When is an encryption scheme secure?

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\Pr[C = c] \neq 0$:

 $\Pr[M = m \mid C = c] = \Pr[M = m]$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$$

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$\Pr[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] = \frac{1}{2}$$

Is there a secure encryption scheme?

All the encryption schemes we have seen so fare are **not** secure according to our formal definitions

Is there a secure encryption scheme?

Is there a secure encryption scheme?

All the encryption schemes we have seen so fare are **not** secure according to our formal definitions

Is there a secure encryption scheme?

To all whom it may concern:

Be it known that I, GILBERT S. VERNAM, residing at Brooklyn, in the county of Kings and State of New York, have invent-

5 ed certain Improvements in Secret Signaling Systems, of which the following is a specification.

This invention relates to signaling systems and especially to telegraph systems. 0 Its object is to insure secrecy in the trans-mission of messages and, further, to provide a system in which messages may be transmitted and received in plain characters or a well-known code but in which the sig-5 naling impulses are so altered before transmission over the line that they are unintelligible to anyone intercepting them.

Gilbert Vernam

- Patented in 1917 by Gilbert Vernam with no proof of security (Shannon's definition of perfect secrecy is from 1949)
- Also called *one-time pad*
- Shannon subsequently proved that the cipher is perfectly secret
- \oplus denotes the bitwise *exclusive or* (XOR) operator

x	y	$x\oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

For an integer $\ell > 0$, the Vernam cipher is defined as follows:

• $\mathcal{M} = \{0,1\}^{\ell}$, $\mathcal{C} = \{0,1\}^{\ell}$, $\mathcal{K} = \{0,1\}^{\ell}$

For an integer $\ell > 0$, the Vernam cipher is defined as follows:

- $\mathcal{M} = \{0,1\}^{\ell}$, $\mathcal{C} = \{0,1\}^{\ell}$, $\mathcal{K} = \{0,1\}^{\ell}$
- return a key k chosen uniformly at random from \mathcal{K} , i.e., $\Pr[K = k] = 2^{-\ell} \ \forall k$ • Gen:

For an integer $\ell > 0$, the Vernam cipher is defined as follows:

- $\mathcal{M} = \{0, 1\}^{\ell}$, $\mathcal{C} = \{0, 1\}^{\ell}$, $\mathcal{K} = \{0, 1\}^{\ell}$
- return a key k chosen uniformly at random from \mathcal{K} , i.e., $\Pr[K = k] = 2^{-\ell} \ \forall k$ • Gen:

• $\mathsf{Enc}_k(m)$: return $c := k \oplus m$

For an integer $\ell > 0$, the Vernam cipher is defined as follows:

- $\mathcal{M} = \{0, 1\}^{\ell}$, $\mathcal{C} = \{0, 1\}^{\ell}$, $\mathcal{K} = \{0, 1\}^{\ell}$
- return a key k chosen uniformly at random from \mathcal{K} , i.e., $\Pr[K = k] = 2^{-\ell} \forall k$ • Gen:

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = \mathsf{Dec}_k(k \oplus m)$

(definition of Enc_k)

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = \mathsf{Dec}_k(k \oplus m)$$

= $k \oplus (k \oplus m)$

(definition of Enc_k) (definition of Dec_k)

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = \mathsf{Dec}_k(k \oplus m)$$
$$= k \oplus (k \oplus m)$$
$$= (k \oplus k) \oplus m$$

(definition of Enc_k) (definition of Dec_k) (associativity of \oplus)

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

$$Dec_k(Enc_k(m)) = Dec_k(k \oplus m)$$
$$= k \oplus (k \oplus m)$$
$$= (k \oplus k) \oplus m$$
$$= \underbrace{00 \dots 0}_{\ell \text{ times}} \oplus m$$

(definition of Enc_k) (definition of Dec_k) (associativity of \oplus) (definition of \oplus)

Is it correct?

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) \stackrel{?}{=} m$$

$$Dec_k(Enc_k(m)) = Dec_k(k \oplus m)$$
$$= k \oplus (k \oplus m)$$
$$= (k \oplus k) \oplus m$$
$$= \underbrace{00 \dots 0}_{\ell \text{ times}} \oplus m$$
$$= m$$

(definition of Enc_k) (definition of Dec_k) (associativity of \oplus) (definition of \oplus) (definition of \oplus)

Example

Alice wants to send a message m = 001010 of $\ell = 6$ bits to Bob. Alice and Bob agreed to use a Vernam cipher and have already exchanged a key k = 101101

What is the ciphertext *c*?

 $m = 0 \ 0 \ 1 \ 0 \ 1 \ 0$ \bigoplus $k = 1 \ 0 \ 1 \ 1 \ 0 \ 1$ = $c = 1 \ 0 \ 0 \ 1 \ 1 \ 1$

Example

Alice wants to send a message m = 001010 of $\ell = 6$ bits to Bob. Alice and Bob agreed to use a Vernam cipher and have already exchanged a key k = 101101

What is the ciphertext *c*?

$$m = 0 \ 0 \ 1 \ 0 \ 1 \ 0 \qquad \oplus \\ k = 1 \ 0 \ 1 \ 1 \ 0 \ 1 \qquad = \\ c = 1 \ 0 \ 0 \ 1 \ 1 \ 1 \qquad =$$

Bob receives the ciphetext c = 110101 from Alice. Alice and Bob have agreed to use a Vernam cipher with key k = 000110

What is the plaintext m?

$$c = 1 \ 1 \ 0 \ 1 \ 0 \ 1 \qquad \oplus \\ k = 0 \ 0 \ 0 \ 1 \ 1 \ 0 = \\ m = 1 \ 1 \ 0 \ 0 \ 1 \ 0$$

- $\bullet\,$ The historic ciphers were defined over the Latin alphabet $\{a,\ldots,z\}$
- The Vernam cipher is defined over the binary alphabet $\{0, 1\}$

- The historic ciphers were defined over the Latin alphabet $\{a,\ldots,z\}$
- The Vernam cipher is defined over the binary alphabet $\{0, 1\}$

How do we send messages using the Latin (or any other) alphabet?

- The historic ciphers were defined over the Latin alphabet {a,...,z}
- The Vernam cipher is defined over the binary alphabet {0, 1}

How do we send messages using the Latin (or any other) alphabet?

- We can always encode the symbols in the message alphabet in binary on Alice's side (before encryption)...
- ... and decode them on Bob's side (after decryption)

Decimal - Binary - Octal - Hex – ASCII Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCI
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	•
1	00000001	001	01	SOH	33	00100001	041	21	!	65	01000001	101	41	Α	97	01100001	141	61	а
2	00000010	002	02	STX	34	00100010	042	22	æ	66	01000010	102	42	В	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	#	67	01000011	103	43	С	99	01100011	143	63	с
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
6	00000110	006	06	ACK	38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	:	71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	Н	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	0 A	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	0B	VT	43	00101011	053	2B	+	75	01001011	113	4B	К	107	01101011	153	6B	k
12	00001100	014	0C	FF	44	00101100	054	2C	,	76	01001100	114	4C	L	108	01101100	154	6C	1
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	115	4D	М	109	01101101	155	6D	m
14	00001110	016	0E	SO	46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
15	00001111	017	0F	SI	47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	S
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	Т	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	V
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	W
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	Х	120	01111000	170	78	х
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	у
26	00011010	032	1A	SUB	58	00111010	072	ЗA	:	90	01011010	132	5A	Z	122	01111010	172	7A	Z
27	00011011	033	1B	ESC	59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	{
28	00011100	034	1C	FS	60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D]	125	01111101	175	7D	}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	_	127	01111111	177	7F	DEL

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\Pr[C = c] \neq 0$:

 $\Pr[M = m \mid C = c] = \Pr[M = m]$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$$

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$\Pr[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] = \frac{1}{2}$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ with $\Pr[C = c] \neq 0$:

 $\Pr[M = m \mid C = c] = \Pr[M = m]$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$$

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds:

$$\Pr[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] = \frac{1}{2}$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m' \in \mathcal{M}, c \in \mathcal{C}$:

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m' \in \mathcal{M}, c \in \mathcal{C}$:

 $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K \oplus m = c]$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m' \in \mathcal{M}, c \in \mathcal{C}$:

$$\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K \oplus m = c]$$
$$= \Pr[K = c \oplus m]$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m' \in \mathcal{M}, c \in \mathcal{C}$:

$$\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K \oplus m = c]$$
$$= \Pr[K = c \oplus m] = 2^{-\ell}$$

Definition: An encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret if for every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$:

 $\Pr[Enc_K(m) = c] = \Pr[Enc_K(m') = c]$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any $m, m' \in \mathcal{M}, c \in \mathcal{C}$:

 $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K \oplus m = c]$ $= \Pr[K = c \oplus m] = 2^{-\ell} = \Pr[K = c \oplus m']$

 $= \Pr[K \oplus m' = c] = \Pr[\mathsf{Enc}_K(m') = c]$

• The key must be (at least) as long as the message

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely

(e.g., how would you handle full-disk encryption?)

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely

(e.g., how would you handle full-disk encryption?)

• The bits of the key must be generated independently and uniformly at random

- The key must be (at least) as long as the message
- Pre-sharing a long key is difficult
- The key must be stored securely

(e.g., how would you handle full-disk encryption?)

- The bits of the key must be generated independently and uniformly at random
- The key must never be reused (not even partially!)

You should never re-use a one-time pad. It's like toilet paper; if you re-use it, things get messy.

– Michael Rabin

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

 $c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2)$

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

 $c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2)$ = $m_1 \oplus (k \oplus k) \oplus m_2$ (commutativity + associativity)

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

$$c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2)$$

= $m_1 \oplus (k \oplus k) \oplus m_2$ (commutativity + associativity)
= $m_1 \oplus 0 \dots 0 \oplus m_2$ (definition of \oplus)

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

$$c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2)$$

= $m_1 \oplus (k \oplus k) \oplus m_2$ (commutativity + associativity
= $m_1 \oplus 0 \dots 0 \oplus m_2$ (definition of \oplus)
= $m_1 \oplus m_2$ (definition of \oplus)

The adversary learns $m_1 \oplus m_2$

What happens if a key is reused?

- $c_1 = \operatorname{Enc}_k(m_1)$
- $c_2 = \operatorname{Enc}_k(m_2)$

The adversary can compute $c_1 \oplus c_2$

$$c_{1} \oplus c_{2} = (k \oplus m_{1}) \oplus (k \oplus m_{2})$$

$$= m_{1} \oplus (k \oplus k) \oplus m_{2} \qquad (\text{commutativity} + \text{associativity})$$

$$= m_{1} \oplus 0 \dots 0 \oplus m_{2} \qquad (\text{definition of } \oplus)$$

$$= m_{1} \oplus m_{2} \qquad (\text{definition of } \oplus)$$

The adversary learns $m_1 \oplus m_2$ Do we care?

•	Frequency analysis!
	(e.g., $\mathbf{e} \oplus \mathbf{e} = 0 \dots 0$)

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	
33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	а
34	00100010	042	22	4	66	01000010	102	42	В	98	01100010	142	62	b
35	00100011	043	23	#	67	01000011	103	43	С	99	01100011	143	63	С
36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
39	00100111	047	27	4	71	01000111	107	47	G	103	01100111	147	67	g
40	00101000	050	28	(72	01001000	110	48	н	104	01101000	150	68	h
41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
43	00101011	053	2B	+	75	01001011	113	4B	К	107	01101011	153	6B	k
44	00101100	054	2C	,	76	01001100	114	4C	L	108	01101100	154	6C	1
45	00101101	055	2D	-	77	01001101	115	4D	М	109	01101101	155	6D	m
46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
52	00110100	064	34	4	84	01010100	124	54	т	116	01110100	164	74	t
53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
56	00111000	070	38	8	88	01011000	130	58	х	120	01111000	170	78	x
57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
58	00111010	072	ЗA	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
59	00111011	073	3B	:	91	01011011	133	5B	1	123	01111011	173	7B	{
60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	i
61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
63	00111111	077	3E	2	95	01011111	137	5E		127	01111111	177	7F	DEI
00	0011111	011	0.			01011111	101	0.	-	121	viiiiiii			

- Frequency analysis! (e.g., $e \oplus e = 0 \dots 0$)
- Patterns in the ASCII encoding
 - The encoding of all letters starts with 01...
 - The encoding of a space starts with 00...

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
22	00100000	040	20	CD	64	0100000	100	40	0	06	01100000	140	60	
32 22	00100000	040	20	ог 1	65	01000000	100	40	<u>س</u>	90	01100000	140	61	2
24	00100001	041	21	: 	66	01000001	102	41		00	01100001	141	62	a h
25	00100010	042	22	#	67	01000010	102	42	0	00	01100010	142	62	0
26	00100011	043	23	π c	60	01000011	103	43		100	01100011	143	64	d d
27	00100100	044	24	Φ 04	60	01000100	104	44	5	100	01100100	144	65	u
20	00100101	045	20	70 0	70	01000101	105	40	с с	101	01100101	140	66	e f
30	00100110	040	20	ox ;	70	01000110	100	40	r O	102	01100110	140	67	
39	00100111	047	27		70	01000111	107	47	G	103	01100111	147	60	g b
40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	60	n :
41	00101001	051	29)	73	01001001	111	49	<u>.</u>	105	01101001	151	69	
42	00101010	052	2A 0D		74	01001010	112	4A 4D	J	105	01101010	152	6A 6D	J
43	00101011	053	28	+	75	01001011	113	48	к	107	01101011	153	6B	ĸ
44	00101100	054	2C	,	76	01001100	114	4C	L	108	01101100	154	6C	I
45	00101101	055	2D	-	//	01001101	115	4D	M	109	01101101	155	6D	m
46	00101110	056	2E	•	78	01001110	116	4E	N	110	01101110	156	6E	n
47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	S
52	00110100	064	34	4	84	01010100	124	54	Т	116	01110100	164	74	t
53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	V
55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	W
56	00111000	070	38	8	88	01011000	130	58	Х	120	01111000	170	78	x
57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	у
58	00111010	072	ЗA	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	{
60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
61	00111101	075	3D	=	93	01011101	135	5D]	125	01111101	175	7D	}
62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
63	00111111	077	3F	?	95	01011111	137	5F	_	127	01111111	177	7F	DEL

- Frequency analysis! (e.g., $e \oplus e = 0 \dots 0$)
- Patterns in the ASCII encoding
 - The encoding of all letters starts with 01...
 - The encoding of a space starts with 00...
 - Trivial to identify the exclusive-or of letter and space!

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	
33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	а
34	00100010	042	22	4	66	01000010	102	42	В	98	01100010	142	62	b
35	00100011	043	23	#	67	01000011	103	43	С	99	01100011	143	63	С
36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
39	00100111	047	27		71	01000111	107	47	G	103	01100111	147	67	g
40	00101000	050	28	(72	01001000	110	48	н	104	01101000	150	68	h
41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
43	00101011	053	2B	+	75	01001011	113	4B	К	107	01101011	153	6B	k
44	00101100	054	2C	,	76	01001100	114	4C	L	108	01101100	154	6C	1
45	00101101	055	2D	-	77	01001101	115	4D	М	109	01101101	155	6D	m
46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	S
52	00110100	064	34	4	84	01010100	124	54	Т	116	01110100	164	74	t
53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
56	00111000	070	38	8	88	01011000	130	58	х	120	01111000	170	78	x
57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	у
58	00111010	072	3A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	{
60	00111100	074	3C	<	92	01011100	134	5C	N State	124	01111100	174	7C	i i
61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
63	00111111	077	3F	?	95	01011111	137	5F	_	127	01111111	177	7F	DEL

• Alice buys an item from the adversary for 5.20€

- Alice buys an item from the adversary for 5.20 ${\in}$
- Alice makes a wire transfer from her bank's website

- Alice buys an item from the adversary for 5.20€
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend

PAY IBAN AMOUNT (520)

- Alice buys an item from the adversary for 5.20€
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend

IBAN PAY AMOUNT (520)

• The message is encrypted with a one-time pad

- Alice buys an item from the adversary for 5.20€
- Alice makes a wire transfer from her bank's website
- The bank website sends a message of the form PAY <RECIPIENT_IBAN> <AMOUNT> to the bank's backend

IBAN PAY AMOUNT (520)

• The message is encrypted with a one-time pad

...1000000000000000

AMOUNT

One-time pad in practice

The "red phone": a symbol of the Moscow–Washington hotline

- Actually consisted of two full-duplex telegraph lines, with teletype terminals at the endpoints
- Text-only: speech can be easily misinterpreted
- Text is encrypted using one-time pad
- Keys were exchanged via the embassies, using trusted couriers with briefcases containing sheets of paper with random characters

One-time pad in practice

www.cryptomuseum.com

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

• Alice notices that, when $k = \underbrace{000...0}$:

 ℓ times

$$\operatorname{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

• How is this compatible with perfect secrecy?

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0,1\}^{\ell} \setminus \{000...0\}$

Is this modified one-time pad cipher perfectly secret?

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0,1\}^{\ell} \setminus \{000...0\}$

No! Is this modified one-time pad cipher perfectly secret?

• Alice notices that, when $k = \underbrace{000...0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0, 1\}^{\ell} \setminus \{000 \dots 0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using Shannon's definition:

• Alice notices that, when $k = \underbrace{000...0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0, 1\}^{\ell} \setminus \{000 \dots 0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using Shannon's definition:

$$\Pr[M = m \mid C = c]$$

• Alice notices that, when $k = \underbrace{000...0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0, 1\}^{\ell} \setminus \{000 \dots 0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using Shannon's definition:

$$\Pr[M = m \mid C = c] = \Pr[C = c \mid M = m] \cdot \frac{\Pr[M = m]}{\Pr[C = c]}$$

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0,1\}^{\ell} \setminus \{000...0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using Shannon's definition:

$$\Pr[M = m \mid C = c] = \Pr[C = c \mid M = m] \cdot \frac{\Pr[M = m]}{\Pr[C = c]} = 0$$

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0,1\}^{\ell} \setminus \{000...0\}$

No! Is this modified one-time pad cipher perfectly secret?

Using Shannon's definition:

• Pick the uniform distribution of \mathcal{M} , any $m \in \mathcal{M}$, and c = m

$$\Pr[M = m \mid C = c] = \Pr[C = c \mid M = m] \cdot \frac{\Pr[M = m]}{\Pr[C = c]} = 0$$

$\neq \Pr[M = m]$

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0, 1\}^{\ell} \setminus \{000 \dots 0\}$

Is this modified one-time pad cipher perfectly secret? No!

Using the alternative definition:

 $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K = 00...0] = 0$ For any $m' \neq m$ and c = m:

• Alice notices that, when $k = \underbrace{000 \dots 0}$:

 ℓ times

$$\mathsf{Enc}_k(m) = k \oplus m = m$$

The ciphertext coincides with the plaintext!

- How is this compatible with perfect secrecy?
- Alice decides to "fix" this problem by redefining $\mathcal{K} = \{0, 1\}^{\ell} \setminus \{000 \dots 0\}$

No! Is this modified one-time pad cipher perfectly secret?

Using the alternative definition:

 $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K = 00...0] = 0$ For any $m' \neq m$ and c = m: $\Pr[\mathsf{Enc}_K(m') = c] = \Pr[K = m' \oplus c] \neq 0$

The Vernam cipher is perfectly secret, but...

The Vernam cipher is perfectly secret, but...

... keys are long and difficult to share/store

The Vernam cipher is perfectly secret, but...

... keys are long and difficult to share/store

Is there a perfectly secure cipher that uses short keys?

The Vernam cipher is perfectly secret, but...

... keys are long and difficult to share/store

Is there a perfectly secure cipher that uses short keys?

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Proof:

We prove the contrapositive statement:

If $|\mathcal{K}| < |\mathcal{M}|$ then the encryption scheme is not perfectly secret.

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Proof:

We prove the contrapositive statement:

If $|\mathcal{K}| < |\mathcal{M}|$ then the encryption scheme is not perfectly secret.

In particular, we argue that there must exist some m' for which:

$$\Pr[M = m'] \neq \Pr[\mathcal{M} = m' \mid C = c]$$

denotes that the plaintext m can be encrypted to the ciphertext \boldsymbol{c} (using a suitable key)

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$egin{aligned} |\mathcal{M}_c| \leq |\mathcal{K}| < |\mathcal{M}| \ & \Downarrow \ & \mathcal{M} \setminus \mathcal{M}_c
eq \emptyset \end{aligned}$$

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$egin{aligned} |\mathcal{M}_c| \leq |\mathcal{K}| < |\mathcal{M}| \ & \Downarrow \ & \mathcal{M} \setminus \mathcal{M}_c
eq \emptyset \end{aligned}$$

Pick any $m' \in \mathcal{M} \setminus \mathcal{M}_c$

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$egin{aligned} |\mathcal{M}_c| &\leq |\mathcal{K}| < |\mathcal{M}| \ & \Downarrow \ & \mathcal{M} \setminus \mathcal{M}_c
eq \emptyset \end{aligned}$$

Pick any $m' \in \mathcal{M} \setminus \mathcal{M}_c$

• $\Pr[M = m'] > 0$

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$egin{aligned} |\mathcal{M}_c| &\leq |\mathcal{K}| < |\mathcal{M}| \ & \Downarrow \ & \mathcal{M} \setminus \mathcal{M}_c
eq \emptyset \end{aligned}$$

Pick any $m' \in \mathcal{M} \setminus \mathcal{M}_c$

- $\Pr[M = m'] > 0$
- $\Pr[M = m' \mid C = c] = 0$

Consider the uniform distribution over \mathcal{M} and let c be a ciphertext that occurs with positive probability

Let \mathcal{M}_c denote all messages $m \in \mathcal{M}$ such that $m = \text{Dec}_k(c)$ for some $k \in \mathcal{K}$

Since Dec is a deterministic algorithm:

$$egin{aligned} |\mathcal{M}_c| \leq |\mathcal{K}| < |\mathcal{M}| \ & \Downarrow \ & \mathcal{M} \setminus \mathcal{M}_c
eq \emptyset \end{aligned}$$

Pick any $m' \in \mathcal{M} \setminus \mathcal{M}_c$

• $\Pr[M = m'] > 0$

•
$$\Pr[M = m' \mid C = c] = 0$$

$$\implies \Pr[M = m'] \neq \Pr[\mathcal{M} = m' \mid \mathbf{0})$$

C = c

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M} = \{0,1\}^{\ell}$ and $\mathcal{K} \subseteq \{0,1\}^*$ is such that $\max_{k \in \mathcal{K}} |k| \ge \ell$, where |k| denotes the number of bits of k

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M} = \{0,1\}^{\ell}$ and $\mathcal{K} \subseteq \{0,1\}^*$ is such that $\max_{k \in \mathcal{K}} |k| \ge \ell$, where |k| denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length ℓ (over the binary alphabet) then it must require the use of at least one key with length at least ℓ .

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$

Corollary: Any perfectly secret encryption scheme with $\mathcal{M} = \{0,1\}^{\ell}$ and $\mathcal{K} \subseteq \{0,1\}^*$ is such that $\max_{k \in \mathcal{K}} |k| \ge \ell$, where |k| denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length ℓ (over the binary alphabet) then it must require the use of at least one key with length at least ℓ .

Proof:

If all keys have length at most $\ell' < \ell$ then the encryption scheme cannot be perfectly secret. Indeed:

$$|\mathcal{K}| \le \sum_{i=0}^{\ell'} |\{0,1\}^i| = \sum_{i=0}^{\ell'} 2^i = 2^{\ell'+1} - 1 \le 2^\ell - 1 < 2^\ell$$

 $= |\mathcal{M}|$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 \mathcal{M} \mathcal{M}_{c} m (m'

 $\Pr[b' = 0 \mid b = 0] =$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

$$\Pr[b' = 0 \mid b = 0] = \Pr[b' = 0 \mid \mathsf{Enc}_K(m_0) = c] \Pr[\mathsf{Enc}_K(m_0) = c] + \Pr[b' = 0 \mid \mathsf{Enc}_K(m_0) \neq c] \Pr[\mathsf{Enc}_K(m_0) \neq c]$$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

$$\Pr[b' = 0 \mid b = 0] = 1 \cdot \varepsilon$$
$$+ \Pr[b' = 0 \mid \mathsf{Enc}_K(m_0) \neq c] \Pr[\mathsf{Enc}_K(m_0) \neq c]$$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

$$\Pr[b' = 0 \mid b = 0] = 1 \cdot \varepsilon$$
$$+\frac{1}{2} \cdot (1 - \varepsilon)$$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$ $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

 $\Pr[\Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \Pr[b' = 0 \mid b = 0] \Pr[b = 0] + \Pr[b' = 1 \mid b = 1] \Pr[b = 1]$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

 $\Pr[\mathsf{Priv}\mathsf{K}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] = (\frac{1}{2} + \frac{\epsilon}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$

	\mathcal{M}
(\mathcal{M}_{c}
	<u>m'</u>

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

 $\Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = (\frac{1}{2} + \frac{\epsilon}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{\epsilon}{4} \quad \mathsf{Advantage!}$

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

 $\Pr[\Pr[V_{\mathcal{A},\Pi}^{eav} = 1] = (\frac{1}{2} + \frac{\epsilon}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{\epsilon}{4}$ Advantage!

Note: ε can be tiny!

The proof of the theorem shows that there are some $m, m' \in \mathcal{M}$, $c \in \mathcal{C}$ such that:

- $m \in \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m) = c] = \varepsilon$ for some $\varepsilon > 0$)
- $m' \notin \mathcal{M}_c$ (i.e., $\Pr[\mathsf{Enc}_K(m') = c] = 0$)

Distinguisher \mathcal{A} :

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - Output b' = 0 if $\bar{c} = c$
 - Otherwise output a random guess $b' \in \{0, 1\}$

 $\Pr[b' = 0 \mid b = 0] = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

 $\Pr[\Pr[V_{\mathcal{A},\Pi}^{eav} = 1] = (\frac{1}{2} + \frac{\epsilon}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{\epsilon}{4}$ Advantage!

Running time?

Note: ε can be tiny!

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

 $\Pr[\mathsf{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon \text{ for some } \varepsilon > 0$

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

 $\Pr[\operatorname{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon$ for some $\varepsilon > 0$

- Output $m_0 = m$ and $m_1 = m'$
- Upon receiving the challenge ciphertext \bar{c}
 - If $\bar{c} \in \mathcal{C}_{m'}$, output a random guess $b' \in \{0, 1\}$
 - Otherwise output b' = 0

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

 $\Pr[\operatorname{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon$ for some $\varepsilon > 0$

Distinguisher \mathcal{A} :

• Output $m_0 = m$ and $m_1 = m'$

- Upon receiving the challenge ciphertext \bar{c}
 - If $\bar{c} \in \mathcal{C}_{m'}$, output a random guess $b' \in \{0, 1\}$
 - Otherwise output b' = 0

Running time?

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

 $\Pr[\operatorname{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon$ for some $\varepsilon > 0$

Distinguisher \mathcal{A} :

• Output $m_0 = m$ and $m_1 = m'$

- If $\bar{c} \in \mathcal{C}_{m'}$, output a random guess $b' \in \{0, 1\}$
- Otherwise output b' = 0

Running time?

Can be exponential: we need to check all keys to decide if $\overline{c} \in C_{m'}$

*A more precise formalization is needed (next lecture)

Let $\mathcal{C}_{m'}$ be the set of all ciphertexts c' such that $\text{Dec}_k(c') = m'$ for some $k \in \mathcal{K}$

The proof of the theorem shows that there are $m, m' \in \mathcal{M}$ such that:

There is a ciphertext c that can be obtained by encrypting m but cannot be obtained by encrypting m'

 $\Pr[\operatorname{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon$ for some $\varepsilon > 0$

Distinguisher \mathcal{A} :

• Output $m_0 = m$ and $m_1 = m'$

- If $\bar{c} \in \mathcal{C}_{m'}$, output a random guess $b' \in \{0, 1\}$
- Otherwise output b' = 0

Running time?

Can be exponential: we need to check all keys to decide if $\overline{c} \in C_{m'}$

Advantage?

Another concrete attack: advantage?

If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'}$
If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random

If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random

 $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

• With probability $1 - \varepsilon$, $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random

If b = 1, then $m_1 = m'$ was encrypted and $\bar{c} \in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

- With probability 1ε , $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random
- With probability ε , $c \notin \mathcal{C}_{m'}$ and b' = 0

If b=1, then $m_1=m'$ was encrypted and $\bar{c}\in \mathcal{C}_{m'}$ $\implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

- With probability 1ε , $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random
- With probability ε , $c \notin \mathcal{C}_{m'}$ and b' = 0

 $\Pr[b' = 0 \mid b = 0] = (1 - \varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot 1 = \frac{1}{2} + \frac{\varepsilon}{2}$

If b=1, then $m_1=m'$ was encrypted and $\bar{c}\in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

- With probability 1ε , $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random
- With probability ε , $c \notin \mathcal{C}_{m'}$ and b' = 0

 $\Pr[b' = 0 \mid b = 0] = (1 - \varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot 1 = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] = \Pr[b' = 0 \mid b = 0] \Pr[b = 0] + \Pr[b' = 1 \mid b = 1] \Pr[b = 1]$

If b=1, then $m_1=m'$ was encrypted and $\bar{c}\in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

- With probability 1ε , $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random
- With probability ε , $c \notin \mathcal{C}_{m'}$ and b' = 0

 $\Pr[b' = 0 \mid b = 0] = (1 - \varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot 1 = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] = \Pr[b' = 0 \mid b = 0] \Pr[b = 0] + \Pr[b' = 1 \mid b = 1] \Pr[b = 1]$ $= (\frac{1}{2} + \frac{\epsilon}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$

If b=1, then $m_1=m'$ was encrypted and $\bar{c}\in \mathcal{C}_{m'} \implies b'$ is chosen uniformly at random $\Pr[b' = 1 \mid b = 1] = \frac{1}{2}$

If b = 0, then $m_0 = m$ was encrypted:

- With probability 1ε , $\overline{c} \in \mathcal{C}_{m'}$ and b' is chosen uniformly at random
- With probability ε , $c \notin \mathcal{C}_{m'}$ and b' = 0

 $\Pr[b' = 0 \mid b = 0] = (1 - \varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot 1 = \frac{1}{2} + \frac{\varepsilon}{2}$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] = \Pr[b' = 0 \mid b = 0] \Pr[b = 0] + \Pr[b' = 1 \mid b = 1] \Pr[b = 1]$ $= \left(\frac{1}{2} + \frac{\epsilon}{2}\right) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} + \frac{\epsilon}{4} \quad \text{Advantage!}$

 $\Pr[\operatorname{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon \text{ for some } \varepsilon > 0$

 $\Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2} + \frac{\varepsilon}{4}$

How big is ε ?

 $\Pr[\mathsf{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon \text{ for some } \varepsilon > 0$

 $\Pr[\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] = \frac{1}{2} + \frac{\varepsilon}{4}$

How big is ε ?

If keys are just one bit shorter than the messages then there is a pair of messages m, m' for which $\varepsilon \geq \frac{1}{2}$

See, e.g., Theorem 17.9 in "A Course in Cryptography" (3rd edition) by Rafael Pass and Abhi Shelat for a proof.

 $\Pr[\mathsf{Enc}_K(m) \in \mathcal{C}_{m'}] = 1 - \varepsilon$ for some $\varepsilon > 0$

 $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1] = \frac{1}{2} + \frac{\varepsilon}{4} \geq 62.5\%$

How big is ε ?

If keys are just one bit shorter than the messages then there is a pair of messages m, m' for which $\varepsilon \geq \frac{1}{2}$

The advantage is is at least $\frac{1}{8}$!

See, e.g., Theorem 17.9 in "A Course in Cryptography" (3rd edition) by Rafael Pass and Abhi Shelat for a proof.

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}| < |\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}| < |\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

No private-key encryption scheme can handle arbitrarily long messages and be perfectly secret (recall that \mathcal{K} is a finite set).

Limitations of Perfect Secrecy

In Alice's version of OTP we have $|\mathcal{K}| < |\mathcal{M}|$, therefore the scheme cannot be perfectly secure!

No private-key encryption scheme can handle arbitrarily long messages and be perfectly secret (recall that \mathcal{K} is a finite set).

> Individuals occasionally claim they have developed a radically new encryption scheme that is "unbreakable" and achieves the security of the one-time pad without using keys as long as what is being encrypted. [...] Anyone making such claims either knows very little about cryptography or is blatantly lying.

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

 $1 \& 2 \implies$ perfect secrecy.

Pick any pair of messages $m, m' \in \mathcal{M}$ and any $c \in \mathcal{C}$.

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

 $1 \& 2 \implies$ perfect secrecy.

Pick any pair of messages $m, m' \in \mathcal{M}$ and any $c \in \mathcal{C}$.

Let k (resp. k') the unique key such that $Enc_k(m) = c$ (resp. $Enc_{k'}(m') = c$).

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

 $1 \& 2 \implies$ perfect secrecy.

Pick any pair of messages $m, m' \in \mathcal{M}$ and any $c \in \mathcal{C}$.

Let k (resp. k') the unique key such that $Enc_k(m) = c$ (resp. $Enc_{k'}(m') = c$).

$$\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K = k] = \frac{1}{|\mathcal{K}|}$$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

 $1 \& 2 \implies$ perfect secrecy.

Pick any pair of messages $m, m' \in \mathcal{M}$ and any $c \in \mathcal{C}$.

Let k (resp. k') the unique key such that $Enc_k(m) = c$ (resp. $Enc_{k'}(m') = c$).

$$\Pr[\mathsf{Enc}_K(m) = c] = \Pr[K = k] = \frac{1}{|\mathcal{K}|} = \Pr[K = k'] = \Pr[\mathsf{Enc}_K(m) = \frac{1}{|\mathcal{K}|} = \Pr[K = k'] = \Pr[\mathsf{Enc}_K(m) = k']$$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

 $c_K(m') = c]$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy \implies 2.

Fix any $m^* \in \mathcal{M}, c \in \mathcal{C}$ such that $\Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy \implies 2.

Fix any $m^* \in \mathcal{M}, c \in \mathcal{C}$ such that $\Pr[\mathsf{Enc}_K(m^*) = c] \neq 0$

For each $m_i \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_k(m_i) = c$ (since $\Pr[\operatorname{Enc}_K(m_i) = c] = \Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$)

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy \implies 2.

Fix any $m^* \in \mathcal{M}, c \in \mathcal{C}$ such that $\Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$

For each $m_i \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_k(m_i) = c$ (since $\Pr[\operatorname{Enc}_K(m_i) = c] = \Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$)

Let K_i be the set of keys k such that $Enc_k(m_i) = c$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy \implies 2.

Fix any $m^* \in \mathcal{M}, c \in \mathcal{C}$ such that $\Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$

For each $m_i \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_k(m_i) = c$ (since $\Pr[\operatorname{Enc}_K(m_i) = c] = \Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$)

Let K_i be the set of keys k such that $Enc_k(m_i) = c$

- For all m_i , $|K_i| \ge 1$
- Each key k belongs to at most one set K_i (otherwise two plaintexts encrypt to the same ciphertexts with the same key)

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy \implies 2.

Fix any $m^* \in \mathcal{M}, c \in \mathcal{C}$ such that $\Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$

For each $m_i \in \mathcal{M}$ there must be at least one key k such that $\operatorname{Enc}_k(m_i) = c$ (since $\Pr[\operatorname{Enc}_K(m_i) = c] = \Pr[\operatorname{Enc}_K(m^*) = c] \neq 0$)

Let K_i be the set of keys k such that $Enc_k(m_i) = c$

- For all m_i , $|K_i| \ge 1$
- Each key k belongs to at most one set K_i (otherwise two plaintexts encrypt to the same ciphertexts with the same key)

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

\implies For all m_i , $|K_i| = 1$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy $\implies 1$.

For each key $k_i \in \mathcal{K}$ (resp. k_i), there is a unique set K_i (resp. K_i) containing k_i (resp. k_i).

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Proof:

perfect secrecy $\implies 1$.

For each key $k_i \in \mathcal{K}$ (resp. k_i), there is a unique set K_i (resp. K_i) containing k_i (resp. k_i).

 $\Pr[K = k_i] = \Pr[\mathsf{Enc}_K(m_i) = c] = \Pr[\mathsf{Enc}_K(m_i) = c] = \Pr[K = k_i]$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

• $\mathcal{M} = \mathcal{K} = \mathcal{C}$ therefore $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M} = \mathcal{K} = \mathcal{C}$ therefore $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}} = \frac{1}{|\mathcal{K}|}$

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M} = \mathcal{K} = \mathcal{C}$ therefore $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}} = \frac{1}{|\mathcal{K}|}$
- Given m and c, there is a unique key k such that $Enc_k(m) = c$, namely $c \oplus m$ (recall that $Enc_k(m) = k \oplus m$)

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$

Shannon's Theorem: Let (Gen, Enc, Dec) be an encryption scheme The scheme is perfectly secret if and only if:

1. Every key in \mathcal{K} is chosen with probability $\frac{1}{|\mathcal{K}|}$ by Gen.

2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique key $k \in \mathcal{K}$

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

- $\mathcal{M} = \mathcal{K} = \mathcal{C}$ therefore $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$
- Every key is chosen with probability $\frac{1}{2^{\ell}} = \frac{1}{|\mathcal{K}|}$
- Given m and c, there is a unique key k such that $Enc_k(m) = c$, namely $c \oplus m$ (recall that $Enc_k(m) = k \oplus m$)

The claim follows from Shannon's theorem.

e with
$$|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|.$$

such that $Enc_k(m) = c.$