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Room: C1.16• Tuesday 16:30 – 18:30

• Thursday 11:30 – 13:30

Course length: 48 hours (6 CFU)

When/where:

Room: C1.16

Office hours:

• Thursday 14:30 – 16:30

• Please send an email to stefano.leucci@gmail.com or ask before/after class

• 24 lectures

https://people.disim.univaq.it/∼stefanoleucci/isns25/

Course material:
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Insecure channel

Why cryptography?

Two entities wish to communicate

Alice can send a message to Bob through a communication channel

The communication channel is “insecure”

An “adversary” controls the
communication channel

Can Alice and Bob communicate “securely”?

Alice
Bob

• Anybody can view a message in transit

What does “secure” mean?

• Anybody can modify a message in transit

• Anybody can inject messages into the channel
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Insecure channel

Alice
Bob

Why cryptography?

Typically we want to guarantee the following (informal) properties:

• Secrecy/Confidentiality: The contents messages sent over the channel will be known only to
Alice and Bob

• Authentication: any message received by Bob can be confirmed to have originated from Alice
(we can detect any message injected by the adversary)

• Integrity: it is not possible to alter the contents of a message sent across the channel
(without the tampering being detected)
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Alice
Bob

Why cryptography?

Intuitively, we established a virtual “secure” communication channel on top of an underlying insecure
channel

Virtual secure channel
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Topics

• Hash functions

• Public-key cryptography, Hybrid cryptography

• Digital signatures

• Key distribution

• Advanced applications: secret sharing, multiparty
computation, zero-knowledge proofs

At the “boundary” between private-key
and public-key cryptography











• Digital certificates, SSL/TLS

Public-key cryptography
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Books

Jonathan Katz, Yehuda Lindell

Introduction to Modern Cryptography

ISBN: 978-0815354369

Mike Rosulek

The Joy Of Cryptography

https://joyofcryptography.com/

Almost all course
material can be
found in this book

We will use the
same notation

Freely Available
Uses different
notation.



Exams

Written exam:

• Questions on the theoretical concepts (e.g., security
definitions)

• Exercises (e.g., prove security, carry out an attack, etc. . . )
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Secret Sharing

What if the adversary destroys a share?

Idea:

• Any subset of < t agent must not be able to gain any information about the secret

• If there are n agents, any subset of at least t agents must be able to recover the secret.

Example: n = 4, t = 3

Another
“Magic box” ??

t-out-of-n threshold secret-sharing scheme
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Secret Sharing

• Agents can be different servers connected over the Internet

• The “magic boxes” can be distributed algorithms

• The system remains secure if < t servers are compromised

• The system remains operational (the secret can be recovered) if ≤ n− t servers are unavailable
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The Domain Name System is the system responsible for converting human-readable domain names
into IP addresses

DNS Server

What’s the address
of www.my-bank.

com?

Try the following IPv6 address: [a7:7a:c:
:ba:d]

Please log-in into my bank account

An attacker can tamper with DNS responses and convince the client that www.my-bank.com resides
on a malicious server

To prevent this, DNSSEC is used to authenticate DNS mappings

Who can be trusted with the master cryptographic keys to the system?
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At least five key-holding members of this fellowship would have to
meet at a secure data center in the United States to reboot [DNSSEC]
in case of a very unlikely system collapse.

“If you round up five of these guys, they can decrypt [the root key]
should the West Coast fall in the water and the East Coast get hit by a
nuclear bomb”

— Richard Lamb, program manager for DNSSEC at ICANN.

DNSSEC is managed by the Internet Corporation for Assigned Names and Numbers (ICANN)

The master key is split into 7 pieces and distributed on smart cards to 7 geographically diverse people

n = 7 t = 5 5-out-of-7 threshold secret-sharing scheme
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Alice and Bob want to decide on a movie to watch

Each of Alice and Bob has their own preferences...

However, they don’t want to reveal that they like a movie unless the other person also likes it

• They vote on one movie at a time until they find a movie that they both like

• Voting is done using a secure 2-party computation protocol

Alice and Bob are honest (they follow the protocol) but curious
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︸ ︷︷ ︸

Alice

︸ ︷︷ ︸

Bob

If Alice likes the movie, she will place her two cards face down in the order

Otherwise she will place her two cards face down in the order

Choosing a movie with secret preferences

If Bob likes the movie, he will place his two cards face down in the order

Otherwise he will place his two cards face down in the order
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Choosing a movie with secret preferences
Possible configurations:

There are three hearts in a row if and only if both Alice and Bob like the movie

This holds (in a modular sense) even if any rotation of the cards is considered!
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Alice

︸ ︷︷ ︸

Bob

Choosing a movie with secret preferences

Alice and Bob pile up the cards, all face down, ensuring that their order is preserved

Alice and Bob take turns cutting the deck (i.e., they perform a rotation)

Alice and Bob reveal the cards and watch the movie if and only if there are 3 consecutive hearts
(in a modular fashion), otherwise they “pass”

Observation: If they end up not watching the movie, all possible “pass” configurations are equiprobable



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed

In the movie selection problem:

• n = 2

• s1, s2 ∈ {pass,watch}

• f(s1, s2) =

{

watch if s1 = s2 = watch

pass otherwise



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed

In the movie selection problem:

• n = 2

• f(s1, s2) =

{

1 if s1 = s2 = 1

0 otherwise

• s1, s2 ∈ {0, 1}



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed

In the movie selection problem:

• n = 2

• f(s1, s2) =

{

1 if s1 = s2 = 1

0 otherwise

• s1, s2 ∈ {0, 1}

= s1 ∧ s2



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed

In the movie selection problem:

• n = 2

• f(s1, s2) =

{

1 if s1 = s2 = 1

0 otherwise

• s1, s2 ∈ {0, 1}

= s1 ∧ s2
s1
s2

f(s1, s2)



Secure Multiparty Computation

The previous scenario is a secure multiparty computation problem:

• There are n agents (parties) 1, 2, . . . , n

• The i-th agent has a secret information si

• The agents wish to jointly compute some function f(s1, s2, . . . , sn)

• No information about s1, s2, . . . , sn should be revealed

In the movie selection problem:

• n = 2

• f(s1, s2) =

{

1 if s1 = s2 = 1

0 otherwise

• s1, s2 ∈ {0, 1}

= s1 ∧ s2
s1
s2

f(s1, s2)

What about arbitrary circuits?
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Graph isomorphism problem

• Is in NP (the certificate is π)

• Is not known to be NP-Complete

• Is a candidate problem to be in the class NP-Intermediate

• If NP-Intermediate ̸= ∅ then P ̸= NP.

NP-Intermediate = NP \ P

Alice knows an isomorphism π between G1 and G2

Alice can use a Zero Knowledge protocol to
convince bob that G1 and G2 are isomorphic
without revealing π

G1 is isomorphic to G2 iff ∃ bijection π : V1→V2 s.t. (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2.

G1 = (V1, E1) G2 = (V2, E2)



Basic definitions



Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

• Alice and Bob have a shared, secret key



Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

• Alice and Bob have a shared, secret key

• The key must be shared securely in advance, and must be kept secret
(before, during, and after Bob and Alice’s interaction)



Types of cryptography

There are two broad settings in which encryption is used:

The private-key or symmetric setting:

• Alice and Bob have a shared, secret key

• The key must be shared securely in advance, and must be kept secret
(before, during, and after Bob and Alice’s interaction)

• Messages are encrypted and decrypted using the same key

Encryption Decryption



Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

• Alice and Bob do not need to share any secret information



Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

• Alice and Bob do not need to share any secret information

• Messages are encrypted using only public information (public keys) and decrypted with private keys
(which are not shared!)

m
Encryption Decryption



Types of cryptography

There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

• Alice and Bob do not need to share any secret information

• Messages are encrypted using only public information (public keys) and decrypted with private keys
(which are not shared!)

• Anybody can encrypt messages for a given recipient

m
Encryption Decryption
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There are two broad settings in which encryption is used:

The public-key or asymmetric setting:

• Alice and Bob do not need to share any secret information

• Messages are encrypted using only public information (public keys) and decrypted with private keys
(which are not shared!)

• Anybody can encrypt messages for a given recipient

m
Encryption Decryption

For now, we will only be concerned with private-key cryptography
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Private-key cryptography

A private-key encryption scheme consists of three algorithms:

• Gen is a randomized algorithm that outputs a key from some
finite set K (key space) according to some probability distribution Gen k ∈ K

• Enc is a (possibly randomized) algorithm that takes as input a
key k ∈ K and a message (or plaintext) m from some set M
(message space) and outputs a ciphertext c obtained by
encrypting m with key k.

C denotes the set of all possible ciphertexts
Enck

m ∈ M

k ∈ K

Enck(m) denotes an execution of Enc with inputs k and m

c ∈ C

• Dec is a deterministic algorithm that takes as input a key
k ∈ K and a ciphertext c ∈ C and outputs a message m ∈ M

Deck(c) denotes an execution of Dec with inputs k and c

Perfect correctness: ∀k ∈ K,m ∈ M if c can be output by Enck(m) then Deck(c) = m

Deck
c ∈ C

k ∈ K

m ∈ M
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Kerckhoffs’ principle

Historically, encryption has been performed by devising some clever method to scramble m into a
cyphertext c (and vice-versa)

• The method was only known only to the sender and the recipient

• No key (we can think of a fixed key as being hardcoded in the algorithm)

This means that if the encryption/decryption algorithm(s) were leaked to an adversary, the honest
parties needed to come up with a new scheme

Coming up with (secure) encryption schemes is hard!

Kerckhoffs’ principle: all parts of an encryption scheme should be public, except the key

The cipher method must not be required to be
secret, and it must be able to fall into the hands of
the enemy without inconvenience.

If the key is leaked, it is easy to replace it
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No security through obscurity

. . . surely keeping both the scheme and the key secret is more secure than just keeping the key
secret. . . right?

But. . .

Don’t roll your own encryption!

• It’s really easy to make mistakes that will render an encryption scheme insecure

• Some of these mistakes are really subtle (we will see some of them in the course)

Encryption schemes whose details are public:

• Can be standardized

• Parties only need to share a key (and not the exact details of the secret scheme).

• No need for Bob to implement Alice’s weird scheme on his own
(Bob can use public, vetted, implementations of well-known schemes)

• Have undergone public scrutiny by experts and no flaws have been found


