Secret Sharing

Imagine some sensitive information that is kept by a single agent

e A master encryption key h /Q\

———————

e Your bitcoin wallet

e Nuclear codes

Secret Sharing

Imagine some sensitive information that is kept by a single agent

e A master encryption key
e Your bitcoin wallet
e Nuclear codes

Single point of failure!

P

———————

A IMASINATION

A CRYPTO NERD'S

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELUETER. To CRACK 1T

NO GOOD! TS
U096 -BIT RE‘:N

E‘JlL ‘F‘LHN
1S FOILED! ™~

}1

1

WHAT WoULD

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT T,

7Q

Secret Sharing

Imagine some sensitive information that is kept by a single agent

e A master encryption key

P

———————

e Your bitcoin wallet

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

A IMASINATION

A CRYPTO NERD'S

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELUETER. To CRACK 1T

NO GOOD! TS
U096 -BIT RE‘-N

E\”L ‘F‘LHN
1S FOILED! ™~

}1

WHAT WoULD

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT T,

7Q

Secret Sharing

Imagine some sensitive information that is kept by a single agent

e A master encryption key h /Q\
B

e Your bitcoin wallet

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

Idea: Share the information
across several agents

Secret Sharing

Imagine some sensitive information that is kept by a single agent
e A master encryption key h

e Your bitcoin wallet

———————

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

)4
Idea: Share the information

across several agents Magic box

Secret Sharing

Imagine some sensitive information that is kept by a single agent
e A master encryption key h

e Your bitcoin wallet

———————

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

a°%
°/9 o
Y o

» | '‘Magic box"

Idea: Share the information
across several agents

Secret Sharing

Imagine some sensitive information that is kept by a single agent

e A master encryption key h

e Your bitcoin wallet

———————

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

a°%
°/9 o
Y o

Idea: Share the information

across several agents » | 'Magic box

Share 1

Share 2

Share 3

Share 4

Secret Sharing

Imagine some sensitive information that is kept by a single agent
e A master encryption key h

e Your bitcoin wallet

———————

e Nuclear codes

Single point of failure!

An attacker can compromise one machine and steal
the sensitive information

a°%
°/9 o
Y o

» | '‘Magic box"

Idea: Share the information
across several agents

Secret Sharing

wol
°/ o
VS

Another

T
/ “Magic box”
/

PPl epe
G % {1

Idea:

e The shares of all agents can be used to reconstruct the secret

Secret Sharing

wol
°/ o
VS

Another

T
/ “Magic box”
/

PPl epe
G % {1

Idea:

e The shares of all agents can be used to reconstruct the secret

Secret Sharing

AEL %

Another
“Magic box” - ??

Idea:

e The shares of all agents can be used to reconstruct the secret

e The shares of any subset of agents look random and convey no information about the secret

Secret Sharing

wol
°/ o
VS

Another
“Magic box” - ?7

@

iyl ope

EEXT
\/

Idea:

e The shares of all agents can be used to reconstruct the secret

e The shares of any subset of agents look random and convey no information about the secret

What if the adversary destroys a share?

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.

e Any subset of < t agent must not be able to gain any information about the secret

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.

e Any subset of < t agent must not be able to gain any information about the secret

a0l
°/ o
VA

Another

.
7 [Magic box
/

Example: n=4,t =3

=
Q
Q

I

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.

e Any subset of < t agent must not be able to gain any information about the secret

a0l
°/ o
VA

Another

.
/ “Magic box’ -
/

Example: n=4,t =3

=
Q
Q

I

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.
e Any subset of < t agent must not be able to gain any information about the secret

Example: n=4,t =3

AR B
A e

"Magic box” | ——» 2?7

Secret Sharing

What if the adversary destroys a share?

ldea:

e If there are n agents, any subset of at least £ agents must be able to recover the secret.
e Any subset of < t agent must not be able to gain any information about the secret

Example: n=4,t =3

AR B
A e

"Magic box” | ——» 2?7

t-out-of-n threshold secret-sharing scheme

Access Structures and Qualifying Sets

Even more general:

e Let A be a set of n parties aq,...,a,
o Let I' C 24 a collection of subsets of A such that:

— AeTl
— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

Access Structures and Qualifying Sets

Even more general:

e Let A be a set of n parties aq,...,a,
o Let I' C 24 a collection of subsets of A such that:
— Ael

— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure

e The sets A € I are called qualifying sets

Access Structures and Qualifying Sets

Even more general:

e Let A be a set of n parties aq,...,a,
o Let I' C 24 a collection of subsets of A such that:
— Ael

— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure

e The sets A € I are called qualifying sets

Idea: A set A C A of parties should be able to recover the secret if and only if A is a qualifying set

Access Structures and Qualifying Sets

Even more general:

e Let A be a set of n parties aq,...,a,
o Let I' C 24 a collection of subsets of A such that:
— Ael

— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure \ If A can recover the secret then
any B D A can recover the secret

e The sets A € I are called qualifying sets

Idea: A set A C A of parties should be able to recover the secret if and only if A is a qualifying set

Access Structures and Qualifying Sets

Even more general: If all parties come together, they
: t be able to recover the
o Let A be a set of n parties a1,...,a mus :
P b P secret (otherwise I' = () and there
o Let I' C 2 a collection of subsets of A such that: is no point in sharing the secret)
//
— AeTl >

— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure \ If A can recover the secret then
any B D A can recover the secret

e The sets A € I are called qualifying sets

Idea: A set A C A of parties should be able to recover the secret if and only if A is a qualifying set

Access Structures and Qualifying Sets

Even more general: If all parties come together, they
: t be able to recover the
o Let A be a set of n parties a1,...,a mus :
P b P secret (otherwise I' = () and there
o Let I' C 2 a collection of subsets of A such that: is no point in sharing the secret)
//
— AeTl >

— I' is an upward closed set w.r.t. set inclusion: if AcI"and A C BC Athen BeT

e The set I' is a called a (monotone) access structure \ If A can recover the secret then
any B D A can recover the secret

e The sets A € I are called qualifying sets

Idea: A set A C A of parties should be able to recover the secret if and only if A is a qualifying set

We can further assume that: Va € A s;t, {a} € I since otherwise we can simply send the secret to a

and restrict ourselves to the access structure ' ={A €T |a ¢ A} (this implies § ¢ T)

Access Structures and Qualifying Sets

What's the access structure for a t-out-of-n threshold secret sharing scheme?

Access Structures and Qualifying Sets

What's the access structure for a t-out-of-n threshold secret sharing scheme?

I ={Ac24 : |A >t}

Access Structures and Qualifying Sets

What's the access structure for a t-out-of-n threshold secret sharing scheme?

I ={Ac24 : |A >t}

Example:

e A = {Alice, Bob, Charlie, Dan}, n = |A| =4, t =2

o I' = { {Alice, Bob}, {Alice, Charlie}, {Alice, Dan}, {Bob, Charlie}, {Bob, Dan}, { Charlie, Dan},
{Alice, Bob, Charlie}, {Alice, Bob, Dan}, {Alice, Charlie, Dan}, {Bob, Charlie, Dan},
{Alice, Bob, Charlie, Dan} }

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure I' over a set of parties A with

respect to a space of secrets S is a pair of algorithms:

e Share(s,I'): a (randomized) algorithm that takes a secret s € S

and a monotone access structure I' and outputs a value s, for —|—*

every a € A. The value s, is called a's share of the secret.

Share

P

fIEIE 1 I

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure I' over a set of parties A with

respect to a space of secrets S is a pair of algorithms:

e Share(s,I'): a (randomized) algorithm that takes a secret s € S
and a monotone access structure I' and outputs a value s, for
every a € A. The value s, is called a's share of the secret.

e Recombine(H): a deterministic algorithm that takes a set
H = {s, | a € A} containing a share for each party in some set
A C A and outputs a secret s € S if A € I" and a failure symbol
1LifAgT.

IS 1 1

N/

Share

P

fIEIE 1 I

Recombine|—*

Access Structures and Qualifying Sets

Definition: A secret sharing scheme for a monotone access structure I' over a set of parties A with

respect to a space of secrets S is a pair of algorithms:

e Share(s,I'): a (randomized) algorithm that takes a secret s € S
and a monotone access structure I' and outputs a value s, for
every a € A. The value s, is called a's share of the secret.

e Recombine(H): a deterministic algorithm that takes a set
H = {s, | a € A} containing a share for each party in some set
A C A and outputs a secret s € S if A € I" and a failure symbol
1LifAgT.

Correctness: If H = {s, | a € A} for a set
A €T and all s, were output by Share(s,T"), — |—»|_Share

then Recombine(H) = s.

an

IS 1 1

IS 1 1

N/

Share

P

fIEIE 1 I

Recombine|—*

N/

Recombine|—*

Security Definition

A secret sharing scheme is information theoretically secure (or just secure) if no (computationally
unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Security Definition

A secret sharing scheme is information theoretically secure (or just secure) if no (computationally

unbounded) adversary can learn anything about the underlying secret without having access to the
shares of a qualifying set.

Formalized similarly to perfect secrecy (there are multiple equivalent definitions):

A secret sharing scheme is secure if, for every s,s’ € S, every access structure I', every A C A with
A €T, and every vector of shares a = (ag)aca:

Pr((Sa)aca = o] = Pr([(S;)aca = o,

where S, (resp. S’) is a random variable representing the share given to the party a € A by
Share(T', s) (resp. Share(T", s’))

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?
I = {0,{a}, {b},{a,b}}

I' = {{a}, {0}, {a,b}}

I'={{a},{a,b}}

['={{b},{a,b}}

I'= {{a,b}}

Secret sharing with 2 parties
Consider A = {a,b}. What are the possible access structures?
I ={0,{a},{b},{a,b}} No secret sharing needed
I = {{a}, {6}, {a,b}} No secret sharing needed
I'={{a},{a,b}}
I' = {{b},{a,b}}
I'={{a,b}}

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?

I'={0,{a},{b},{a,b}} No secret sharing needed

I'={{a},{b},{a,b}} No secret sharing needed
I'={{a},{a,b}} Trivial: send secret to a and nothing to b
I'={{b},{a,b}} Trivial: send secret to b and nothing to a

I'= {{a,b}}

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?

I'={0,{a},{b},{a,b}} No secret sharing needed

I'={{a}, {b},{a,b}} No secret sharing needed

I'={{a},{a,b}} Trivial: send secret to a and nothing to b

I'={{b},{a,b}} Trivial: send secret to b and nothing to a

I'={{a,b}} This is the only interesting case 2-out-of-2 threshold

secret-sharing scheme

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?

I'={0,{a},{b},{a,b}} No secret sharing needed

I'={{a}, {b},{a,b}} No secret sharing needed

I'={{a},{a,b}} Trivial: send secret to a and nothing to b

I'={{b},{a,b}} Trivial: send secret to b and nothing to a

I'={{a,b}} This is the only interesting case 2-out-of-2 threshold

secret-sharing scheme

Let the space of secrets be S = {0, 1}*

e Share(s,T'): choose r u.a.r. from {0,1}. Return s, = and s, = @ s.

e Recombine(H): if |H| < 2 return L. Otherwise H = {s,, Sp}, return s, @ sp.

Secret sharing with 2 parties

Consider A = {a,b}. What are the possible access structures?

I'={0,{a},{b},{a,b}} No secret sharing needed

I'={{a}, {b},{a,b}} No secret sharing needed

I'={{a},{a,b}} Trivial: send secret to a and nothing to b

I'={{b},{a,b}} Trivial: send secret to b and nothing to a

I'={{a,b}} This is the only interesting case 2-out-of-2 threshold

secret-sharing scheme

Let the space of secrets be S = {0, 1}*

e Share(s,T'): choose r u.a.r. from {0,1}. Return s, = and s, = @ s.

e Recombine(H): if |H| < 2 return L. Otherwise H = {s,, Sp}, return s, @ sp.

Correctness: s, s, =7 @ (r ds) = s.

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

Pr[S, = a,] = Prlr = a,] = 2_112

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

1
by

\v}

Pr[S, = a,] = Pr[r = a4

|
Pr[S! = a,] = Pr[r = a4 2—16

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

1
by

\v}

Pr[S, = a,] = Pr[r = a4

|
Pr[S! = a,] = Pr[r = a4 2—16

o If A= {b}, then for an arbitrary a = («y):

Pr[Sy, = ap] = Pr[r & s =)

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).
o If A= {a}, then for an arbitrary a = («,):

1
by

Pr[S, = a,] = Pr[r = a4

= N

Pr[S! = a,] = Pr[r = a4 2—16

o If A= {b}, then for an arbitrary a = («y):

Pr[Sy = ap]| = Pr[r & s =ap] =Prr = ap @ s

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

PI’[SG = Oéa] = PI‘[T — aa] — o7
PI’[SZL = Oéa] = PI’[T — aa] — 3¢
o If A= {b}, then for an arbitrary a = («y):

Pr(Sy =) =Pr[r®s=ap] =Prir=a, ®s] = 5

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

1
by

Pr[S, = a,] = Pr[r = a4

V]

|
Pr[S! = a,] = Pr[r = a4 2—16

o If A= {b}, then for an arbitrary a = («y):
Pr(Sp =ap| =Prlrds=a] =Prr=a,®s] = ﬁ%

Pr[S) = ap] = Pr[r © s’ = ap] = Pr[r = oy, ® 5] = 5

2-out-of-2 threshold secret sharing: security

Let s,5" € {0,1}* be two arbitrary secrets and consider S, S, output by Share(s,T') (resp. S., S}
output by Share(s’,I)).

o If A= {a}, then for an arbitrary a = («,):

L

PI’[SG = Oéa] = PI‘[T — aa] DY
|
1

Pr[S! = a,] = Pr[r = a4 57

o If A= {b}, then for an arbitrary a = («y):

Pr[Sy =ap] =Prir®ds=ap] =Prlr=a, ®s|] = ﬁ%

1

Pr[S) = ap] = Pr[r © s’ = ap] = Pr[r = oy, ® 5] = 5

We have shown show that, regardless of s, Pr[S, = «] and Pr[S, = a] are constants

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S Sa

We generate the first share by coloring each pixel white or black u.a.r.

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S Sa
We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

o= <=1 Heo -l Hol-

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S Sa Sb
We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

o= <=1 Heo -l Hol-

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S Sa Sb
We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

o= <=1 Heo -l Hol-

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

— B 5 ® — overlay the two images

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S Sa Sb
We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

"ulel" iy “ubda"lal w"l"ul u"Eu"l

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

— B 5 ® — overlay the two images

2-out-of-2 threshold secret sharing: a visual interpretation

Imagine that the secret s is the following image:

S

We generate the first share by coloring each pixel white or black u.a.r.

We generate the second share by XOR-ing each pixel of the secret with the corresponding pixel of the
first share

"ulel" iy “ubda"lal w"l"ul u"Eu"l

Physical visual 2-out-of-2 threshold secret sharing scheme: subdivide each pixel in 4 subpixels

. E . > E ® — overlay the two images

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| = n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0,1}*

Index the parties with integers.
Makes notation easier.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| =n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.

e Let 7,---7,_1 be n — 1 strings chosen independent and u.a.r. from {0, 1}¢.

e Return (s1,82,...,8,) where s;, =7; fori <nand s, =711 ®ro@---Br,_1Ds

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| =n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.

e Let 7,---7,_1 be n — 1 strings chosen independent and u.a.r. from {0, 1}¢.

e Return (s1,82,...,8,) where s;, =7; fori <nand s, =711 ®ro@---Br,_1Ds

Recombine(H):
o If |H| <n return L.

e Otherwise H = {s1,S2,...,8,}, return s1 @ so @ -+ @ sp,.

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| = n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.

e Let 7,---7,_1 be n — 1 strings chosen independent and u.a.r. from {0, 1}¢.

e Return (s1,82,...,8,) where s;, =7; fori <nand s, =711 ®ro@---Br,_1Ds

Recombine(H):
o If |H| <n return L.

e Otherwise H = {s1,S2,...,8,}, return s1 @ so @ -+ @ sp,.

Correctness: s{ & Sso D - D Sy—1 D Sp,

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| = n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.

e Let 7,---7,_1 be n — 1 strings chosen independent and u.a.r. from {0, 1}¢.

e Return (s1,82,...,8,) where s;, =7; fori <nand s, =711 ®ro@---Br,_1Ds

Recombine(H):
o If |H| <n return L.

e Otherwise H = {s1,S2,...,8,}, return s1 @ so @ -+ @ sp,.

Correctness: s; G so@ - B Sp_1PBS, =51 DSoD - DSy 1D(S1DS2D...5-1DS)

n-out-of-n threshold secret sharing

The above idea generalizes easily to n > 2 parties:

Consider any A = {1,2...,n} with |A| = n > 2 and the access structure I' = { A}

Let the space of secrets be S = {0, 1} Index the parties with integers.

Share(s,T): Makes notation easier.

e Let 7,---7,_1 be n — 1 strings chosen independent and u.a.r. from {0, 1}¢.

e Return (s1,82,...,8,) where s;, =7; fori <nand s, =711 ®ro@---Br,_1Ds

Recombine(H):
o If |H| <n return L.

e Otherwise H = {s1,S2,...,8,}, return s1 @ so @ -+ @ sp,.

Correctness: s; G so @ - B S 1BS, =51DSoD - DSy 1D(S1DS2D...8_1DS) =S5,

Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T

Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T

Example:

e A={XY, W, 7}

o '={{X,Z} {Y, W, Z} {X,)Y, Z} {X, W, Z} {X,Y, W, Z}}
o m(l') = {{X,Z2},{Y,W, 2} }

Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T’

Example:

e A={X,Y, W, Z}

o '={{X,Z} {Y, W, Z} {X,)Y, Z} {X, W, Z} {X,Y, W, Z}}
o m(l') = {{X,Z2},{Y,W, 2} }

If we think of a each party a € A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

v (A

Each set B; is a clause (conjunction of variables)
b . L
The formula is a disjunction of clauses

Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T’

Example:

e A={X,Y, W, Z}

o '={{X,Z} {Y, W, Z} {X,)Y, Z} {X, W, Z} {X,Y, W, Z}}

o m(I') ={{X, 2}, {Y,W,Z}} (XAZ)V (Y AW A Z)

If we think of a each party a € A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

v (A

Each set B; is a clause (conjunction of variables)
b . L
The formula is a disjunction of clauses

Secret sharing with arbitrary access structures

Let " be an access structure (for an arbitrary number of parties n)
A qualifying set B € I" is minimal if there is no qualifying set B’ € I" such that B’ C B.
Let m(I") = {B1, Bo, ...} denote the set of all minimal qualifying sets in T’

Example:

e A={X,Y, W, Z}

o '={{X,Z} {Y, W, Z} {X,)Y, Z} {X, W, Z} {X,Y, W, Z}}

o m(I') ={{X, 2}, {Y,W,Z}} (XAZ)V (Y AW A Z)

If we think of a each party a € A as a Boolean variable, we can define the following Boolean formula
in disjunctive normal form:

v (A

) Each set B; is a clause (conjunction of variables)
b

The formula is a disjunction of clauses

A set A of parties induces a truth assignment in which a is true iff a € A

The truth assignment satisfies the formula if and only if A is a qualifying set

lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A
e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme

Each agent b € B; gets a share s,(f)

lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A

e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme
Each agent b € B; gets a share s,(f)

E.g., for By = {X,Z} we pick a random string for sg? and set 3<Zl) = 5@ sg%)

For Bo = {Y, W, Z} we pick random strings for s§,2) and SE/‘Q/) and set S(ZQ) =s& s§?> D S(V?/)

lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A
e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme

Each agent b € B; gets a share s,(f)
E.g., for By = {X, Z} we pick a random string for sé? and set 3<Zl) =i sg%)

For Bo = {Y, W, Z} we pick random strings for s§,2) and s%) and set S(ZQ) =s& s§?> D S(V?/)

e The “or'" operators denote concatenation of the inner shares of each player

lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A

e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme
Each agent b € B; gets a share s,(f)

E.g., for By = {X,Z} we pick a random string for sg? and set s<Zl) = 5@ sg%)

For Bo = {Y, W, Z} we pick random strings for s§,2) and s%) and set 3(22) =s& s§3> D S(V?/)

e The “or'" operators denote concatenation of the inner shares of each player

E.g., we combine the shares of the two clauses (X A Z) V (Y AW A Z) to obtain sx = s(;),

lto—Nishizeki—Saito Secret Sharing
Share:

We can read the DNF formula as a set of instruction to build the shares s,, a € A

e Each clause B; corresponds to an “inner” |B;|-out-of-| B;| threshold secret sharing scheme

Each agent b € B; gets a share s,(f)

E.g., for By = {X,Z} we pick a random string for sg? and set 3<Zl) = 5@ sg%)

For Bo = {Y, W, Z} we pick random strings for s§,2) and SE/‘Q/) and set S(ZQ) =s& s§?> D S(V?/)

e The “or'" operators denote concatenation of the inner shares of each player
E.g., we combine the shares of the two clauses (X A Z) V (Y AW A Z) to obtain sx = 3(;),

Recombine & Correctness:

If A is a qualifying set, then there is some clause consisting only of variables in A.

The parties involved in the clause can recover s using the Recombine step of the corresponding
k-out-of-k threshold secret sharing scheme

Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the t-out-of-n case

o Ift = & there are (n%) = (2" /y/n) minimal qualifying sets

e The shares are exponentially longer than the secret!

Shamir Secret Sharing

The previous secret sharing scheme can produce shares that are much
larger than the secret s

One notable example where this happens is the t-out-of-n case

o Ift = & there are (n%) = (2" /y/n) minimal qualifying sets

e The shares are exponentially longer than the secret!

Shamir proposed a secret t-out-of-n threshold secret-sharing scheme in
which all the shares have (approximately) the same length as the secret

The scheme uses Lagrange interpolating polynomials

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

k)

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

k)

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

o If x =z then each (z — z;)(z1 — 2;) ! evaluatesto 1 = /y(x1) =1

k)

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

o If x =z then each (z — z;)(z1 — 2;) ! evaluatesto 1 = /y(x1) =1

o If x = x; for i # 1 then the product includes (z —x;) =0 = {1(x;) =0

k)

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

o If x =z then each (z — z;)(z1 — 2;) ! evaluatesto 1 = /y(x1) =1

o If x = x; for i # 1 then the product includes (z —x;) =0 = {1(x;) =0

We can generalize this to all j: lj(z) = H (x —z)(x; —)

k)

Lagrange interpolating polynomials

Consider a set {(x1,y1),..., (xk,yx)} of k points in R? with distinct z;s.

We want to build a polynomial f that “passes through” all the points (i.e., f(x;) = y; fori=1,...

Consider the polynomial:

1 1

l1(z) = (& —x2)(w1 —22)™ 1 - (w—23)(21 —23)™ - ... - (2 — o) (21 — 28) ™

What happens when ¢; is evaluated at the points z1, 29, ..., 27

o If x =z then each (z — z;)(z1 — 2;) ! evaluatesto 1 = /y(x1) =1

o If x = x; for i # 1 then the product includes (z —x;) =0 = {1(x;) =0

We can generalize this to all j: lj(z) = H (x —z)(x; —)

g() 1 ifi:j
-xi:
g 0 ifi#j

k)

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

f(x) =yl (x) + y2la(z) + - - + yrle ()

What's the value of f(x;)?

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

(@) = yrla(z) + y2lo(z) + - + yrle(z)
What's the value of f(x;)?
o If j £ 14 then ngj(ilj'z) =0

e Fori=j we have yl;(z;) =y; -1 =y;

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:

(@) = yli(x) + y2lo(a) + - - + yil(z)
What's the value of f(x;)?

o If j #£ithenyl;(x;)=0
T e f(xi) = i

e Fori=j we have yl;(z;) =y; -1 =y;

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:
(@) = yili(z) + y2lo(z) + - + yrli(z)
What's the value of f(x;)?

o If j £ 14 then ngj(ilj'z) =0
> fx) = v
e Fori=j we have yl;(z;) =y; -1 =y;

f(x) is called the Lagrange interpolating polynomial

Lagrange interpolating polynomials

The collection of polynomials ¢1(x),...,¢;(x) is called a Lagrange basis

Consider the polynomial:
(@) = yili(z) + y2lo(z) + - + yrli(z)
What's the value of f(x;)?

o If j #£ithenyl;(x;)=0
T e f(xi) = i

e Fori=j we have yl;(z;) =y; -1 =y;

f(x) is called the Lagrange interpolating polynomial
e Each /; is the product of k£ — 1 terms (z — x;) (and some constants), therefore ¢; has degree k — 1

e f(x) is a sum of polynomials of degree k — 1, therefore f(x) has degree k — 1

Lagrange interpolating polynomials

-4}

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i

e The polynomial h(xz) = g(x) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all ¢

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i

e The polynomial h(xz) = g(x) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all ¢

e h(x) has k roots and degree k — 1

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i
e The polynomial h(z) = g(z) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all

e h(x) has k roots and degree k — 1

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i
e The polynomial h(z) = g(z) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all

e h(x) has k roots and degree k —1 = h(x) =0

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots

Lagrange interpolating polynomials

Theorem: there is a unique polynomial f(z) of degree at most k£ — 1 with real coefficients such
that f(z;) =y; foralli=1,... k.

Proof:

e We have already shown that a polynomial f(x) of degree k — 1 exists, we just need to argue that it
IS unique

e Let g(x) be any polynomial of degree at most k — 1 such that g(x;) = y; for all i
e The polynomial h(z) = g(z) — f(x) has degree at most k — 1 and satisfies h(x;) = 0 for all

e h(x) has k roots and degree k — 1 =— h(z)=0 = g(x) = f(x)

Fundamental theorem of algebra: every non-zero, single-variable, degree d polynomial
with complex coefficients has, counted with multiplicity, exactly d complex roots

Lagrange interpolating polynomials with coefficient over Z,

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

e Unclear how to do that over the reals

e Unclear how to represent a real number on a computer

Lagrange interpolating polynomials with coefficient over Z,

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

e Unclear how to do that over the reals

e Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Z,

Lagrange interpolating polynomials with coefficient over Z,

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

e Unclear how to do that over the reals

e Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Z,

A field is a set of elements together with two binary operations (F, &, ®) such that:
e (F,®) is an Abelian group, we call its identity element 0
e (F\{0},®) is an Abelian group
e The ® operation distributes over the & operation: i.e., a® (b®¢c) = (a®b) D (a ® ¢)

Lagrange interpolating polynomials with coefficient over Z,

We will need to choose an interpolating polynomial uniformly at random to obtain a secure
secret-sharing scheme

e Unclear how to do that over the reals

e Unclear how to represent a real number on a computer

Idea: we restrict ourselves to polynomials with coefficients over Z,

A field is a set of elements together with two binary operations (F, &, ®) such that:
e (F,®) is an Abelian group, we call its identity element 0
e (F\{0},®) is an Abelian group
e The ® operation distributes over the & operation: i.e., a® (b®¢c) = (a®b) D (a ® ¢)

Good news:
e The fundamental theorem of algebra can be extended to univariate polynomials over a finite field

e If pis prime then (Z,,+,) is a finite filed

Lagrange interpolating polynomials with coefficient over Z,

Theorem: Let {(z1,v1),-.., (2K, yx)} be a set of k points in Z,, x Z, with
distinct x;s. There is a unique polynomial f(x) of degree at most k — 1 with
coefficients in Z,, such that f(x;) =y; (mod p) foralli=1,... k.

The construction and the proof of uniqueness are identical to the previous ones

(where —z and ! denote the additive and multiplicative inverses of x in Z,).

Lagrange interpolating polynomials with coefficient over Z,

176

Theorem: Let {(z1,v1),-.., (2K, yx)} be a set of k points in Z,, x Z, with
distinct x;s. There is a unique polynomial f(x) of degree at most k — 1 with
a1 | coefficients in Zj such that f(z;) =y; (mod p) foralli=1,...,k.

121 f.".!(9,124

The construction and the proof of uniqueness are identical to the previous ones

110

(where —z and ! denote the additive and multiplicative inverses of x in Z,).

00 !f'r(s,103)_
88
s
L(784) 5
7 i Example: f(z)=2"+4c+7
6 ',.".’(6,67)
55 5 Source: Mike Rosulek, The Joy of Cryptography
7:(5.52)
’,"’ Ovel’ the rea|S
) /@)
S 329)
22 -
//’(2,1 9)
u "7'(1,12)
(0.7)

0

o 1 2 3 4 5 6 7 8 9 10 11

176

165

154

143

132

121

110

99

88

77

66

55

44

33

22

11

0

= ;
7 (112)

Lagrange interpolating polynomials with coefficient over Z,

¢
1.(10,147)

$
L (9,124

.
/- (8,103)—

i
£(7,84)

P
7 (6,67)

P
7:(5.52)

J
7 (4,39)

7
7 (3,28)

3
—(2,19)

(0.7)

o 1 2 3 4 5 6 7 8 9 10 11

Theorem: Let {(z1,v1),-.., (2K, yx)} be a set of k points in Z,, x Z, with
distinct x;s. There is a unique polynomial f(x) of degree at most k — 1 with
coefficients in Z,, such that f(x;) =y; (mod p) foralli=1,... k.

The construction and the proof of uniqueness are identical to the previous ones

(where —z and ! denote the additive and multiplicative inverses of x in Z,).

Example: f(z)=2*+42+7
Source: Mike Rosulek, The Joy of Cryptography

Over the reals Over Zq4

11 7

Back to Shamir Secret Sharing

The set of parties is A ={1,2,...,n}
The space of secrets S is Z,, for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s,n} with ©(¢ 4 logn) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

Share(s): (we omit the access structure, which is determined by k and n)
e Choose k — 1 coefficients 1,...,Br—1 independently and u.a.r. from Z,
e Define the polynomial: f(x) = s+ Zf:_ll B;xt (f is a random polynomial such that f(0) = s)

o Fori=1,...,n:

e Assign to party ¢ the share s; = (i, f(¢)) , where f is evaluated in Z,

Back to Shamir Secret Sharing

The set of parties is A ={1,2,...,n}
The space of secrets S is Z,, for some prime number p

If the secret s is a binary number with t bits, we can pick a prime p > max{s,n} with ©(¢ 4 logn) bits.

The Shamir k-out-of-n threshold secret sharing scheme is as follows:

Share(s): (we omit the access structure, which is determined by k and n)
e Choose k — 1 coefficients 1,...,Br—1 independently and u.a.r. from Z,
e Define the polynomial: f(x) = s+ Zfz_ll B;xt (f is a random polynomial such that f(0) = s)
e Fori=1,...,n:

e Assign to party ¢ the share s; = (i, f(¢)) , where f is evaluated in Z,

Recombine({s; | i € A}) (A is a qualifying set)

e Compute the (unique) interpolating polynomial f (with coefficient in Z,) of degree k — 1 such
that f(i) = s;

e Return f(0)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold
secret sharing scheme

We will work in the field Zq4

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Zq4
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares sq, ss, and sy:

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares sq, ss, and sy:

o f(2) =8 t1(x) + 0ol +4 - L (a)

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares sq, ss, and sy:

o f(z)=8-0,(x) +o\-e><Q+ 4 04(z)

e /1(z)=(z—2)1-2)" 1 (z—4)(1—-4)"" =(x—-2)10-(x—4)7 = 422 + 9z + 10
o l3(z)=(x—1)4-1)""1 (z-2)4—-2)" =(x—-1)4-(x—2)6 =222 + 5z + 4

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares sq, ss, and sy:

o f(x):8-61(x)+0\-€>@L+4-€3(a:)=8-(4x2—|—9x—|—10)—|—4-(2x2+5x—l—4)
e /1(z)=(z—2)1-2)" 1 (z—4)(1—-4)"" =(x—-2)10-(x—4)7 = 422 + 9z + 10
o l3(z)=(x—1)4-1)""1 (z-2)4—-2)" =(x—-1)4-(x—2)6 =222 + 5z + 4

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares sq, ss, and sy:

° f(x):8-61(x)+0\-€>@L+4-€3(a:)=8-(4x2—|—9x—|—10)—|—4-(2x2+5x+4) = T2? +4z +8
e /1(z)=(z—2)1-2)" 1 (z—4)(1—-4)"" =(x—-2)10-(x—4)7 = 422 + 9z + 10
o l3(z)=(x—1)4-1)""1 (z-2)4—-2)" =(x—-1)4-(x—2)6 =222 + 5z + 4

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares s, s2, and s4: £(0) ~
o f(x) :8-61(x)+0\-€>@L+4-€3(a:):8-(4x2—|—9x—|—10)—|—4-(2x2+5x—l—4) = T72% 4+ 4z 4+ 8
o /i(z)=(z—-2)1-2)" - (2 —-4)(1—-4)"1 =@—-2)10-(x—4)7 = 422 + 9z + 10
o I3(x)=(z—1)4-1)" 1 (z-2)4-2)"! =(x—-1)4-(z—2)6 =222+ 5z + 4

Shamir Secret Sharing: Example

Consider a set of n = 5 parties that want to share a secret s = 8 using Sharmir’s 3-out-of-5 threshold

secret sharing scheme
We will work in the field Z;
Sharing:
e We pick two random coefficients 51 =4, 85 =7
e The polynomial f(z) = s+ 1z + Box? is 8 + 4x + 72
e The five shares are: s1 = (1, f(1)) = (1,8) 52 =1(2,f(2)) =(2,0) s3=(3,f(3)) = (3,6)
se= (4 F(4) = (4,4) s5=(5F(5) = (5,8)

Reconstructing the secret from the shares s, s2, and s4: £(0) ~
o f(x) :8-61(x)+0\-€>@L+4-€3(a:):8-(4x2—|—9x—|—10)—|—4-(2x2+5x—l—4) = T72% 4+ 4z 4+ 8
o /i(z)=(z—-2)1-2)" - (2 —-4)(1—-4)"1 =@—-2)10-(x—4)7 = 422 + 9z +10
o l3(x)=(z—1)4-1)"t (z-2)4-2)"1 =(x—-1)4-(—2)6 =222 + 5x +4

Shamir Secret Sharing: Security

Let A C A be a non-qualifying set, and consider any vector @ = (a;)ica.

Let n(c, s) be the number of polynomials (with coefficients in Z,) g of degree k — 1 such that
g(i1) = a; (mod p) for i € A, and ¢g(0) = s (mod p).

Shamir Secret Sharing: Security

Let A C A be a non-qualifying set, and consider any vector @ = (a;)ica.

Let n(c, s) be the number of polynomials (with coefficients in Z,) g of degree k — 1 such that
g(i1) = a; (mod p) for i € A, and ¢g(0) = s (mod p).

The polynomial f is chosen u.a.r. among all the p*~1 polynomials (with coefficients in Z,) of
degree k — 1 such that f(0) = s (mod p)

Shamir Secret Sharing: Security

Let A C A be a non-qualifying set, and consider any vector @ = (a;)ica.

Let n(c, s) be the number of polynomials (with coefficients in Z,) g of degree k — 1 such that
g(i1) = a; (mod p) for i € A, and ¢g(0) = s (mod p).

The polynomial f is chosen u.a.r. among all the p*~1 polynomials (with coefficients in Z,) of
degree k — 1 such that f(0) = s (mod p)

Pr[(Si)ica = a] = Besd = nles) _ pri(gh), 4 =q

p

Shamir Secret Sharing: Security

Let A C A be a non-qualifying set, and consider any vector @ = (a;)ica.

Let n(c, s) be the number of polynomials (with coefficients in Z,) g of degree k — 1 such that
g(i1) = a; (mod p) for i € A, and ¢g(0) = s (mod p).

The polynomial f is chosen u.a.r. among all the p*~1 polynomials (with coefficients in Z,) of
degree k — 1 such that f(0) = s (mod p)

Pr((Si)iea = o = U = 1) — pr(g;

Vp\/\)ZEA —

We will show that these quantities do not depend on the secrets s and s’

]

Shamir Secret Sharing: Security

Let A C A be a non-qualifying set, and consider any vector @ = (a;)ica.

Let n(c, s) be the number of polynomials (with coefficients in Z,) g of degree k — 1 such that
g(i1) = a; (mod p) for i € A, and ¢g(0) = s (mod p).

The polynomial f is chosen u.a.r. among all the p*~1 polynomials (with coefficients in Z,) of
degree k — 1 such that f(0) = s (mod p)

Pr((Si)iea = o = U = 1) — pr(g;

Vp\/\)ZEA —

We will show that these quantities do not depend on the secrets s and s’

]

Theorem: Let {(z1,v1),...,(zn,yn)} be a set of h < k points in Z,, X Z, with distinct z;s, where
p > k. The number of polynomials g of degree £ — 1 with coefficients in Z,, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*—".

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).

We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:

e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.
Inductive step:

e Consider y > 1 and assume that the claim holds for 7 — 1.

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.
Inductive step:
e Consider y > 1 and assume that the claim holds for 7 — 1.
e Since h =k —j < k < p, there must be some z* € Z, that is different from all x;s

*

o Let N(y*) be the number of polynomials g of degree k — 1 such that g(z;) = y; Vi and g(z*) = y

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.
Inductive step:
e Consider y > 1 and assume that the claim holds for 7 — 1.
e Since h =k —j < k < p, there must be some z* € Z, that is different from all x;s

*

o Let N(y*) be the number of polynomials g of degree k — 1 such that g(z;) = y; Vi and g(z*) = y

> N

y* €Ly

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.
Inductive step:
e Consider y > 1 and assume that the claim holds for 7 — 1.
e Since h =k —j < k < p, there must be some z* € Z, that is different from all x;s

*

o Let N(y*) be the number of polynomials g of degree k — 1 such that g(z;) = y; Vi and g(z*) = y

> N =) !

Yy* €Ly Yy* €Ly

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z,, and p? = p° = 1.
Inductive step:
e Consider y > 1 and assume that the claim holds for 7 — 1.
e Since h =k —j < k < p, there must be some z* € Z, that is different from all x;s

*

o Let N(y*) be the number of polynomials g of degree k — 1 such that g(z;) = y; Vi and g(z*) = y

Z N(y*) = Z Pt Z,| pi !

Yy* €Ly Yy* €Ly

Shamir Secret Sharing: Security

Theorem: Let {(z1,y1),-..,(®n,yn)} be a set of h < k points in Z, x Z, with distinct x;s, where
p > k. The number of polynomials g of degree k — 1 with coefficients in Z, that such that
y; = g(z;) (mod p) forall i =1,...,h is exactly p*~".

Proof: Let j =k —h (i.e., h=Fk —j).
We show by induction on j = 0,1, ...,k that the number of such polynomials is p7.
Base case: j =0, i.e., h = k:
e There exists a unique interpolating polynomial with coefficient in Z, and p? = p° = 1.
Inductive step:
e Consider y > 1 and assume that the claim holds for 7 — 1.
e Since h =k —j < k < p, there must be some z* € Z, that is different from all x;s
o Let N(y*) be the number of polynomials g of degree k — 1 such that g(z;) = y; Vi and g(z*) = y

Z N(y*) = Z P = |Z,| P =

Yy* €Ly Yy* €Ly

*

]

wo-Party Computation

Alice and Bob want to jointly compute a function f(z1,Z2, ..., Tm,Y1,Y2, -, Yn)
e Alice knows the inputs x1,...,x,,

e Bob knows the inputs vy1, ..., 1y,

wo-Party Computation

Alice and Bob want to jointly compute a function f(z1,Z2, ..., Tm,Y1,Y2, -, Yn)
e Alice knows the inputs x1,...,x,,
e Bob knows the inputs vy1, ..., 1y,

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1,...,Zm,y1,...,yn) (this is inevitable)

wo-Party Computation

Alice and Bob want to jointly compute a function f(z1,Z2, ..., Tm,Y1,Y2, -, Yn)
e Alice knows the inputs x1,...,x,,
e Bob knows the inputs vy1, ..., 1y,

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1,...,Zm,y1,...,yn) (this is inevitable)

Example: In the “movie selection” scenario, Alice and Bob wanted to compute f(x1,y1) = 21 A1

wo-Party Computation

Alice and Bob want to jointly compute a function f(z1,Z2, ..., Tm,Y1,Y2, -, Yn)
e Alice knows the inputs x1,...,x,,
e Bob knows the inputs vy1, ..., 1y,

Each party wants the other party to learn nothing about their inputs*

*Except from what they can deduce from knowing the value f(x1,...,Zm,y1,...,yn) (this is inevitable)

Example: In the “movie selection” scenario, Alice and Bob wanted to compute f(x1,y1) = 21 A 1

We actually consider a stronger variant: Alice wants to learn f(x1,%2,..., Zm, Y1, Y2, -, Yn)
while Bob learns nothing

e If we can solve this variant, then we can solve the above case (Alice sends the final output Bob)

e This allows us to solve the more general case in which Alice learns fa(x1,%2,. .., Tom, Y1, Y2, - - -5 Yn)
and Bob learns fp(z1, T2, ..., Tm, Y1, Y2, -, Yn)

wo-Party Computation: The Honest but Curious Model

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

wo-Party Computation: The Honest but Curious Model

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

This is the analogous of a passive eavesdropper in classic cryptography

wo-Party Computation: The Honest but Curious Model

We will design a Two-Party computation protocol that solves this problem for functions f that can
be computed in polynomial-time in the honest but curious model.

Honest but curious model: Alice and Bob obey the protocol, but they try to gather as much
information as they can (each of them wants to break the privacy of the other party)

This is the analogous of a passive eavesdropper in classic cryptography

The protocol will be based on evaluating a (polynomial-size) Boolean circuit that computes f

For simplicity, think of Boolean circuits with a single output (the protocol extends to multiple outputs in a

straightforward way)
Y1 —e
)

L1

}jf f(@1,91,92)
D%

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

X1

—
.

j
|/
) E

’ L/ f(r1,91,92)

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

int in2 | out
0 0 0
X1 0 1 0
1 0 0
1 1 1
Yy ———e |
-/

f(xlaylayQ)

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

ing ing | out
0 0 0
L1 0 1 0
1 0 0
1 1 1

Yy ——o j
.

—
=

\V]
o)

Y2 °

= = O Ool>
— O R o|3
== O e

—)

f(xlaylayQ)

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

inf Ing | out
0 0 0
X1 0 1 0
1 0 0
1 1 1
Yy ——eo
inf Ing | out J
0 0 0
0 1 1
Y2 °
1 0 1
1 1| 1 f(z1,y1,92)
in | out
0 1

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

ing inz | out
0 0 0
T 0 1 0
1 0 0 in1 N2 out
1 1 1 0 0 0
| 0 1 0
: 1 0 0
|r(1)1 Ir(l)z ogt 1 1 1 ing iny | out
L T
1 0 1
1 1 1 1 X !
1 1 1
In | out
0 1

f(xlaylayQ)

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

ing in2 | out
0 0 0
I 0 1 0
1 0 0 ing ing | out
1 1 1 0 0 0
n 0 1 0
- 1 0 0
|r(1)1 IT)Q ogt 1 1 1 ing ing | out
Y2 ® 0 ! . 8 (1) (1)
1 0 1
1 1 1 1 0 1
1 1 1
o
0 1

She “folds” the not gates into an adjacent gate /,/

f(xlaylayQ)

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

ing inz | out
0 0 0
T 0 1 0
1 0 0 in1 N2 out
1 1| 1 0 0| O
" 0 1 0
_ 1 0 0
|r(1)1 Ir(l)z ogt 1 1 1 ing iny | out
0 1 1 : X ;
Y2 * 1 0 1 X : X
X X . i 2 1 f(xb Y1, y2)

She “folds” the not gates into an adjacent gate

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

inf ing | out
kO Kkl 0 0| 0
0 0 0 1
T o 1| o0 | ks k3
1 0 0 inf ing | out
1 1 1 0 0 0
0 1 0 1
y ki Ky o 1| 0 |k ks
1 ? _ t 1 0| 0
in in ou :
0 . 01 02 0 kg ki 1 1 1 Ny INo out 0 .
ks k3 o 1| 1 0 0 | 1 | kg kg
Y2 ® 1 0 1 0 1 0O H————
1 1| 1 i (1’ 1 f(z1,y1,92)

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

inf ing | out
ko ko 0 010 10 41 The keys kY and k] are
xl O 1 0 3 3 (Y] - 1 2]
. : called “wire labels
1 0 0 inf ing | out
1 1 1 0 0 0
0 1.1 0 1.1
y ki ki o 1| o0 | k5 ks
1 . : 1 0 0
in in ou :
0 . 01 02 0 kg ki 1 1 1 Ny INo out 0 .
ks k3 o 1| 1 0 0 | 1 | kg kg
Y2 1 0 1 0 1 0 ———
1 1| 1 i (1’ 1 f(z1,y1,92)

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1

She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

inf ing | out
ko ko 0 010 10 41 The keys kY and k] are
xl O 1 0 3 3 (Y] - 1 2]
. : called “wire labels
1 0 0 inf ing | out
1 1 1 0 0 0
0 1.1 0 1.1
y ki ki o 1| o0 | k5 ks
1 . : 1 0 0
in in ou :
0 . 01 02 0 kg ki 1 1 1 Ny INo out 0 .
ks k3 o 1| 1 0 0 | 1 | kg kg
Y2 1 0 1 0 1 0 ———
1 1| 1 i (1’ 1 f(z1,y1,92)

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1
She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

She rewrites the truth tables in terms of the input and output wire labels

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

Ny INg out
kS k} KoK E | o 1 The keys kY and k! are
A e ot VK called “wire labels
kS kY| ki 0 0 0
0 1.1 0 1 3 0 1.1
y ki ki o 1| 0 |k ks
| _ t 1 0| 0
In In ou .
. , 01 02 0 kg ki 1 1 1 Ny INo out 0 .
k9 ki 0 . . 0 0 1 kg kg
Y2 ® 1 0 1 0 1 0 —
1 1| 1 i (1’ 1 f(z1,y1,92)

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1
She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

She rewrites the truth tables in terms of the input and output wire labels

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

Ny INg out
kS k} I T The keys kY and k! are
L1 N 3 3 called “wire labels”
[in, iny | out f
kS kY| ki 0 0 0
0 1.1 0 1 3 0 1.1
y ki ki o 1| 0 |k ks
A § 1 0] 0
Ny N2 out)
RS A ko kl 1 1 1 Inp In2 | out
ky ks Kook |k 0 0 | 1 | ki kg
Ys R 1 vz R o 1|0 —
ki kS | ki
Lok | K i (1’ i f(x1,y1,92)

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1
She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

She rewrites the truth tables in terms of the input and output wire labels

Yao's Garbled Circuits: Building the Circuit

Alice replaces each logic gate with an explicit description of its truth table

) ko ko Z((é]/ﬁ Z(SS KO kL The keys kY and k] are
0 1 3 7 . "
ké k? kg ing ino | out f called “wire labels
0 11 kb ki | kD kS kY | RS 0 11
ki Fi Kook | k0| ks ks
3 4 5
yl—‘ 1 0 0
ks ki | ks
Ny N2 out kl kl kl
0 0 0 0 1 3 4 5 Ny INo out
0 1.1 ki ky | ki | Ky Ky S - 0 1.1
ky ks K kY| ki ks ko | ks | kg kg
Y2 ° 1 2 4 0 gl .0
Rk N S
Lok | K ks ky | ke | f(z1,y1,Y2)
ks ko | kg

She “folds” the not gates into an adjacent gate
Each wire carries either a logic 0 or a logic 1
She assigns two random symmetric keys kY and &/ to the generic i-th wire to represent 0 and 1, resp.

She rewrites the truth tables in terms of the input and output wire labels

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

ko ki ko kT KD
T ko ki | K9
Kk k9 ing ing | out
L0 g1 ko ki | k3 R R
" 1 R kY ki | K2
? Ky kS | R
Ny INg out Ll Ll Ll
k? kg k:g 3 4 5 Iny Ing | out
k3 k3 K k| kb Bk | kg | kY kg
1 2 4 0 1 0
y2 ® kl kO]{}1 kf5 kQ k6
1 2 4 1 0 1
kl kl k,l k‘5 kQ k6
1 2 4 1 1 1
ks k2 | ke

The key used to encrypt an output consists of the two corresponding input wire labels

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

ng In2 out
k(()) ké ko ki E”Ckg,kg(k‘g)
= ko ki E”Ckg,k%(k’g)
kcl) k(l) Eanl 10 (k;?,) ini N2 out
1 1 R k9 L0 L0
kP Ky ko k1 | Encigu (k) I I
Yy ——o k?l) k% kg
i - 3 4 5
ni In2 out oL 1]
) S ¢ Ny INg ou
0 1.1 ki ks | K4 R N 1 ing Jout |
ky ks K kY| ki ks ko | ks | kg kg
- T ok K| K R k| K
i ks | ki KK | ke
ks k| ke

The key used to encrypt an output consists of the two corresponding input wire labels

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

Ny INg out
L1 kS ki | Encyo (k9)
ki kY | Encp o(kg) N1 N2 out
1 gl ot kK9 k) | E k2
kO k! ko ki | Encyy o (k3) 3 ks nCro ko (g)
Yy ———9 Z? Zﬁ Enckzg,k:i(:g)
Iny N2 out 3 4 nckil,kig(5)
1 1 1 . .
0 1 k(lj kg Eano 20 (kff) kg k4 Enck?é’ki (/{:5) In& m(? out i 0 .
k‘ k 0 1 2 1 k5]{72 EnC 0 O(k@) k k
2 2 k k Enc (ky) kgiky 6 6
Y2 ® 1 2 k9, k1 V4 0 1 0
1 0 1 ks ki | Encpo ,1(kg)
k k E k kO K
1 2 anl,ko(4) 1 0 522 1
1 1 L 2 1 k5 kg Ean;]{10 (kG)
kl kQ Enckl,k% (]f4) 1 1 5572 1
ks k2 E”Ck},k% (ko)

The key used to encrypt an output consists of the two corresponding input wire labels

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

) ini In out
k(()) ké Q 1 E”Ckg,kg(k‘g)
le k() k} Enckg,k% (kg) —
0 Y | Encyi o (KS) N\in1 in out
1 oo 0 E (ko)
k(lj /{3% ko kNJ Encyy r1(k3) 1 NCLI K9 °
Yy ——o : ks ké(_l) Enckg,kigzgg
N\in:1 in out 3 4 NCp1 k9 (K5 \
1 1 . N
0 1.1 O > | Encyo o (ka)) ks kN] Enciy 1 (ks) \lng in out 1 .
k‘Q k2 1 1 5 EanO,kO (kG) k6 k6
k k Enc,o .1 (k 9. k9
1 2 kO k1 R4 : 6
y2 t 9 o 1 k5]{72 Enc,o 1(k6)
Enc (]f) k5,k:2
1 2 Ll 10 4 2 0
k' N Encey o (K 5 N2 | Encpr o (ks)
1 2 nc.1 k%(4) kl h c £,k9 kl
’ p AR 2 nck%,k%(6)

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. ..

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

KOk Enc,g g (K3)
Ean1 (1)(]{3(,)) 5
0 1 Ean1 K1 (k‘%) Enckg,kg (k5)
ki ki - Encyo 1 (k5)
yl —_— ® E 34 k,o
= 10 ”Cké,kg(?)
”Ck(l),kg(zi) Enck%,ki(l%)
kg /{:% Ean(l),k%(kzi) E"CkO,kg(ké) /4:8 ké
Y | Enciiun(id) N B
Encyy iy (ki) Ency1 0 (Ks)
Enck%,k% (ks)

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. ..

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

kO ki Encyg i (k5)
Ean1 (1)(]{3(,)) 5
0 1 Ean1 K1 (k‘%) Enckg,kg (k5)
ki ki - Encyg i1 (k3)
yl —_— ® E 34 k,o
= 10 ”Cké,kg(?)
”Ck(l),kg(zi) Enck%,ki(l%)
KOkl Ean(l),k%(kzi) E"CkO,kg(ké) k) kb
Y o Encup (k) S
Enck%yk%(l@l) Enc,. kg(ké)
Enck%,k% (ks)

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

k8 ké Encyo ;1 (k5)
L1 Enck:cl),k;%(k?%)
Enckg,k(f(kg) 5
0 1 Enckl,ko(k’g) Enckg,ki(l%)
ki ki —— Ency1 ko (k5)
Y1 Enc,:. 4(kl)
kLl k15
Ency g (k) Encig vg (k9)
]CS]{% Enco 1 (k1) Enck%’k%(ké) kg ké
Yo ® Enc,o o(kg) Enc,: o(kl) ——
k9, k9 ! kg, kg g
Enc,: kg(k4) Enckg’kl(kﬁ)
E”Ckg,ko(ké)

The key used to encrypt an output consists of the two corresponding input wire labels

She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table

Yao's Garbled Circuits: Building the Circuit

Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

KO kel Encyg it (K5)
Enckg,k:(l)(kg) 0
ki Ky 01 Enc,1 o (k2)
91 9 Enc: 4(kl)
kil k1\v5
Encyg g (ka) Encig ug (k9)
L0 1 EanQ,k%(kzl) Ency.1 k%(ké) kO kL
Yo —2 2 o Enc,o 0 (k9) Encey g (k) ——
kY ks . kg.ko g
Enc,: kg(k4) Encyo k%(k:ﬁ)

The key used to encrypt an output consists of the two corresponding input wire labels
She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table

Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs

Yao's Garbled Circuits: Building the Circuit
Alice now encrypts the outputs in each truth table using a secure authenticated encryption scheme

/ _—— For example, when 1 = 1, Alice sends to Bob all the

kS kg Encig i1 (k3) | p¢ garbled gates together with &}
L1 Encké,k}(k’%) /
Enckg,k:(l)(kg) T /
0 1 Enc,1 ;0 (k‘g) Enckg,ki (ks5)
ki ki — Encyy xo (k5)
Y1 Ean? ;j(ké)
Enci ey (k1) Encyg ug (k)
Kk Encg uy (k) 3 Encyy iy (k6) | k9 kg
Y2 ® Enck?,kg(kg) E”Ck%,kg(ké) —
Enc,: kg(ki) Enckg’k%(kg)
Enckg,kg(ké)

The key used to encrypt an output consists of the two corresponding input wire labels
She now drops the inputs from the truth tables. .. and randomly permutes the outputs of each table

Finally, Alice sends to Bob all the (now garbled) logic gates, the connections between them, and the
wire-labels corresponding to her inputs

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (k3)
L1 Encké,k}(k?l))
Enckg,k?(kg) 5
Enck&k(l) (kg) Enckg,ki (kg)
Ean17k0 (k5)
1 Enc,j kj(k%)
Enc1 1 (ks Enckgjké(kg)
Enc,o k%(ki) 2t Enc,. k%(ké)
yQ @ Encko kg (k{f Eanl kg (ké)
Enck},kg(k‘i Enckgjkl(k‘g)
E”Ckg,ko(ké)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

k
k

A~~~ /N~
=

WO WO WK WO

~— — — —

k

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

N

EangJC
Ean%JC
Ean%JC

~~ N /N /N
EOARON

QO U= OO o
N— N N T

RO bR RO kR

EangJC

-

Enck.%jk

-

Enck.%jk
Enckgjk

N N N N
N

OV OO Oy OV
N e e

NO N NO N

Enckgjk

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (k3)
I Encké,k% (k’gl,)
Enckg,k?(kg) 5
0 Enc,: o (k3) Encyo 1 (k5)
kl ol Ean1 10 (kg)
1 Enckiﬂkj(k%)
Ency (k1 Enckijké(kg)
k% Enc,o kl (k’i) 2t Enck%,k% (ké)
yQ @ Encko kg (k*ff Enck%,kg (/{é)
Enc,: kg(k‘i Enckgjk%(k‘g)
E”Ckg,kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)

Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (k3)
I Encké,k% (k’gl,)
Enckg,k?(kg) 5
0 Enc,: o (k3) Encyo 1 (k5)
kl ol Ean1 10 (kg)
1 Enckiﬂkj(k%)
Ency (k1 Enckijké(kg)
k% Enc,o kl (k’i) 2t Enck%,k% (ké)
yQ @ Encko kg (k*ff Enck%,kg (/{é)
Enc,: kg(k‘i Enckgjk%(k‘g)
E”Ckg,kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (k3)
I Encké,k% (k’gl,)
Enckg,k?(kg) 5
0 Enc,: o (k3) Encyo 1 (k5)
kl SH Ean17k0 (kg)
1 Enck?lj (k3)
Ean1 kl (ki Enck;kg (kg)
k% Enc,o kl (k’i) Enck%,k% (ké)
yQ @ Encko kg (k*ff Enck%,kg (/{é)
Enc,: kg(k‘i Encyo k;(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
]{:(1) Encjo ;1 (k?) 10
T Ency1 1 (Ks3) 3
Enckg,k?(kg) 5
1.0 Ency1 o (k5) E”Ckgaki(kg)
U1 1 Ean%JﬂE (k5)
Enc1 .1 (ks)
1 374
Enci i (kﬂl‘ E”Ckg,kg(kg)
ki Ency .y (Fa) Ency1 1 (ko)
yQ @ Encko kg (k*ff Enck%,kg (/{é)
Enc,: kg(k‘i Encyo k;(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

]{:(1) Encjo ;1 (kgl)) 10
T Ency1 1 (Ks3) 3
Enckg,k?(kg) 5
1.0 Ency1 0 (k3) E”Ckgaki(kg)
Y — ? E:?“%”’“QEZ‘?;
1 .1(K5
Encyr 1 (ks EncZijZé(kg)
k% Enc,o k] (k‘i) kéll 2t Enck%,k% (ké)
yQ @ Encko kg (k*ff Enckl,kg (/{é)
Encyy ro (ks Encyo .1 (ko)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
kS E”Ckg,k%(k?) 10
T Ency1 1 (Ks3) 3
Enckg,k?(kg) -
Enc,: o(kg) Enckg,kl(k5)
k9 kg, kY 0
n 1 Encys po(k5) kg
Enc1 .1 (ks)
1 37
Enckl kf% (k% EangJCO (kg)
2 0 4 50720
Y2 ® Encio 4o (k2 Encii ko (k)
Enc,: kg(k‘i Encyo k;(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
]{;(1) E”Ckg,k}(k?) .0
1 Ency1 1 (Ks3) 3
Enck(())’k(l) (kg) 0
Enc,1 o(kg) Enckgvkl(l%)
ko ko’kl 0
yl 1 Ean%7k0 (k5) kg
¢ Enc1 .1 (ks)
1 37
Encii i (kﬂl‘ E”Ckg ko (k5)
: 1
k% EanO kl (ké) ki Enck%,k% (k?)]{78
Y2 ® Encio 4o (k2 Encii ko (k)
Enc,: kg(k‘i Encyo k%(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
]{;(1) Encjo ;1 (k?) 1.0
1 Ency1 1 (Ks3) 3
Enc kS .o
k.49 (g’ Encro 1 (K2) Garbled circuit
ko Encké’k(l) (k3) kgak 5
’ 1 Ency,1 0 (k5) kg output
I ————# (k!
Enci .1 (k5)
1 317y
Encs g (K Encyg o (k)
’ 1
k% Encyo 11 (k’é) ki Enci 1 (ko)]{78
yQ @ Encko kg (k‘4 Enckl,kg (/{é)
Enc,: kg(k‘i Enc,o k%(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
e To evaluate a logic gate, bob tries to Decrypt each of the four possible encrypted rows

e Since we are using a secure authenticated encryption scheme, exactly one of these rows will decrypt
successfully (except for negligible probability)

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
]{;(1) Encjo ;1 (k?) 1.0
1 Ency1 1 (Ks3) 3
Enc kS .o
k.49 (g’ Encro 1 (K2) Garbled circuit
ko Encké’k(l) (k3) kgak 5
’ 1 Ency,1 0 (k5) kg output
I ————# (k!
Enci .1 (k5)
1 317y
Encs g (K Encyg o (k)
’ 1
k% Encyo 11 (k’é) ki Enci 1 (ko)]{78
yQ @ Encko kg (k‘4 Enckl,kg (/{é)
Enc,: kg(k‘i Enc,o k%(kg)
E”Ckg kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire

Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Yao's Garbled Circuits: Evaluating the Circuit

Bob receives the garbled circuit from Alice, together with the wire-labels of Alice’s inputs

0
kS Enckg,k}(k?) 10
T Ency1 1 (Ks3) 3
Enc kS . .
k.49 (g’ Encro 1 (K2) Garbled circuit
ko Encké’k(l) (k3) kgak 5
’ 1 Ency,1 0 (k5) kg output
I ————# (k!
Enci .1 (k5)
1 317y
Encs g (K Encyg o (k)
. 1
k% Encyo 11 (k’é) ki Enci 1 (ko)]{78
yQ @ Encko kg (k‘4 Enckl,kg (/{é)
Enc,: kg(k‘i Enckgjk%(kg)
E”Ckg,kg(ké)

Suppose that Bob somehow knows the wire-labels corresponding to his input (we will handle this later)
Bob can evaluate the garbled circuit and recover the wire-label corresponding to the output wire
Once Bob knows the (garbled) circuit’s output, he sends it to Alice

Alice knows whether the label she received corresponds to 0 or 1.
She learns f(x1,%2, ... T, Y1, Y25 - - - s Yn)

