
Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution overM,

every message m ∈M, and every ciphertext c ∈ C with Pr[C = c] ̸= 0:

Pr[M = m | C = c] = Pr[M = m]

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message spaceM is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav

A,Π = 1] =
1

2

When is an encryption scheme secure?
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Is there a secure encryption scheme?

All the encryption schemes we have seen so fare are not secure according to our formal definitions

Is there a secure encryption scheme?

Gilbert Vernam



Vernam Cipher

• Patented in 1917 by Gilbert Vernam with no proof of security

(Shannon’s definition of perfect secrecy is from 1949)

• Shannon subsequently proved that the cipher is perfectly secret

• ⊕ denotes the bitwise exclusive or (XOR) operator

x y x⊕ y

0 0

0 1

1 0

1 1

0

0

1

1
• Also called one-time pad
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For an integer ℓ > 0, the Vernam cipher is defined as follows:

• M = {0, 1}ℓ, C = {0, 1}ℓ, K = {0, 1}ℓ

Vernam Cipher

• Gen: return a key k chosen uniformly at random from K, i.e., Pr[K = k] = 2−ℓ ∀k

• Enck(m):

• Deck(c):

return c := k ⊕m

return m := k ⊕ c

Gen k ← {0, 1}ℓ

Encm

k

c := m⊕ k

Decc

k

m := c⊕ k
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Is it correct?

Encm
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Example

Alice wants to send a message m = 001010 of ℓ = 6 bits to Bob. Alice and Bob agreed to use a
Vernam cipher and have already exchanged a key k = 101101

What is the ciphertext c?

m = 0 0 1 0 1 0

k = 1 0 1 1 0 1

⊕

=

c = 1 0 0 1 1 1



Example

Alice wants to send a message m = 001010 of ℓ = 6 bits to Bob. Alice and Bob agreed to use a
Vernam cipher and have already exchanged a key k = 101101

What is the ciphertext c?

m = 0 0 1 0 1 0

k = 1 0 1 1 0 1

⊕

=

c = 1 0 0 1 1 1

Bob receives the ciphetext c = 110101 from Alice. Alice and Bob have agreed to use a Vernam
cipher with key k = 000110

What is the plaintext m?
c = 1 1 0 1 0 1

k = 0 0 0 1 1 0

⊕

=

m = 1 1 0 0 1 0
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• The historic ciphers were defined over the Latin alphabet {a, . . . , z}

• The Vernam cipher is defined over the binary alphabet {0, 1}

• We can always encode the symbols in the message alphabet in binary on Alice’s side
(before encryption). . .

• . . . and decode them on Bob’s side (after decryption)

Encoding

How do we send messages using the Latin (or any other) alphabet?



Encoding



Proof of security

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every probability distribution overM,
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Theorem: The one-time pad encryption scheme is perfectly secret.

Proof of security

Pr[EncK(m) = c] = Pr[K ⊕m = c]

For any m,m′ ∈M, c ∈ C:

= Pr[K = c⊕m] = 2−ℓ = Pr[K = c⊕m′]

= Pr[K ⊕m′ = c] = Pr[EncK(m′) = c]

□

Definition: An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if for every m,m′ ∈M, and every c ∈ C:

Pr[EncK(m) = c] = Pr[EncK(m′) = c]

Proof:
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Caveats & Limitations of One-time Pad

• Pre-sharing a long key is difficult

• The key must be stored securely

• The key must be (at least) as long as the message

• The bits of the key must be generated independently and uniformly at random

• The key must never be reused (not even partially!)

You should never re-use a one-time pad. It’s like
toilet paper; if you re-use it, things get messy.

– Michael Rabin

(e.g., how would you handle full-disk encryption?)
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Caveats & Limitations of One-time Pad

What happens if a key is reused?

• c1 = Enck(m1)

• c2 = Enck(m2)

The adversary can compute c1 ⊕ c2

c1 ⊕ c2 = (k ⊕m1)⊕ (k ⊕m2)

= m1 ⊕ (k ⊕ k)⊕m2 (commutativity + associativity)

= m1 ⊕ 0 . . . 0⊕m2 (definition of ⊕)

= m1 ⊕m2 (definition of ⊕)

The adversary learns m1 ⊕m2

Do we care?
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Caveats & Limitations of One-time Pad

• Frequency analysis!
(e.g., e⊕ e = 0 . . . 0 )

• Patterns in the ASCII encoding

• The encoding of all letters starts
with 01 . . .

• The encoding of a space starts
with 00 . . .

• Trivial to identify the exclusive-or
of letter and space!
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One-time pad in practice

The “red phone”: a symbol of the Moscow–Washington hotline

• Actually consisted of two full-duplex telegraph lines, with
teletype terminals at the endpoints

• Text-only: speech can be easily misinterpreted

• Text is encrypted using one-time pad

• Keys were exchanged via the embassies, using trusted
couriers with briefcases containing sheets of paper with
random characters



One-time pad in practice

www.cryptomuseum.com
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The all-zeros key (Alice’s version of OTP)

• Alice notices that, when k = 000 . . . 0
︸ ︷︷ ︸

ℓ times

:

Enck(m) = k ⊕m = m

The ciphertext coincides with the plaintext!

• How is this compatible with perfect secrecy?

• Alice decides to “fix” this problem by redefining K = {0, 1}ℓ \ {000 . . . 0}
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Pr[C=c] = 0 ̸= Pr[M = m]
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Limitations of Perfect Secrecy

Proof:

We prove the contrapositive statement:

If |K| < |M| then the encryption scheme is not perfectly secret.

Pr[M = m′] ̸= Pr[M = m′ | C = c]

In particular, we argue that there must exist some m′ for which:

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption scheme
with message spaceM and key space K, then |K| ≥ |M|
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be encrypted to the ciphertext c
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Consider the uniform distribution overM and let c be a ciphertext that occurs with positive probability
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LetMc denote all messages m ∈M
such that m = Deck(c) for some k ∈ K
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Since Dec is a deterministic algorithm:

|Mc| ≤ |K| < |M|

M \Mc ̸= ∅

⇒

Pick any m′ ∈M \Mc

m′

• Pr[M = m′] > 0

• Pr[M = m′ | C = c] = 0

}

=⇒ Pr[M = m′] ̸= Pr[M = m′ | C = c]

Limitations of Perfect Secrecy
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Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption scheme
with message spaceM and key space K, then |K| ≥ |M|

Limitations of Perfect Secrecy

Corollary: Any perfectly secret encryption scheme withM = {0, 1}ℓ and K ⊆ {0, 1}∗ is such that
maxk∈K |k| ≥ ℓ, where |k| denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length ℓ (over the
binary alphabet) then it must require the use of at least one key with length at least ℓ.

If all keys have length at most ℓ′ < ℓ then the encryption scheme cannot be perfectly secret. Indeed:

|K| ≤
ℓ′∑

i=0

|{0, 1}i| =
ℓ′∑

i=0

2i = 2ℓ
′+1 − 1 ≤ 2ℓ − 1 < 2ℓ = |M|

Proof:

□
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Another concrete attack: advantage?

How big is ε?

Pr[EncK(m) ∈ Cm′ ] = 1− ε for some ε > 0

Pr[PrivKeav
A,Π = 1] = 1

2 + ε
4

If keys are just one bit shorter than the messages then there is a pair of messages m,m′ for which ε ≥ 1
2

The advantage is is at least 1
8 !

≥ 62.5%

See, e.g., Theorem 17.9 in “A Course in Cryptography” (3rd edition) by Rafael Pass and Abhi Shelat for
a proof.
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Individuals occasionally claim they have developed a radically new
encryption scheme that is “unbreakable” and achieves the security
of the one-time pad without using keys as long as what is being

encrypted. [...] Anyone making such claims either knows very little
about cryptography or is blatantly lying.
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The scheme is perfectly secret if and only if:

1. Every key in K is chosen with probability 1
|K| by Gen.

2. For every m ∈M and every c ∈ C, there is a unique key k ∈ K such that Enck(m) = c.

Proof:

perfect secrecy =⇒ 1.

For each key ki ∈ K (resp. kj), there is a unique set Ki (resp. Kj) containing ki (resp. kj).

Pr[K = ki] = Pr[EncK(mi) = c]

□

= Pr[EncK(mj) = c] = Pr[K = kj ]
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Proof of security of One-Time pad, revisited

Shannon’s Theorem: Let (Gen,Enc,Dec) be an encryption scheme with |M| = |K| = |C|.
The scheme is perfectly secret if and only if:

1. Every key in K is chosen with probability 1
|K| by Gen.

2. For every m ∈M and every c ∈ C, there is a unique key k ∈ K such that Enck(m) = c.

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

• M = K = C therefore |M| = |K| = |C|

• Given m and c, there is a unique key k such that Enck(m) = c, namely c⊕m

(recall that Enck(m) = k ⊕m)

□
The claim follows from Shannon’s theorem.

• Every key is chosen with probability 1
2ℓ

= 1
|K|


