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— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure \ If A can recover the secret then
any B D A can recover the secret

e The sets A € I are called qualifying sets

Idea: A set A C A of parties should be able to recover the secret if and only if A is a qualifying set

We can further assume that: Va € A s;t, {a} € I since otherwise we can simply send the secret to a

and restrict ourselves to the access structure ' ={A €T |a ¢ A} (this implies § ¢ T)
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Access Structures and Qualifying Sets

What's the access structure for a t-out-of-n threshold secret sharing scheme?

I ={Ac24 : |A >t}

Example:

e A = {Alice, Bob, Charlie, Dan}, n = |A| =4, t =2

o I' = { {Alice, Bob}, {Alice, Charlie}, {Alice, Dan}, {Bob, Charlie}, {Bob, Dan}, { Charlie, Dan},
{Alice, Bob, Charlie}, {Alice, Bob, Dan}, {Alice, Charlie, Dan}, {Bob, Charlie, Dan},
{Alice, Bob, Charlie, Dan} }
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Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure I' over a set of parties A with

respect to a space of secrets S is a pair of algorithms:

e Share(s,I'): a (randomized) algorithm that takes a secret s € S
and a monotone access structure I' and outputs a value s, for
every a € A. The value s, is called a's share of the secret.

e Recombine(H): a deterministic algorithm that takes a set
H = {s, | a € A} containing a share for each party in some set
A C A and outputs a secret s € S if A € I" and a failure symbol
1LifAgT.

Correctness: If H = {s, | a € A} for a set
A €T and all s, were output by Share(s,T"), — |—»|_Share

then Recombine(H) = s.
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A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
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Security Definition

A secret sharing scheme is information theoretically secure (or just secure) if no (computationally

unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Formalized similarly to perfect secrecy (there are multiple equivalent definitions):

A secret sharing scheme is secure if, for every s,s’ € S, every access structure I', every A C A with
A €T, and every vector of shares a = (ag)aca:

Pr((Sa)aca = o] = Pr([(S;)aca = o,

where S, (resp. S’) is a random variable representing the share given to the party a € A by
Share(T', s) (resp. Share(T", s’))
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Consider A = {a,b}. What are the possible access structures?

I'={0,{a},{b},{a,b}} No secret sharing needed

I'={{a}, {b},{a,b}} No secret sharing needed

I'={{a},{a,b}} Trivial: send secret to a and nothing to b

I'={{b},{a,b}} Trivial: send secret to b and nothing to a

I'={{a,b}} This is the only interesting case 2-out-of-2 threshold

secret-sharing scheme

Let the space of secrets be S = {0, 1}*

e Share(s,T'): choose r u.a.r. from {0,1}. Return s, = and s, = @ s.

e Recombine(H): if |H| < 2 return L. Otherwise H = {s,, Sp}, return s, @ sp.

Correctness: s, s, =7 @ (r ds) = s.
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2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

L

PI’[SG = Oéa] = PI‘[T — aa] DY
|
1

Pr[S! = a,] = Pr[r = a4 57

o If A= {b}, then for an arbitrary a = («y):

Pr[Sy =ap] =Prir®ds=ap] =Prlr=a, ®s|] = ﬁ%

1

Pr[S) = ap] = Pr[r © s’ = ap] = Pr[r = oy, ® 5] = 5

We have shown show that, regardless of s, Pr[S, = «] and Pr[S, = a] are constants
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Imagine that the secret s is the following image:

S

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share
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Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

. E . > E ® — overlay the two images
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Consider any A = {1,2...,n} with |A| = n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.
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Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T’

Example:

e A={X,Y, W, Z}
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Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T’

Example:

e A={X,Y, W, Z}

o '={{X,Z} {Y, W, Z} {X,)Y, Z} {X, W, Z} {X,Y, W, Z}}

o m(I') ={{X, 2}, {Y,W,Z}} (XAZ)V (Y AW A Z)

If we think of a each party a € A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

v (A

) Each set B; is a clause (conjunction of variables)
b

The formula is a disjunction of clauses

A set A of parties induces a truth assignment in which a is true iff a € A

The truth assignment satisfies the formula if and only if A is a qualifying set
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lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A

e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme

Each agent b € B; gets a share s,(f)

E.g., for By = {X,Z} we pick a random string for sg? and set 3<Zl) = 5@ sg%)

For Bo = {Y, W, Z} we pick random strings for s§,2) and SE/‘Q/) and set S(ZQ) =s& s§?> D S(V?/)

e The “or'" operators denote concatenation of the inner shares of each player
E.g., we combine the shares of the two clauses (X A Z) V (Y AW A Z) to obtain sx = 3(;),

Recombine & Correctness:

If A is a qualifying set, then there is some clause consisting only of variables in A.

The parties involved in the clause can recover s using the Recombine step of the corresponding
k-out-of-k threshold secret sharing scheme
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One notable example where this happens is the t-out-of-n case

o Ift = & there are (n%) = (2" /y/n) minimal qualifying sets

e The shares are exponentially longer than the secret!



Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the t-out-of-n case

o Ift = & there are (n%) = (2" /y/n) minimal qualifying sets

e The shares are exponentially longer than the secret!

Shamir proposed a secret t-out-of-n threshold secret-sharing scheme in
which all the shares have (approximately) the same length as the secret

The scheme uses Lagrange interpolating polynomials
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Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

o If x =z then each (z — z;)(z1 — 2;) ! evaluatesto 1 = /y(x1) =1

o If x = x; for i # 1 then the product includes (z —x;) =0 = {1(x;) =0

We can generalize this to all j: lj(z) = H (x —z)(x; — )

g( ) 1 ifi:j
-xi:
g 0 ifi#j

k)



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

f(x) =yl (x) + y2la(z) + - - + yrle ()

What's the value of f(x;)?



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

(@) = yrla(z) + y2lo(z) + - + yrle(z)
What's the value of f(x;)?
o If j £ 14 then ngj(ilj'z) =0

e Fori=j we have yl;(z;) =y; -1 =y;



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

(@) = yli(x) + y2lo(a) + - - + yil(z)
What's the value of f(x;)?

o If j #£ithenyl;(x;)=0
T e f(xi) = i

e Fori=j we have yl;(z;) =y; -1 =y;



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:
(@) = yili(z) + y2lo(z) + - + yrli(z)
What's the value of f(x;)?

o If j £ 14 then ngj(ilj'z) =0
> fx) = v
e Fori=j we have yl;(z;) =y; -1 =y;

f(x) is called the Lagrange interpolating polynomial



Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:
(@) = yili(z) + y2lo(z) + - + yrli(z)
What's the value of f(x;)?

o If j #£ithenyl;(x;)=0
T e f(xi) = i

e Fori=j we have yl;(z;) =y; -1 =y;

f(x) is called the Lagrange interpolating polynomial
e Each /; is the product of k£ — 1 terms (z — x;) (and some constants), therefore ¢; has degree k — 1

e f(x) is a sum of polynomials of degree k — 1, therefore f(x) has degree k — 1



Lagrange interpolating polynomials
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Proof:
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Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i
e The polynomial h(z) = g(z) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all

e h(x) has k roots and degree k — 1 =— h(z)=0 = g(x) = f(x)

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots
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Lagrange interpolating polynomials with coefficient over Z,

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

e Unclear how to do that over the reals

e Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Z,

A field is a set of elements together with two binary operations (F, &, ®) such that:
e (F,®) is an Abelian group, we call its identity element 0
e (F\{0},®) is an Abelian group
e The ® operation distributes over the & operation: i.e., a® (b®¢c) = (a®b) D (a ® ¢)

Good news:
e The fundamental theorem of algebra can be extended to univariate polynomials over a finite field

e If pis prime then (Z,,+, ) is a finite filed
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Theorem: Let {(z1,v1),-.., (2K, yx)} be a set of k points in Z,, x Z, with
distinct x;s. There is a unique polynomial f(x) of degree at most k — 1 with
coefficients in Z,, such that f(x;) =y; (mod p) foralli=1,... k.

The construction and the proof of uniqueness are identical to the previous ones

(where —z and ! denote the additive and multiplicative inverses of x in Z,).
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Theorem: Let {(z1,v1),-.., (2K, yx)} be a set of k points in Z,, x Z, with
distinct x;s. There is a unique polynomial f(x) of degree at most k — 1 with
coefficients in Z,, such that f(x;) =y; (mod p) foralli=1,... k.

The construction and the proof of uniqueness are identical to the previous ones

(where —z and ! denote the additive and multiplicative inverses of x in Z,).

Example: f(z)=2*+42+7
Source: Mike Rosulek, The Joy of Cryptography

Over the reals Over Zq4

11 7




Back to Shamir Secret Sharing

The set of parties is A ={1,2,...,n}
The space of secrets S is Z,, for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s,n} with ©(¢ 4 logn) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

Share(s): (we omit the access structure, which is determined by k and n)
e Choose k — 1 coefficients 1,...,Br—1 independently and u.a.r. from Z,
e Define the polynomial: f(x) = s+ Zf:_ll B;xt (f is a random polynomial such that f(0) = s)

o Fori=1,...,n:

e Assign to party ¢ the share s; = (i, f(¢)) , where f is evaluated in Z,




Back to Shamir Secret Sharing

The set of parties is A ={1,2,...,n}
The space of secrets S is Z,, for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s,n} with ©(¢ 4 logn) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

Share(s): (we omit the access structure, which is determined by k and n)
e Choose k — 1 coefficients 1,...,Br—1 independently and u.a.r. from Z,
e Define the polynomial: f(x) = s+ Zfz_ll B;xt (f is a random polynomial such that f(0) = s)
e Fori=1,...,n:

e Assign to party ¢ the share s; = (i, f(¢)) , where f is evaluated in Z,

Recombine({s; | i € A}) (A is a qualifying set)

e Compute the (unique) interpolating polynomial f (with coefficient in Z,) of degree k — 1 such
that f(i) = s;

e Return f(0)
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Alice and Bob want to jointly compute a function f(z1,Z2, ..., Tm,Y1,Y2, -, Yn)
e Alice knows the inputs x1,...,x,,
e Bob knows the inputs vy1, ..., 1y,

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1,...,Zm,y1,...,yn) (this is inevitable)

Example: In the “movie selection” scenario, Alice and Bob wanted to compute f(x1,y1) = 21 A 1

We actually consider a stronger variant: Alice wants to learn f(x1,%2,..., Zm, Y1, Y2, -, Yn)
while Bob learns nothing

e If we can solve this variant, then we can solve the above case (Alice sends the final output Bob)

e This allows us to solve the more general case in which Alice learns fa(x1,%2,. .., Tom, Y1, Y2, - - -5 Yn)
and Bob learns fp(z1, T2, ..., Tm, Y1, Y2, -, Yn)
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We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

This is the analogous of a passive eavesdropper in classic cryptography

The protocol will be based on evaluating a (polynomial-size) Boolean circuit that computes f

For simplicity, think of Boolean circuits with a single output (the protocol extends to multiple outputs in a

straightforward way)
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She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.
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The key used to encrypt an output consists of the two corresponding input wire labels



Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme
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The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. ..
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The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table
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The key used to encrypt an output consists of the two corresponding input wire labels
She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table

Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs
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Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs
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Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows



Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (k3)
I Encké,k% (k’gl,)
Enckg,k?(kg) 5
0 Enc,: o (k3) Encyo 1 (k5)
kl SH Ean17k0 (kg)
1 Enck?lj (k3)
Ean1 kl (ki Enck;kg (kg)
k% Enc,o kl (k’i) Enck%,k% (ké)
yQ @ Encko kg (k*ff Enck%,kg (/{é)
Enc,: kg(k‘i Encyo k;(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

Once Bob knows the (garbled) circuit’s output, he sends it to Alice
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Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Alice knows whether the label she received corresponds to 0 or 1.
She learns f(x1,%2, ... T, Y1, Y25 - - - s Yn)



