The Oblivious Transfer Protocol

How does Bob learn the wire-labels corresponding to his input?

- He cannot just ask Alice, since this would reveal his inputs

The Oblivious Transfer Protocol

How does Bob learn the wire-labels corresponding to his input?

- He cannot just ask Alice, since this would reveal his inputs

Security
parameter
Alice and Bob use a protocol known as oblivious transfer protocol

- In the oblivious transfer protocol Alice has two messages m_{0}, m_{1} of length $\ell(n)$

The Oblivious Transfer Protocol

How does Bob learn the wire-labels corresponding to his input?

- He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

- In the oblivious transfer protocol Alice has two messages m_{0}, m_{1} of length $\ell(n)$
- Bob wants to learn one of them, say m_{b}, without revealing which one he is interested in to Alice
- Alice wants to be sure that Bob learns exactly one of the two values

Reminder: DDH-Based Key Encapsulation Mechanism

$\operatorname{Gen}\left(1^{n}\right):$

- Run $\mathcal{G}\left(1^{n}\right)$, where \mathcal{G} is a group generation algorithm, to obtain (G, q, g) where G is a group of order q and $g \in G$ is a generator
- Pick some key derivation function $H: G \rightarrow\{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h=g^{x}$

- Output $(p k, s k)$ where $p k=(G, q, g, h, H)$ and $s k=(G, q, g, x, H)$.

Reminder: DDH-Based Key Encapsulation Mechanism

$\operatorname{Gen}\left(1^{n}\right):$

- Run $\mathcal{G}\left(1^{n}\right)$, where \mathcal{G} is a group generation algorithm, to obtain (G, q, g) where G is a group of order q and $g \in G$ is a generator
- Pick some key derivation function $H: G \rightarrow\{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h=g^{x}$

- Output $(p k, s k)$ where $p k=(G, q, g, h, H)$ and $s k=(G, q, g, x, H)$.

Encaps $_{p k}\left(1^{n}\right)$:

- Here $p k=(G, q, g, h, H)$
- Choose y u.a.r. from $\{0, \ldots, q-1\}$
- Output the pair (c, k) with $c=g^{y}$ and
 $k=H\left(h^{y}\right)=H\left(g^{x y}\right)$

Reminder: DDH-Based Key Encapsulation Mechanism

$\operatorname{Gen}\left(1^{n}\right):$

- Run $\mathcal{G}\left(1^{n}\right)$, where \mathcal{G} is a group generation algorithm, to obtain (G, q, g) where G is a group of order q and $g \in G$ is a generator
- Pick some key derivation function $H: G \rightarrow\{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h=g^{x}$

- Output $(p k, s k)$ where $p k=(G, q, g, h, H)$ and $s k=(G, q, g, x, H)$.

Encaps $_{p k}\left(1^{n}\right)$:

- Here $p k=(G, q, g, h, H)$
- Choose y u.a.r. from $\{0, \ldots, q-1\}$
- Output the pair (c, k) with $c=g^{y}$ and $k=H\left(h^{y}\right)=H\left(g^{x y}\right)$
$\operatorname{Decaps}_{s k}(c):$
- Here $s k=(G, q, g, x, H)$
- Output the key $H\left(c^{x}\right)=H\left(g^{x y}\right)$

Reminder: DDH-Based KEM \& Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

- We use the DDH-based KEM
- We use OTP as a DEM (for fixed-length messages)

Reminder: DDH-Based KEM \& Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

- We use the DDH-based KEM
- We use OTP as a DEM (for fixed-length messages)

The resulting scheme is as follows:
$\operatorname{Gen}\left(1^{n}\right)$:

- Pick a group G, its order q, a generator $g \in G$, a key-derivation function $H: G \rightarrow\{0,1\}^{\ell(n)}$ We think of these as fixed public values agreed upon in advance between Alice and Bob.
- Pick a random $x \in G$, the public-key is $h=g^{x}$ and the secret-key is x
$\operatorname{Enc}_{h}(m):$
- Choose a uniform $y \in\{0, \ldots, q-1\}$. Return the pair $c=\left(g^{y}, H\left(h^{y}\right) \oplus m\right)$
$\operatorname{Dec}_{x}\left(\left(c, c^{\prime}\right)\right):$
- Return $H\left(c^{x}\right) \oplus c^{\prime}$

The Oblivious Transfer Protocol

Idea:

- We pick two public keys h_{0}, h_{1} for Bob
- We ensure that Bob knows the secret key x_{b} corresponding to exactly one of the public keys (of his choice)
- Alice encrypts m_{0} with h_{0} and m_{1} with h_{1}
- Bob can only decrypt one of the two ciphertexts, namely the one corresponding to m_{b}

The Oblivious Transfer Protocol

Idea:

- We pick two public keys h_{0}, h_{1} for Bob
- We ensure that Bob knows the secret key x_{b} corresponding to exactly one of the public keys (of his choice)
- Alice encrypts m_{0} with h_{0} and m_{1} with h_{1}
- Bob can only decrypt one of the two ciphertexts, namely the one corresponding to m_{b} How can Bob "prove" to Alice that he knows exactly one private key?

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob
- Bob picks a random private key x, and computes the two public keys:
- $h_{b}=g^{x}$. This is the public key that will be used to encrypt the message m_{b} wanted by Bob. The corresponding secret-key is x

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob
- Bob picks a random private key x, and computes the two public keys:
- $h_{b}=g^{x}$. This is the public key that will be used to encrypt the message m_{b} wanted by Bob. The corresponding secret-key is x
- $h_{1-b}=r \cdot\left(g^{x}\right)^{-1}$. Bob does not have the corresponding secret key

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob
- Bob picks a random private key x, and computes the two public keys:
- $h_{b}=g^{x}$. This is the public key that will be used to encrypt the message m_{b} wanted by Bob.

The corresponding secret-key is x

- $h_{1-b}=r \cdot\left(g^{x}\right)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_{0} and h_{1} to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_{0} \cdot h_{1}=r$?

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob
- Bob picks a random private key x, and computes the two public keys:
- $h_{b}=g^{x}$. This is the public key that will be used to encrypt the message m_{b} wanted by Bob.

The corresponding secret-key is x

- $h_{1-b}=r \cdot\left(g^{x}\right)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_{0} and h_{1} to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_{0} \cdot h_{1}=r$?
- Alice encrypts m_{0} and m_{1} :
- Pick a uniform $y_{0} \in\{0, \ldots, q-1\}$, let $c_{0}=\left(g^{y_{0}}, H\left(h_{0}^{y_{0}}\right) \oplus m_{0}\right)$
- Pick a uniform $y_{1} \in\{0, \ldots, q-1\}$, let $c_{1}=\left(g^{y_{1}}, H\left(h_{1}^{y_{1}}\right) \oplus m_{1}\right)$

The Oblivious Transfer Protocol

- Alice picks a random group element $r \in G$ and sends it to Bob
- Bob picks a random private key x, and computes the two public keys:
- $h_{b}=g^{x}$. This is the public key that will be used to encrypt the message m_{b} wanted by Bob.

The corresponding secret-key is x

- $h_{1-b}=r \cdot\left(g^{x}\right)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_{0} and h_{1} to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_{0} \cdot h_{1}=r$?
- Alice encrypts m_{0} and m_{1} :
- Pick a uniform $y_{0} \in\{0, \ldots, q-1\}$, let $c_{0}=\left(g^{y_{0}}, H\left(h_{0}^{y_{0}}\right) \oplus m_{0}\right)$
- Pick a uniform $y_{1} \in\{0, \ldots, q-1\}$, let $c_{1}=\left(g^{y_{1}}, H\left(h_{1}^{y_{1}}\right) \oplus m_{1}\right)$
- Alice sends c_{0} and c_{1} to Bob
- Bob decrypts $c_{b}=\left(c, c^{\prime}\right)$ as $m_{b}=H\left(c^{x}\right) \oplus c^{\prime}$

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}$

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}$

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}=\left(r \cdot g^{-x}\right)^{y_{1-b}}$

Requires computing the discrete
logarithm of a random group element

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}=\left(r \cdot g^{-x}\right)^{y_{1-b}}$

Requires computing the discrete
logarithm of a random group element

- Be able to evaluate $H\left(h_{1-b}^{y_{1}-b}\right)$ without knowing $h_{1-b}^{y_{1-b}}$

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}=\left(r \cdot g^{-x}\right)^{y_{1-b}}$

Requires computing the discrete logarithm of a random group element

- Be able to evaluate $H\left(h_{1-b}^{y_{1}-b}\right)$ without knowing $h_{1-b}^{y_{1-b}}$

Secure if H acts as a random oracle

The Oblivious Transfer Protocol: Security (informal)

Can Bob learn m_{1-b} ?

- m_{1-b} was encrypted as $\left(g^{y_{1-b}}, H\left(h_{1-b}^{y_{1-b}}\right) \oplus m_{1-b}\right)$

To learn m_{1-b}, Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}}=\left(r \cdot g^{-x}\right)^{y_{1-b}}$

Requires computing the discrete logarithm of a random group element

- Be able to evaluate $H\left(h_{1-b}^{y_{1-b}}\right)$ without knowing $h_{1-b}^{y_{1-b}}$

Secure if H acts as a random oracle

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice
- Alice knows the corresponding truth value, so she learns $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

Back to Yao's Garbled Circuits: The Overall Protocol

- Alice stars from a circuit that computes $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice
- Alice knows the corresponding truth value, so she learns $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$
- If Bob should also know the value of $f\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$, Alice shares it with Bob

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

With inputs $x_{1}=3, x_{2}=5$, and $x_{3}=2$, and $p=11$ it computes 6

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

With inputs $x_{1}=3, x_{2}=5$, and $x_{3}=2$, and $p=11$ it computes 6

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

With inputs $x_{1}=3, x_{2}=5$, and $x_{3}=2$, and $p=11$ it computes 6

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

With inputs $x_{1}=3, x_{2}=5$, and $x_{3}=2$, and $p=11$ it computes 6

Multiparty Computation

What if $n \geq 2$ parties want to jointly compute a function?
We consider functions $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that are computed by an arithmetic circuit over \mathbb{Z}_{p}, for a prime $p>n$

- The i-th input x_{i} is an integer in $\{0,1, \ldots, p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{2}+x_{3}\right)(\bmod p)$

With inputs $x_{1}=3, x_{2}=5$, and $x_{3}=2$, and $p=11$ it computes 6

How do Boolean circuit and arithmetic circuits compare?

Arithmetic Circuits \& Boolean Circuits

\Rightarrow We can simulate a Boolean circuit with an arithmetic circuit:

Arithmetic Circuits \& Boolean Circuits

\Rightarrow We can simulate a Boolean circuit with an arithmetic circuit:

- $x_{1} \wedge x_{2}=x_{1} \cdot x_{2}$
- $\neg x=1-x$
- $x_{1} \vee x_{2}=x_{1}+x_{2}-x_{1} \cdot x_{2}$

Arithmetic Circuits \& Boolean Circuits

\Rightarrow We can simulate a Boolean circuit with an arithmetic circuit:

- $x_{1} \wedge x_{2}=x_{1} \cdot x_{2}$
- $\neg x=1-x$
- $x_{1} \vee x_{2}=x_{1}+x_{2}-x_{1} \cdot x_{2}$
\Leftarrow We can simulate an arithmetic circuit with a Boolean circuit:

Arithmetic Circuits \& Boolean Circuits

\Rightarrow We can simulate a Boolean circuit with an arithmetic circuit:

- $x_{1} \wedge x_{2}=x_{1} \cdot x_{2}$
- $\neg x=1-x$
- $x_{1} \vee x_{2}=x_{1}+x_{2}-x_{1} \cdot x_{2}$
\Leftarrow We can simulate an arithmetic circuit with a Boolean circuit:
- Replace each wire of the arithmetic circuit with $\lceil\log p\rceil$ Boolean wires
- Replace each Addition/Multiplication gate with a Boolean circuit that computes the Sum/Product of the inputs modulo p

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of- n threshold secret sharing scheme

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of- n threshold secret sharing scheme
k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties. No group less than t parties can collude to recover the secret. The construction works for $k \leq\left\lceil\frac{n}{2}\right\rceil$

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of- n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output
k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties. No group less than t parties can collude to recover the secret. The construction works for $k \leq\left\lceil\frac{n}{2}\right\rceil$

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of- n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output
- The output of the circuit is a share of $f\left(x_{1}, \ldots, x_{n}\right)$
k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties. No group less than t parties can collude to recover the secret. The construction works for $k \leq\left\lceil\frac{n}{2}\right\rceil$

Multiparty Computation

How do we "garble" and arithmetic circuit for multiple parties?
How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of- n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output
- The output of the circuit is a share of $f\left(x_{1}, \ldots, x_{n}\right)$
- The parties combine their output shares and recover the value of $f\left(x_{1}, \ldots, x_{n}\right)$
k is an integer parameter that controls how resilient the protocol is to coalitions of curious parties. No group less than t parties can collude to recover the secret. The construction works for $k \leq\left\lceil\frac{n}{2}\right\rceil$

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b
- Notice that the polynomial $f_{c}(x)=f_{a}(x)+f_{b}(x)(\bmod p)$ has degree at most $k-1$ and is such that $f_{c}(0)=f_{a}(0)+f_{b}(0)=a+b(\bmod p)$

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b
- Notice that the polynomial $f_{c}(x)=f_{a}(x)+f_{b}(x)(\bmod p)$ has degree at most $k-1$ and is such that $f_{c}(0)=f_{a}(0)+f_{b}(0)=a+b(\bmod p)$
- f_{c} is a valid polynomial for sharing c in the Shamir's k-out-of- n threshold secret sharing scheme!

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b
- Notice that the polynomial $f_{c}(x)=f_{a}(x)+f_{b}(x)(\bmod p)$ has degree at most $k-1$ and is such that $f_{c}(0)=f_{a}(0)+f_{b}(0)=a+b(\bmod p)$
- f_{c} is a valid polynomial for sharing c in the Shamir's k-out-of- n threshold secret sharing scheme!

What is the i-th share $\left(i, c_{i}\right)$ of f_{c} ?

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b
- Notice that the polynomial $f_{c}(x)=f_{a}(x)+f_{b}(x)(\bmod p)$ has degree at most $k-1$ and is such that $f_{c}(0)=f_{a}(0)+f_{b}(0)=a+b(\bmod p)$
- f_{c} is a valid polynomial for sharing c in the Shamir's k-out-of- n threshold secret sharing scheme!

What is the i-th share $\left(i, c_{i}\right)$ of f_{c} ?

$$
c_{i}=f_{c}(i)=f_{a}(i)+f_{b}(i)=a_{i}+b_{i}(\bmod p)
$$

Addition Gates

Party i has the i-th shares $\left(i, a_{i}\right),\left(i, b_{i}\right)$ of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share $\left(i, c_{i}\right)$ of the secret $c=a+b(\bmod p)$

- Let $f_{a}(x)$ and $f_{b}(x)$ be the polynomials (of degree at most $k-1$) used to share a and b
- Notice that the polynomial $f_{c}(x)=f_{a}(x)+f_{b}(x)(\bmod p)$ has degree at most $k-1$ and is such that $f_{c}(0)=f_{a}(0)+f_{b}(0)=a+b(\bmod p)$
- f_{c} is a valid polynomial for sharing c in the Shamir's k-out-of- n threshold secret sharing scheme!

What is the i-th share $\left(i, c_{i}\right)$ of f_{c} ?

$$
c_{i}=f_{c}(i)=f_{a}(i)+f_{b}(i)=a_{i}+b_{i}(\bmod p)
$$

Addition gates do not require any special care!

Addition Gates

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

We can't just use the share $\left(i, c_{i}\right)$ with $c_{i}=a_{i} \cdot b_{i}$
Why?

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

We can't just use the share $\left(i, c_{i}\right)$ with $c_{i}=a_{i} \cdot b_{i} \quad$ Why?

- We could define $f_{c}(x)=f_{a}(x) \cdot f_{b}(x)$, and it would satisfy $f_{c}(0)=a \cdot b \ldots$

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

We can't just use the share $\left(i, c_{i}\right)$ with $c_{i}=a_{i} \cdot b_{i} \quad$ Why?

- We could define $f_{c}(x)=f_{a}(x) \cdot f_{b}(x)$, and it would satisfy $f_{c}(0)=a \cdot b \ldots$
- Also, $c_{i}=a_{i} \cdot b_{i}$ would be the value of $f_{c}(i) \ldots$

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

We can't just use the share $\left(i, c_{i}\right)$ with $c_{i}=a_{i} \cdot b_{i} \quad$ Why?

- We could define $f_{c}(x)=f_{a}(x) \cdot f_{b}(x)$, and it would satisfy $f_{c}(0)=a \cdot b \ldots$
- Also, $c_{i}=a_{i} \cdot b_{i}$ would be the value of $f_{c}(i) \ldots$

Problem: since f_{a} and f_{b} have deree up to $k-1$, the degree of f_{c} can be as high as $2(k-1)$

- After each multiplication, the number of shares needed to recover c roughly doubles

Multiplication Gates

Party i has the i-th shares a_{i}, b_{i} of two (unknown) secrets a, b, respectively, \ldots
\ldots and wants to compute the i-th share c_{i} of the secret $c=a \cdot b(\bmod p)$

We can't just use the share $\left(i, c_{i}\right)$ with $c_{i}=a_{i} \cdot b_{i} \quad$ Why?

- We could define $f_{c}(x)=f_{a}(x) \cdot f_{b}(x)$, and it would satisfy $f_{c}(0)=a \cdot b \ldots$
- Also, $c_{i}=a_{i} \cdot b_{i}$ would be the value of $f_{c}(i) \ldots$

Problem: since f_{a} and f_{b} have deree up to $k-1$, the degree of f_{c} can be as high as $2(k-1)$

- After each multiplication, the number of shares needed to recover c roughly doubles

We need to use another property of interpolating polynomials. . .

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

The same holds in \mathbb{Z}_{p} !

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

$$
\text { The same holds in } \mathbb{Z}_{p} \text { ! }
$$

Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

$$
\text { The same holds in } \mathbb{Z}_{p} \text { ! }
$$

Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector Proof:
From Lagrange interpolation we know that: $f(x)=\sum_{j=1}^{n} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\ i \neq j}}\left(x-x_{i}\right)\left(x_{j}-x_{i}\right)^{-1}$

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

$$
\text { The same holds in } \mathbb{Z}_{p} \text { ! }
$$

Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector

Proof:

$$
=\sum_{j=1}^{n} f^{y_{j}} f_{j} x_{\substack{i=1, \ldots, n \\ i \neq j}}\left(x-x_{i}\right)\left(x_{j}-x_{i}\right)^{-1}
$$

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

The same holds in \mathbb{Z}_{p} !
Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector
Proof:

$$
f(x)=\sum_{j=1}^{n} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\ i \neq j}}\left(x-x_{i}\right)\left(x_{j}-x_{i}\right)^{-1} \quad \ell_{j}(x)
$$

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

The same holds in \mathbb{Z}_{p} !
Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector
Proof:

$$
\begin{aligned}
f(x) & =\sum_{j=1}^{n} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\
i \neq j}}\left(x-x_{i}\right)\left(x_{j}-x_{i}\right)^{-1} \ell_{j}(x) \\
f(0) & =\sum_{j=1}^{k} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\
i \neq j}} x_{i}\left(x_{i}-x_{j}\right)^{-1}
\end{aligned}
$$

Recombination Vectors

Lemma: Given distinct x_{1}, \ldots, x_{n}, define $r_{j}=\prod_{\substack{i=1, \ldots, n \\ i \neq j}} x_{i} \cdot\left(x_{i}-x_{j}\right)^{-1}$.
For any polynomial f of degree at most $n-1$:

$$
f(0)=\sum_{j=1}^{k} r_{j} f\left(x_{j}\right)
$$

The same holds in \mathbb{Z}_{p} !
Remark: The coefficients r_{i} depend only on the x-coordinates x_{i} (and not on the choice of f) The vector $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ is called the recombination vector
Proof:

$$
\begin{aligned}
& f(x)=\sum_{j=1}^{n} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\
i \neq j}}\left(x-x_{i}\right)\left(x_{j}-x_{i}\right)^{-1} \ell_{j}(x) \\
& f(0)=\sum_{j=1}^{k} f\left(x_{j}\right) \prod_{\substack{i=1, \ldots, n \\
i \neq j}} x_{i}\left(x_{i}-x_{j}\right)^{-1} \quad r_{j}
\end{aligned}
$$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$ Why does this work?

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$ Why does this work?
- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$ Why does this work?
- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Why does this work?

- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$
- Consider the polynomial h obtained as a linear combination of the $\delta_{i} s$ using the coefficients of the recombination vector:

$$
h(x)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(x)
$$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Why does this work?

- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$
- Consider the polynomial h obtained as a linear combination of the $\delta_{i} s$ using the coefficients of the recombination vector:

$$
h(x)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(x) \quad h(0)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)
$$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Why does this work?

- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$
- Consider the polynomial h obtained as a linear combination ff the $\delta_{i} s$ using the coefficients of the recombination vector:

$$
h(x)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(x) \quad h(0)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)=c
$$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Why does this work?

- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$
- Consider the polynomial h obtained as a linear combination of the $\delta_{i} \mathrm{~s}$ using the coefficients of the recombination vector:
$h(x)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(x)$

$$
h(0)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)=c \quad h(i)=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)=c_{i}
$$

Multiplication Gates

To compute a share c_{i} of $c=a \cdot b$ from a_{i} and b_{i} :

- Pick a random polynomial δ_{i} of degree $k-1$ such that $\delta_{i}(0)=a_{i} \cdot b_{i}(\bmod p)$
- Send $\delta_{i}(j)$ to each other party $j \in\{1, \ldots, n\} \backslash\{i\}$
- Use the (public) recombination vector $\left(r_{1}, \ldots, r_{n}\right)$ for $\{1, \ldots, n\}$ to compute $c_{i}=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)$

Why does this work?

- Consider the polynomial $g(x)=f_{a}(x) \cdot f_{b}(x)$ of degree at most $2(k-1) \leq n-1$.
- By the previous lemma, we can write: $c=g(0)=\sum_{i=1}^{n} r_{i} \cdot g(i)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)(\bmod p)$
- Consider the polynomial h obtained as a linear combination of the $\delta_{i} s$ using the coefficients/of the recombination vector:

$$
h(x)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(x)
$$

$$
h(0)=\sum_{i=1}^{n} r_{i} \cdot \delta_{i}(0)=c
$$

$$
h(i)=\sum_{j=1}^{n} r_{j} \cdot \delta_{j}(i)=c_{i}
$$

- h is a polynomial of degree at most $k-1$ s.t. $h(0)=c$ and c_{i} is exactly the i-th share of h

