − 1 (i.e., its binary representation has n digits and
the most significant bit is 1).

• Suppose that we can check whether a number is prime in polynomial time

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Pick r u.a.r. in {0, 1}n−1 and let p ← 1∥r.

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

Running time?

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

Running time? O(t · poly(n))

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n)

t

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

At most

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n)

t
=

(1− 1

3n)
3n
� t

3n

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

At most

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n)

t
=

(1− 1

3n)
3n
� t

3n ≤ e−
t
3n

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

How do we pick t?

At most

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n)

t
=

(1− 1

3n)
3n
� t

3n ≤ e−
t
3n

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

How do we pick t? E.g., t = 3n2.

= e−nAt most

• Repeat up to t times:

• Choose a number p u.a.r. among all n-bit numbers

• If p is prime: return p

• Return “failure”

Generating Prime numbers

What’s the probability that an iteration selects a prime number p?

For n > 1, the fraction of n-bit numbers that are prime is at least 1
3n .

What’s the probability that the algorithm fails?

(1− 1
3n)

t
=

(1− 1

3n)
3n
� t

3n ≤ e−
t
3n

Running time? O(t · poly(n)) The output size is Θ(n). We allow time O(poly(n))

How do we pick t? E.g., t = 3n2.

= e−n

Negligible
The algorithm fails with negligible proability!

At most

Testing Primality

Can we check whether a number N is prime in polynomail time?

I.e., in time O(logk N) for some constant k.

Testing Primality

Can we check whether a number N is prime in polynomail time?

I.e., in time O(logk N) for some constant k.

Yes!

Testing Primality

Can we check whether a number N is prime in polynomail time?

I.e., in time O(logk N) for some constant k.

Yes!

• For a long time no polynomial-time deterministic algorithm was known

• Breakthrough in 2002: deterministic algorithm running in time O(log12 N · logk logN) for some
constant k.

• Can be improved to O(log6 N · logk logN) for some constant k.

Testing Primality

Can we check whether a number N is prime in polynomail time?

I.e., in time O(logk N) for some constant k.

Yes!

• For a long time no polynomial-time deterministic algorithm was known

• Breakthrough in 2002: deterministic algorithm running in time O(log12 N · logk logN) for some
constant k.

• Can be improved to O(log6 N · logk logN) for some constant k.

In practice randomized algorithm are used, since they are faster and fail with negligible probability.

• The Miller-Rabin primality test is a probabilistic polynomial-time algorithm with one-sided error

• If n is prime, the Miller-Rabin primality test reports n as prime with certainty

• If n is composite, the Miller-Rabin primality test might report n as prime, but only with negligible
probability.

Factoring

Given a composite N can we find p, q > 1 such that pq = N in polynomial time?

Factoring

Given a composite N can we find p, q > 1 such that pq = N in polynomial time?

• Not known to be solvable in polynomial time.

• Not known to be hard.

Factoring

Given a composite N can we find p, q > 1 such that pq = N in polynomial time?

• Not known to be solvable in polynomial time.

• Not known to be hard.

Conjectured not to be solvable in polynomial-time.

Factoring

Given a composite N can we find p, q > 1 such that pq = N in polynomial time?

• Not known to be solvable in polynomial time.

• Not known to be hard.

Conjectured not to be solvable in polynomial-time.

A fist attempt to formalize the hardness of factoring. Define a factoring experiment w-FactorA(n)
for a given algorithm A:

• Two n-bit integers x1, x2 are chosen u.a.r., and N = x1 · x2 is computed

• A outputs two integers x′
1, x

′
2

• The outcome of the experiment is 1 if x′
1, x

′
2 > 1 and x′

1 · x′
2 = N . Otherwise the outcome is 0.

• N is sent to A

Factoring

Given a composite N can we find p, q > 1 such that pq = N in polynomial time?

• Not known to be solvable in polynomial time.

• Not known to be hard.

Conjectured not to be solvable in polynomial-time.

A fist attempt to formalize the hardness of factoring. Define a factoring experiment w-FactorA(n)
for a given algorithm A:

• Two n-bit integers x1, x2 are chosen u.a.r., and N = x1 · x2 is computed

• A outputs two integers x′
1, x

′
2

• The outcome of the experiment is 1 if x′
1, x

′
2 > 1 and x′

1 · x′
2 = N . Otherwise the outcome is 0.

• N is sent to A

We could hope that, for all probabilistic polynomial-time algorithms A:

Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

We could hope that, for all probabilistic polynomial-time algorithms A:

Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

Factoring

Is this true?

We could hope that, for all probabilistic polynomial-time algorithms A:

Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

Factoring

Is this true?

There is a trivial algorithm that wins the above experiment with probability ≥ 3
4 .

We could hope that, for all probabilistic polynomial-time algorithms A:

Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

Factoring

Is this true?

There is a trivial algorithm that wins the above experiment with probability ≥ 3
4 .

A(N)

• If N is even

• Return x′
1 = 2, x′

2 = N/2

• Otherwise

• Return some arbitrary pair of numbers

We could hope that, for all probabilistic polynomial-time algorithms A:

Pr[w-FactorA(n) = 1] ≤ ε(n) for some negligible ε(n)

Factoring

Is this true?

There is a trivial algorithm that wins the above experiment with probability ≥ 3
4 .

A(N)

• If N is even

• Return x′
1 = 2, x′

2 = N/2

• Otherwise

• Return some arbitrary pair of numbers

With probability 1− (12)
2 = 3

4 at least one of x1 and x2 is even =⇒ N is even =⇒ A wins the
experiment.

Factoring

• It is easy to factor most integers!

• The “hardest” integers N to factor are those that have exactly two prime factors p, q

Factoring

• It is easy to factor most integers!

• The “hardest” integers N to factor are those that have exactly two prime factors p, q

• If N is composite then its smallest (non-trivial) factor is at most
√
N

Proof: let x be a (non-trivial) factor of N . If x ≤
√
N we are done.

Otherwise N/x is a (non-trivial) factor of N and N/x < N/
√
N =

√
N .

Factoring

• It is easy to factor most integers!

• The “hardest” integers N to factor are those that have exactly two prime factors p, q

• The two prime factors should be roughly
√
N , i.e., the two primes should have

(roughly) the same number of bits

• If N is composite then its smallest (non-trivial) factor is at most
√
N

Proof: let x be a (non-trivial) factor of N . If x ≤
√
N we are done.

Otherwise N/x is a (non-trivial) factor of N and N/x < N/
√
N =

√
N .

Factoring

• It is easy to factor most integers!

• The “hardest” integers N to factor are those that have exactly two prime factors p, q

• The two prime factors should be roughly
√
N , i.e., the two primes should have

(roughly) the same number of bits

Let GenModulus be a polynomial-time algorithm that, on input 1n , outputs a triple (N, p, q) where
N = pq, and p and q are n-bit primes, except with probability negligible in n.

• If N is composite then its smallest (non-trivial) factor is at most
√
N

Proof: let x be a (non-trivial) factor of N . If x ≤
√
N we are done.

Otherwise N/x is a (non-trivial) factor of N and N/x < N/
√
N =

√
N .

We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

The Factoring Assumption

We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption

We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.

We can now revise the previous experiment. For an algorithm A, define FactorA,GenModulus(n) as:

• Run GenModulus(1n) to obtain (N, p, q).

• A outputs two integers p′, q′

• The outcome of the experiment is 1 if p, q > 1 and pq = N . Otherwise the outcome is 0.

• N is sent to A

Definition: Factoring is hard relative to GenModulus if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[FactorA,GenModulus(n) = 1] ≤ ε(n).

The Factoring Assumption

Recall: this is just an assumption. We don’t currently know whether the factoring problem is hard.

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.

Are we there yet?

Are we there yet?

Almost...

• The factoring assumption is still too weak

• We need a stronger, but related assumption called the RSA assumption

Are we there yet?

Almost...

• The factoring assumption is still too weak

• We need a stronger, but related assumption called the RSA assumption

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Are we there yet?

Almost...

• The factoring assumption is still too weak

• We need a stronger, but related assumption called the RSA assumption

Let N = pq where p and q are distinct odd primes

The order of Z∗
N is ϕ(N) = (p− 1) · (q − 1)

• Trivial to compute if we know p and q

• “Hard” to compute if we know N but not p and q (can be shown to be equivalent to factoring N)

Pick e ∈ Z∗
N such that gcd(e,ϕ(N)) = 1.

• By the corollary of Fermat’s little theorem, fe(x) = xe is a permutation of Z∗
N

• Let d be the inverse of e modulo ϕ(N). Then fd(x) = xd is the inverse of fe.

(xe)d = (xd)e = x
(All the operations are performed modulo N)

e-th roots of x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

e-th roots of x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

Given N , e, and x, how do we compute x1/e?

e-th roots of x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

Given N , e, and x, how do we compute x1/e?

• If p and q are also known: easy!

• Compute ϕ(N) = (p− 1)(q − 1)

• Compute the inverse d of e modulo ϕ(N)

• Compute xd via modular exponentiation

e-th roots of x

Since (xe)d = x we can think of xd as the e-th root of x

• We define x1/e = xd

Given N , e, and x, how do we compute x1/e?

• If p and q are also known: easy!

• Compute ϕ(N) = (p− 1)(q − 1)

• Compute the inverse d of e modulo ϕ(N)

• Compute xd via modular exponentiation

• If p and q are not known:

• Computing ϕ(N) is as hard as factoring N

• We don’t know how to compute d without knowing ϕ(N)

• ???

The RSA problem

Informally: given a random y ∈ Z∗
N , computing y1/e is hard

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, for two n-bit primes p and q

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

The RSA problem

Informally: given a random y ∈ Z∗
N , computing y1/e is hard

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, for two n-bit primes p and q

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

A possible implementation:

• Generate two n-bit primes p, q chosen u.a.r.

• N ← p · q
• ϕ(N) ← (p− 1) · (q − 1)

• Pick some e with gcd(e,ϕ(N)) = 1

• d ← e−1 (mod ϕ(N))

• Output (N, e, d)

The RSA problem

Informally: given a random y ∈ Z∗
N , computing y1/e is hard

Let GenRSA be a polynomial-time algorithm that, on input 1n , outputs a triple (N, e, d) where:

• N = pq, for two n-bit primes p and q

• ed = 1 (mod ϕ(N))

The algorithm is allowed to fail with negligible probability.

A possible implementation:

• Generate two n-bit primes p, q chosen u.a.r.

• N ← p · q
• ϕ(N) ← (p− 1) · (q − 1)

• Pick some e with gcd(e,ϕ(N)) = 1

• d ← e−1 (mod ϕ(N))

• Output (N, e, d)

The choice of e is not believed to
affect the hardness of the RSA
problem

Common choices: e = 3 or
e = 216 + 1 for efficiency reasons

For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption

For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption

Definition: The RSA problem is hard relative to GenRSA if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).

For an algorithm A, define the experiment RSA-invA,GenRSA(n) as:

• Run GenRSA(1n) to obtain (N, e, d).

• A outputs x ∈ Z∗
N

• The outcome of the experiment is 1 if x is the e-th root of y, i.e., if xe = y (or equivalently
y1/e = yd = x). Otherwise the outcome is 0.

• Send N , e and y to A
• Choose y ∈ Z∗

N u.a.r.

The RSA assumption

Definition: The RSA problem is hard relative to GenRSA if for any probabilistic polynomial-time
algorithm A there exists a negligible function ε such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ ε(n).

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.

The RSA assumption and the factoring assumption

⇒

The RSA assumption: there exists a GenRSA algorithm relative to which the RSA problem is
hard.

The factoring assumption: there exists a GenModulus algorithm relative to which the factoring
problem is hard.

