How does Bob learn the wire-labels corresponding to his input?

• He cannot just ask Alice, since this would reveal his inputs

How does Bob learn the wire-labels corresponding to his input?

• He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

ullet In the oblivious transfer protocol Alice has two messages m_0, m_1 of length $\ell(n)$

Security parameter

How does Bob learn the wire-labels corresponding to his input?

He cannot just ask Alice, since this would reveal his inputs

Alice and Bob use a protocol known as oblivious transfer protocol

- In the oblivious transfer protocol Alice has two messages m_0, m_1 of length $\ell(n)$
- \bullet Bob wants to learn one of them, say m_b , without revealing which one he is interested in to Alice
- Alice wants to be sure that Bob learns exactly one of the two values

Reminder: DDH-Based Key Encapsulation Mechanism

$Gen(1^n)$:

- Run $\mathcal{G}(1^n)$, where \mathcal{G} is a group generation algorithm, to obtain (G,q,g) where G is a group of order q and $g \in G$ is a generator
- ullet Pick some key derivation function $H:G \to \{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0,\ldots,q-1\}$
- Compute $h = g^x$
- Output (pk, sk) where pk = (G, q, g, h, H) and sk = (G, q, g, x, H).

Reminder: DDH-Based Key Encapsulation Mechanism

$Gen(1^n)$:

- Run $\mathcal{G}(1^n)$, where \mathcal{G} is a group generation algorithm, to obtain (G,q,g) where G is a group of order q and $g \in G$ is a generator
- Pick some key derivation function $H: G \to \{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h = g^x$
- Output (pk, sk) where pk = (G, q, g, h, H) and sk = (G, q, g, x, H).

- Here pk = (G, q, g, h, H)
- Choose y u.a.r. from $\{0,\ldots,q-1\}$
- Output the pair (c, k) with $c = g^y$ and $k = H(h^y) = H(g^{xy})$

Reminder: DDH-Based Key Encapsulation Mechanism

$Gen(1^n)$:

- Run $\mathcal{G}(1^n)$, where \mathcal{G} is a group generation algorithm, to obtain (G,q,g) where G is a group of order q and $g \in G$ is a generator
- Pick some key derivation function $H: G \to \{0,1\}^{\ell(n)}$
- Choose a uniform x u.a.r. from $\{0, \ldots, q-1\}$
- Compute $h = g^x$
- Output (pk, sk) where pk = (G, q, g, h, H) and sk = (G, q, g, x, H).

- Here pk = (G, q, g, h, H)
- Choose y u.a.r. from $\{0,\ldots,q-1\}$
- Output the pair (c, k) with $c = g^y$ and $k = H(h^y) = H(g^{xy})$

$\mathsf{Decaps}_{sk}(c)$:

- Here sk = (G, q, g, x, H)
- Output the key $H(c^x) = H(g^{xy})$

Reminder: DDH-Based KEM & Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

- We use the DDH-based KEM
- We use OTP as a DEM (for fixed-length messages)

Reminder: DDH-Based KEM & Hybrid Encryption

We can build a CPA-secure PKE scheme by combining a CPA-secure KEM with an EAV-secure DEM

- We use the DDH-based KEM
- We use OTP as a DEM (for fixed-length messages)

The resulting scheme is as follows:

$Gen(1^n)$:

- Pick a group G, its order q, a generator $g \in G$, a key-derivation function $H: G \to \{0,1\}^{\ell(n)}$ We think of these as fixed public values agreed upon in advance between Alice and Bob.
- ullet Pick a random $x \in G$, the **public-key** is $h = g^x$ and the **secret-key** is x

$Enc_h(m)$:

• Choose a uniform $y \in \{0, \ldots, q-1\}$. Return the pair $c = (g^y, H(h^y) \oplus m)$

$\mathsf{Dec}_x((c,c'))$:

• Return $H(c^x) \oplus c'$

Idea:

- We pick **two** public keys h_0, h_1 for Bob
- We ensure that Bob knows the secret key x_b corresponding to **exactly** one of the public keys (of his choice)
- ullet Alice encrypts m_0 with h_0 and m_1 with h_1
- ullet Bob can only decrypt one of the two ciphertexts, namely the one corresponding to m_b

Idea:

- We pick **two** public keys h_0, h_1 for Bob
- We ensure that Bob knows the secret key x_b corresponding to **exactly** one of the public keys (of his choice)
- Alice encrypts m_0 with h_0 and m_1 with h_1
- ullet Bob can only decrypt one of the two ciphertexts, namely the one corresponding to m_b

How can Bob "prove" to Alice that he knows exactly one private key?

ullet Alice picks a random group element $r \in G$ and sends it to Bob

- ullet Alice picks a random group element $r \in G$ and sends it to Bob
- ullet Bob picks a random private key x, and computes the two public keys:
 - $h_b = g^x$. This is the public key that will be used to encrypt the message m_b wanted by Bob. The corresponding secret-key is x

- ullet Alice picks a random group element $r \in G$ and sends it to Bob
- \bullet Bob picks a random private key x, and computes the two public keys:
 - $h_b = g^x$. This is the public key that will be used to encrypt the message m_b wanted by Bob. The corresponding secret-key is x
 - $h_{1-b} = r \cdot (g^x)^{-1}$. Bob does not have the corresponding secret key

- ullet Alice picks a random group element $r \in G$ and sends it to Bob
- \bullet Bob picks a random private key x, and computes the two public keys:
 - $h_b = g^x$. This is the public key that will be used to encrypt the message m_b wanted by Bob. The corresponding secret-key is x
 - $h_{1-b} = r \cdot (g^x)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_0 and h_1 to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_0 \cdot h_1 = r$?

- ullet Alice picks a random group element $r \in G$ and sends it to Bob
- \bullet Bob picks a random private key x, and computes the two public keys:
 - $h_b = g^x$. This is the public key that will be used to encrypt the message m_b wanted by Bob. The corresponding secret-key is x
 - $h_{1-b} = r \cdot (g^x)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_0 and h_1 to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_0 \cdot h_1 = r$?
- Alice encrypts m_0 and m_1 :
 - Pick a uniform $y_0 \in \{0, \dots, q-1\}$, let $c_0 = (g^{y_0}, H(h_0^{y_0}) \oplus m_0)$
 - Pick a uniform $y_1 \in \{0, \dots, q-1\}$, let $c_1 = (g^{y_1}, H(h_1^{y_1}) \oplus m_1)$

- ullet Alice picks a random group element $r \in G$ and sends it to Bob
- \bullet Bob picks a random private key x, and computes the two public keys:
 - $h_b = g^x$. This is the public key that will be used to encrypt the message m_b wanted by Bob. The corresponding secret-key is x
 - $h_{1-b} = r \cdot (g^x)^{-1}$. Bob does not have the corresponding secret key
- Bob sends h_0 and h_1 to Alice
- Alice checks that Bob "did not cheat" while computing the public keys: $h_0 \cdot h_1 = r$?
- Alice encrypts m_0 and m_1 :
 - Pick a uniform $y_0 \in \{0, \dots, q-1\}$, let $c_0 = (g^{y_0}, H(h_0^{y_0}) \oplus m_0)$
 - Pick a uniform $y_1 \in \{0, \dots, q-1\}$, let $c_1 = (g^{y_1}, H(h_1^{y_1}) \oplus m_1)$
- Alice sends c_0 and c_1 to Bob
- Bob decrypts $c_b = (c,c')$ as $m_b = H(c^x) \oplus c'$

Can Bob learn m_{1-b} ?

ullet m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

Can Bob learn m_{1-b} ?

ullet m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h^{y_{1-b}}_{1-b}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

• Be able to compute $h_{1-b}^{y_{1-b}}$

Can Bob learn m_{1-b} ?

• m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

• Be able to compute $h_{1-b}^{y_{1-b}}$

Can Bob learn m_{1-b} ?

• m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

ullet Be able to compute $h_{1-b}^{y_{1-b}}=(r\cdot g^{-x})^{y_{1-b}}$

Requires computing the discrete logarithm of a random group element

Can Bob learn m_{1-b} ?

• m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

 \bullet Be able to compute $h_{1-b}^{y_{1-b}}=(r\cdot g^{-x})^{y_{1-b}}$

Requires computing the discrete logarithm of a random group element

ullet Be able to evaluate $H(h_{1-b}^{y_{1-b}})$ without knowing $h_{1-b}^{y_{1-b}}$

Can Bob learn m_{1-b} ?

• m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

ullet Be able to compute $h_{1-b}^{y_{1-b}}=(r\cdot g^{-x})^{y_{1-b}}$

Requires computing the discrete logarithm of a random group element

ullet Be able to evaluate $H(h_{1-b}^{y_{1-b}})$ without knowing $h_{1-b}^{y_{1-b}}$

Secure if H acts as a random oracle

Can Bob learn m_{1-b} ?

• m_{1-b} was encrypted as $(g^{y_{1-b}}, H(h_{1-b}^{y_{1-b}}) \oplus m_{1-b})$

To learn m_{1-b} , Bob needs to either:

- Be able to compute $h_{1-b}^{y_{1-b}} = (r \cdot g^{-x})^{y_{1-b}}$ Requires computing the discrete logarithm of a random group element
- ullet Be able to evaluate $H(h_{1-b}^{y_{1-b}})$ without knowing $h_{1-b}^{y_{1-b}}$ Secure if H acts as a random oracle

Secure under the Random Oracle model and the CDH assumption

ullet Alice stars from a circuit that computes $f(x_1,x_2,\ldots,x_m,y_1,y_2,\ldots,y_n)$

- Alice stars from a circuit that computes $f(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob

- Alice stars from a circuit that computes $f(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing *which* of the two labels Bob requested)

- Alice stars from a circuit that computes $f(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing *which* of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice

- Alice stars from a circuit that computes $f(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice
- Alice knows the corresponding truth value, so she learns $f(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$

- Alice stars from a circuit that computes $f(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$
- Alice "garbles" the circuit and sends the garbled gates and the wire-labels corresponding to her input values to Bob
- Bob uses the oblivious transfer protocol to learn the wire-label corresponding to each of his inputs (without Alice knowing which of the two labels Bob requested)
- Bob evaluates the garbled circuit and obtains the wire-label of the output
- Bob sends the output wire-label to Alice
- ullet Alice knows the corresponding truth value, so she learns $f(x_1,x_2,\ldots,x_m,y_1,y_2,\ldots,y_n)$
- If Bob should also know the value of $f(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n)$, Alice shares it with Bob

What if $n \geq 2$ parties want to jointly compute a function?

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, \dots, x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

ullet The i-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the i-th party

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- ullet The i-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the i-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0, 1, \dots, p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $(x_1 \cdot x_2) \cdot (x_2 + x_3) \pmod{p}$

With inputs $x_1 = 3$, $x_2 = 5$, and $x_3 = 2$, and p = 11 it computes 6

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $(x_1 \cdot x_2) \cdot (x_2 + x_3) \pmod{p}$

With inputs $x_1 = 3$, $x_2 = 5$, and $x_3 = 2$, and p = 11 it computes 6

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $(x_1 \cdot x_2) \cdot (x_2 + x_3) \pmod{p}$

With inputs $x_1 = 3$, $x_2 = 5$, and $x_3 = 2$, and p = 11 it computes 6

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $(x_1 \cdot x_2) \cdot (x_2 + x_3) \pmod{p}$

With inputs $x_1 = 3$, $x_2 = 5$, and $x_3 = 2$, and p = 11 it computes 6

What if $n \geq 2$ parties want to jointly compute a function?

We consider functions $f(x_1, x_2, ..., x_n)$ that are computed by an **arithmetic circuit** over \mathbb{Z}_p , for a prime p > n

- The *i*-th input x_i is an integer in $\{0,1,\ldots,p-1\}$ and is controlled by the *i*-th party
- There are two gate types: addition gates and multiplication gates, that compute the sum and product of their inputs modulo p.

Computes $(x_1 \cdot x_2) \cdot (x_2 + x_3) \pmod{p}$

With inputs $x_1 = 3$, $x_2 = 5$, and $x_3 = 2$, and p = 11 it computes 6

How do Boolean circuit and arithmetic circuits compare?

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

- $\bullet \ x_1 \wedge x_2 = x_1 \cdot x_2$
- $\bullet \ \neg x = 1 x$
- $x_1 \lor x_2 = x_1 + x_2 x_1 \cdot x_2$

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

- $\bullet \ x_1 \wedge x_2 = x_1 \cdot x_2$
- $\bullet \ \neg x = 1 x$
- $x_1 \lor x_2 = x_1 + x_2 x_1 \cdot x_2$

← We can simulate an arithmetic circuit with a Boolean circuit:

⇒ We can simulate a Boolean circuit with an arithmetic circuit:

- $\bullet \ x_1 \wedge x_2 = x_1 \cdot x_2$
- $\bullet \ \neg x = 1 x$
- $x_1 \lor x_2 = x_1 + x_2 x_1 \cdot x_2$

← We can simulate an arithmetic circuit with a Boolean circuit:

- ullet Replace each wire of the arithmetic circuit with $\lceil \log p \rceil$ Boolean wires
- \bullet Replace each Addition/Multiplication gate with a Boolean circuit that computes the Sum/Product of the inputs modulo p

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

• Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- ullet Each party shares its input with all other parties using Shamir's k-out-of-n threshold secret sharing scheme

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of-n threshold secret sharing scheme

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of-n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of-n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output
- The output of the circuit is a share of $f(x_1, \ldots, x_n)$

How do we "garble" and arithmetic circuit for multiple parties?

How do we evaluate it?

Idea:

We can perform computation on shares, without having to recover their secrets first!

- Do not garble the circuit, use the homomorphic properties of Shamir secret sharing instead
- Each party shares its input with all other parties using Shamir's k-out-of-n threshold secret sharing scheme
- Each party evaluates the arithmetic circuit: a gate takes a share for each of the two inputs and produces a share of the output
- The output of the circuit is a share of $f(x_1, \ldots, x_n)$
- The parties combine their output shares and recover the value of $f(x_1, \ldots, x_n)$

Party i has the i-th shares (i,a_i) , (i,b_i) of two (unknown) secrets a,b, respectively, . . .

```
Party i has the i-th shares (i, a_i), (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret c = a + b \pmod{p}
```

```
Party i has the i-th shares (i, a_i), (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret c = a + b \pmod{p}
```

ullet Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b

```
Party i has the i-th shares (i, a_i), (i, b_i) of two (unknown) secrets a, b, respectively, . . . and wants to compute the i-th share (i, c_i) of the secret c = a + b \pmod{p}
```

- Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b
- Notice that the polynomial $f_c(x) = f_a(x) + f_b(x) \pmod{p}$ has degree at most k-1 and is such that $f_c(0) = f_a(0) + f_b(0) = a + b \pmod{p}$

Party i has the i-th shares (i, a_i) , (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret $c = a + b \pmod{p}$

- Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b
- Notice that the polynomial $f_c(x) = f_a(x) + f_b(x) \pmod{p}$ has degree at most k-1 and is such that $f_c(0) = f_a(0) + f_b(0) = a + b \pmod{p}$
- ullet f_c is a valid polynomial for sharing c in the Shamir's k-out-of-n threshold secret sharing scheme!

Party i has the i-th shares (i, a_i) , (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret $c = a + b \pmod{p}$

- Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b
- Notice that the polynomial $f_c(x) = f_a(x) + f_b(x) \pmod{p}$ has degree at most k-1 and is such that $f_c(0) = f_a(0) + f_b(0) = a + b \pmod{p}$
- f_c is a valid polynomial for sharing c in the Shamir's k-out-of-n threshold secret sharing scheme!

What is the *i*-th share (i, c_i) of f_c ?

Party i has the i-th shares (i, a_i) , (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret $c = a + b \pmod{p}$

- Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b
- Notice that the polynomial $f_c(x) = f_a(x) + f_b(x) \pmod{p}$ has degree at most k-1 and is such that $f_c(0) = f_a(0) + f_b(0) = a + b \pmod{p}$
- ullet f_c is a valid polynomial for sharing c in the Shamir's k-out-of-n threshold secret sharing scheme!

What is the *i*-th share (i, c_i) of f_c ?

$$c_i = f_c(i) = f_a(i) + f_b(i) = a_i + b_i \pmod{p}$$

Party i has the i-th shares (i, a_i) , (i, b_i) of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share (i, c_i) of the secret $c = a + b \pmod{p}$

- Let $f_a(x)$ and $f_b(x)$ be the polynomials (of degree at most k-1) used to share a and b
- Notice that the polynomial $f_c(x) = f_a(x) + f_b(x) \pmod{p}$ has degree at most k-1 and is such that $f_c(0) = f_a(0) + f_b(0) = a + b \pmod{p}$
- ullet f_c is a valid polynomial for sharing c in the Shamir's k-out-of-n threshold secret sharing scheme!

What is the *i*-th share (i, c_i) of f_c ?

$$c_i = f_c(i) = f_a(i) + f_b(i) = a_i + b_i \pmod{p}$$

$$\begin{array}{c|c} a_i & & \\ \hline b_i & & \end{array} \quad \text{Add} \quad c_i = a_i + b_i \pmod{p}$$

Addition gates do not require any special care!


```
Party i has the i-th shares a_i, b_i of two (unknown) secrets a, b, respectively, . . . and wants to compute the i-th share c_i of the secret c = a \cdot b \pmod{p}
```

```
Party i has the i-th shares a_i, b_i of two (unknown) secrets a, b, respectively, . . .
... and wants to compute the i-th share c_i of the secret c = a \cdot b \pmod{p}
```

We can't just use the share (i, c_i) with $c_i = a_i \cdot b_i$ Why?

Party i has the i-th shares a_i , b_i of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share c_i of the secret $c = a \cdot b \pmod{p}$

We can't just use the share (i, c_i) with $c_i = a_i \cdot b_i$ Why?

ullet We could define $f_c(x)=f_a(x)\cdot f_b(x)$, and it would satisfy $f_c(0)=a\cdot b$. . .

Party i has the i-th shares a_i , b_i of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share c_i of the secret $c = a \cdot b \pmod{p}$

We can't just use the share (i, c_i) with $c_i = a_i \cdot b_i$ Why?

- ullet We could define $f_c(x)=f_a(x)\cdot f_b(x)$, and it would satisfy $f_c(0)=a\cdot b$. . .
- Also, $c_i = a_i \cdot b_i$ would be the value of $f_c(i)$...

Party i has the i-th shares a_i , b_i of two (unknown) secrets a, b, respectively, ... and wants to compute the i-th share c_i of the secret $c = a \cdot b \pmod{p}$

We can't just use the share (i, c_i) with $c_i = a_i \cdot b_i$ Why?

- We could define $f_c(x) = f_a(x) \cdot f_b(x)$, and it would satisfy $f_c(0) = a \cdot b \dots$
- ullet Also, $c_i=a_i\cdot b_i$ would be the value of $f_c(i)$. . .

Problem: since f_a and f_b have deree up to k-1, the degree of f_c can be as high as 2(k-1)

ullet After each multiplication, the number of shares needed to recover c roughly doubles

Party i has the i-th shares a_i , b_i of two (unknown) secrets a, b, respectively, and wants to compute the *i*-th share c_i of the secret $c = a \cdot b \pmod{p}$

We can't just use the share (i, c_i) with $c_i = a_i \cdot b_i$ Why?

- ullet We could define $f_c(x)=f_a(x)\cdot f_b(x)$, and it would satisfy $f_c(0)=a\cdot b\dots$
- ullet Also, $c_i = a_i \cdot b_i$ would be the value of $f_c(i)$. . .

Problem: since f_a and f_b have deree up to k-1, the degree of f_c can be as high as 2(k-1)

ullet After each multiplication, the number of shares needed to recover c roughly doubles

We need to use another property of interpolating polynomials...

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod_{\substack{i=1,\ldots,n\\i\neq j}} x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod_{\substack{i=1,\ldots,n\\i\neq j}} x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in \mathbb{Z}_p !

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod_{\substack{i=1,\ldots,n\\i\neq j}} x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in \mathbb{Z}_p !

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \dots, r_n) is called the **recombination vector**

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in $\mathbb{Z}_p!$

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \ldots, r_n) is called the **recombination vector**

Proof:

From Lagrange interpolation we know that:
$$f(x) = \sum_{j=1}^n f(x_j) \prod_{\substack{i=1,\ldots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1}$$

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod_{\substack{i=1,\ldots,n\\i\neq j}} x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in \mathbb{Z}_p !

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \ldots, r_n) is called the **recombination vector**

Proof: From Lagrange interpolation we know that:
$$f(x) = \sum_{j=1}^{n} \frac{y_j}{f(x_j)} \prod_{\substack{i=1,\ldots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1}$$

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in $\mathbb{Z}_p!$

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \ldots, r_n) is called the **recombination vector**

Proof: From Lagrange interpolation we know that:
$$f(x) = \sum_{j=1}^n \frac{y_j}{f(x_j)} \prod_{\substack{i=1,\dots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1}$$

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in $\mathbb{Z}_p!$

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \ldots, r_n) is called the **recombination vector**

Proof: From Lagrange interpolation we know that: $f(x) = \sum_{j=1}^n \frac{y_j}{f(x_j)} \prod_{\substack{i=1,\ldots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1}$

$$f(0) = \sum_{j=1}^{k} f(x_j) \prod_{\substack{i=1,\dots,n\\i\neq j}} x_i (x_i - x_j)^{-1}$$

Lemma: Given distinct x_1, \ldots, x_n , define $r_j = \prod x_i \cdot (x_i - x_j)^{-1}$.

For any polynomial f of degree at most n-1:

$$f(0) = \sum_{j=1}^{k} r_j f(x_j)$$

The same holds in $\mathbb{Z}_p!$

Remark: The coefficients r_i depend **only** on the x-coordinates x_i (and **not** on the choice of f)

The vector (r_1, r_2, \ldots, r_n) is called the **recombination vector**

Proof: From Lagrange interpolation we know that: $f(x) = \sum_{j=1}^n \frac{y_j}{f(x_j)} \prod_{\substack{i=1,\ldots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1}$

$$\prod_{\substack{i=1,\dots,n\\i\neq j}} (x-x_i)(x_j-x_i)^{-1} \qquad \ell_j(x_j)^{-1}$$

$$f(0) = \sum_{j=1}^{k} f(x_j) \prod_{\substack{i=1,\dots,n\\i\neq j}} x_i (x_i - x_j)^{-1}$$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

Why does this work?

• Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \dots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$
- Consider the polynomial h obtained as a linear combination of the δ_i s using the coefficients of the recombination vector:

$$h(x) = \sum_{i=1}^{n} r_i \cdot \delta_i(x) \tag{mod } p$$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$
- Consider the polynomial h obtained as a linear combination of the δ_i s using the coefficients of the recombination vector:

$$h(x) = \sum_{i=1}^{n} r_i \cdot \delta_i(x) \qquad h(0) = \sum_{i=1}^{n} r_i \cdot \delta_i(0)$$
 (mod p)

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$
- Consider the polynomial h obtained as a linear combination of the δ_i s using the coefficients of the recombination vector:

$$h(x) = \sum_{i=1}^{n} r_i \cdot \delta_i(x) \qquad h(0) = \sum_{i=1}^{n} r_i \cdot \delta_i(0) = c \qquad (\text{mod } p)$$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$
- Consider the polynomial h obtained as a linear combination of the δ_i s using the coefficients of the recombination vector:

$$h(x) = \sum_{i=1}^{n} r_i \cdot \delta_i(x) \qquad h(0) = \sum_{i=1}^{n} r_i \cdot \delta_i(0) = c \qquad h(i) = \sum_{j=1}^{n} r_j \cdot \delta_j(i) = c_i \pmod{p}$$

To compute a share c_i of $c = a \cdot b$ from a_i and b_i :

- Pick a random polynomial δ_i of degree k-1 such that $\delta_i(0) = a_i \cdot b_i \pmod{p}$
- Send $\delta_i(j)$ to each other party $j \in \{1, \ldots, n\} \setminus \{i\}$
- Use the (public) recombination vector (r_1, \ldots, r_n) for $\{1, \ldots, n\}$ to compute $c_i = \sum_{j=1}^n r_j \cdot \delta_j(i)$

Why does this work?

- Consider the polynomial $g(x) = f_a(x) \cdot f_b(x)$ of degree at most $2(k-1) \le n-1$.
- By the previous lemma, we can write: $c = g(0) = \sum_{i=1}^n r_i \cdot g(i) = \sum_{i=1}^n r_i \cdot \delta_i(0) \pmod{p}$
- Consider the polynomial h obtained as a linear combination of the δ_i s using the coefficients of the recombination vector:

$$h(x) = \sum_{i=1}^{n} r_i \cdot \delta_i(x) \qquad h(0) = \sum_{i=1}^{n} r_i \cdot \delta_i(0) = c \qquad h(i) = \sum_{j=1}^{n} r_j \cdot \delta_j(i) = c_i \pmod{p}$$

ullet h is a polynomial of degree at most k-1 s.t. h(0)=c and c_i is exactly the i-th share of h