When is an encryption scheme secure?

Definition: An encryption scheme (Gen, Enc, Dec) with message space
M is perfectly secret /f for every probability distribution over M,
every message m € M, and every ciphertext ¢ € C with Pr|C = c| # 0:

PrlM =m | C = ¢|] = Pr[M = m)|

Definition: An encryption scheme (Gen, Enc, Dec) with message space
M is perfectly secret if for every m,m’ € M, and every c € C:

Pr[Encig(m) = ¢| = Pr[Enck(m’) = (]

Definition: A private key encryption scheme 11 = (Gen, Enc, Dec) with
message space M is perfectly indistinguishable if for every A it holds:

1
Pr[PrivK{ 'y = 1] = 5
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Is there a secure encryption scheme?

1o all whom it may concern.: _

Be it known that I, Giuserr S, VERN AM,
residing at DBrooklyn, in the county of
Kings and State of New York, have invent-
ed certain Improvements in Secret Signal-
Ing Systems, of which the following 1s a
:.::preg,lﬁ{mpmn. _ -

This invention relates to signaling sys-
tems and especially to telegraplh systems.
0 Its object is to insure secrecy in the trans-

nussion of messages and, further, to pro-

vide a system in whieh messages may be :

transmitted and received in plain characters Gilbert Vernam

or u well-known code but in which the sig-
> naling inipulses are so altered before trans-

nusswn over the line that they are unin-
telligible to unyone intercepting them.

i .
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Vernam Cipher

e Patented in 1917 by Gilbert Vernam with no proof of security

(Shannon's definition of perfect secrecy is from 1949)
e Also called one-time pad

e Shannon subsequently proved that the cipher is perfectly secret

e & denotes the bitwise exclusive or (XOR) operator
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Vernam Cipher

For an integer £ > 0, the Vernam cipher is defined as follows:

e M=1{0,1}, C={0,1}, K=1{0,1}*
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For an integer £ > 0, the Vernam cipher is defined as follows:

Vernam Cipher

e M=1{0,1}, C={0,1}, K=1{0,1}*

e Gen: return a key k chosen uniformly at random from K, i.e., Pr[K = k] = 27* Vk

e Ency(m):

e Decy(c):

return c:= kP m

return m: =k P c

&

Gen

@—P

<—

Enc
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C —»

Dec

_>m.

— k< {0,1}*
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Is it correct?

Deck (Enci.(m))

7

m

Vernam Cipher

<— 7

M —>e Enc

c:=moPk

<— 7

Dec

> c@k;m




Is it correct?

7

Deck(Enci(m)) =m

DeCk(Ean (m)) — Deck(k D m)

Vernam Cipher
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c:=moPk

(definition of Ency)

<— 7

Dec

> c@k;m




Is it correct?

7

Deck(Enci(m)) =m

DeCk(Ean (m)) — Deck(k D m)
=k®d(kdm)

Vernam Cipher

<— 7

M —>e Enc

c:=moPk

(definition of Ency)

(definition of Decy)

<— 7

Dec

> c@k;m




Is it correct?

7

Deck(Enci(m)) =m

DeCk(Ean (m)) — Deck(k D m)
=k®d(kdm)
= (k& k)dm

Vernam Cipher

<— 7

M —>e Enc

c:=moPk

(definition of Ency)

(definition of Decy)

(associativity of &)

<— 7

Dec

> c@k;m




Is it correct?
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Is it correct?

7

Deck(Enci(m)) =m

Deci(Enci(m)) = Deci(k & m)
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Example

Alice wants to send a message m = 001010 of £ = 6 bits to Bob. Alice and Bob agreed to use a
Vernam cipher and have already exchanged a key k£ = 101101

What is the ciphertext c?
m=001010 D
k=101101 =
c=100111




Example

Alice wants to send a message m = 001010 of £ = 6 bits to Bob. Alice and Bob agreed to use a
Vernam cipher and have already exchanged a key k£ = 101101

What is the ciphertext c?
m=001010 D
k=101101 =
c=100111

Bob receives the ciphetext ¢ = 110101 from Alice. Alice and Bob have agreed to use a Vernam
cipher with key £ = 000110

What is the plaintext m?
c=110101 D

k=000110 =
m=1100120
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e The historic ciphers were defined over the Latin alphabet {a,...,z}

e The Vernam cipher is defined over the binary alphabet {0, 1}
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Encoding

e The historic ciphers were defined over the Latin alphabet {a,...,z}

e The Vernam cipher is defined over the binary alphabet {0, 1}

How do we send messages using the Latin (or any other) alphabet?

e \We can always encode the symbols in the message alphabet in binary on Alice's side
(before encryption). . .

e ...and decode them on Bob's side (after decryption)



Decimal Binary

0 00000000
1 0000000
2 00000010
3 0000001
4 00000100
8 00000101
B 00000110
[ 00000111
8 0000000
9 00001001
10 0000010
11 00001011
12 00001100
13 00001107
14 00001110
15 00001111
16 00010000
17 00010001
18 00010010
19 00010011
20 00010100
21 00010101
22 00010110
23 00010111
24 00011000
25 00011007
26 00011010
27 00011011
28 00011100
29 00011101
20 00011110
21 00011111

Octal

0oa
001
noz
003
0o4
005
006
oov
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
03z
033
034
035
036
037

Hex

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18
19
14
1B
1C
1D
1E
1F

ASCI

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
T
FF
CR
S0
]
DLE
DCH
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

Decimal

32
33
24
35
26
37
28
29
40
41
42
43
44
45
46
47
43
49
50
51
52
b3
54
b5
i
b7
58
59
G0
61
G2
63

Encoding

Decimal - Binary - Octal - Hex — ASCI|

Binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101007
00101010
00101011
00101100
00101107
00101110
00101111
00110000
00110007
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
0011101
00111100
00111101
00111110
0011111

Octal

040
041
042
043
044
045
D46
047
050
051
052
053
054
055
056
057
060
061
nG2
0G3
0G4
0G5
066
067
070
07
07z
073
074
075
076
orv

Hex

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2E
2F
20
21
22
33
24
35
26
a7
28
29
24
2B
ac
ab
3E
aF

ASCI

SP

o = e 3 —
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Decimal

G4
65
il
67
68
69
70
71
72
73
74
75
7
77
78
79
a0
a1
82
83
24
85
26
87
28
89
a0
91
g2
a3
a4
a5

Conversion Chart

Binary

01000000
01000007
01000010
01000011
01000100
01000107
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
0101010
01010110
01010117
01011000
01011001
01011010
01011011
01011100
01011107
01011110
01011111

Thiz workis Hoensedunder the Creative Comepons Attribution-Share Al e Licenze To visw 2 copy of this Hoense, visit hitp)orestivemamons org licanz= b2 3.0

Octal  Hex  ASCI

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
41
42
43
44
45
46
47
48
49
47
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
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Decimal

i

a7

as

a9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Binary

01100000
01100007
01100010
01100011
01100100
01100107
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110107
01110110
01110117
01111000
0111100
01111010
0111101
01111100
01111107
01111110
01111111

Octal

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex

G0
61
62
63
G4
65
G
67
it
69
BA
6B
BC
6D
BE
BF
70
71
T2
73
T4
75
76
T
I
79
A
=
TC
D
TE
TF

ASCI
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Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space
M is perfectly secret /f for every probability distribution over M,
every message m € M, and every ciphertext ¢ € C with Pr|C = c| # 0:

PrlM =m | C = ¢|] = Pr[M = m)|

Definition: An encryption scheme (Gen, Enc, Dec) with message space
M is perfectly secret if for every m,m’ € M, and every c € C:

Pr[Encig(m) = ¢| = Pr[Enck(m’) = (]

Definition: A private key encryption scheme 11 = (Gen, Enc, Dec) with
message space M is perfectly indistinguishable if for every A it holds:

1
Pr[PrivK{ 'y = 1] = 5
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Proof of security

Definition: An encryption scheme (Gen, Enc, Dec) with message space
M is perfectly secret if for every m, m’ € M, and every c € C:

Pr[Enck(m) = ¢| = Pr[Enck(m’) = (]

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

For any m,m’' € M,c € C:
PrlEnci(m) = ¢] = Pr[K & m = ¢
=PrlK=c®&m| =27t =Pr[K =cdm]

= Pr|K & m’' = ¢|] = Pr|[Encix(m’) = ¢
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Caveats & Limitations of One-time Pad

The key must be (at least) as long as the message
Pre-sharing a long key is difficult

The key must be stored securely

(e.g., how would you handle full-disk encryption?)
The bits of the key must be generated independently and uniformly at random

The key must never be reused (not even partially!)

You should never re-use a one-time pad. It's like
toilet paper; if you re-use it, things get messy.

— Michael Rabin
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Caveats & Limitations of One-time Pad

What happens if a key is reused?
® C1 = Ean(ml)

® (Co — Ean(mz)

The adversary can compute ¢; @D cs

Cl@CQZ(k@ml)@(k@mg)

=m1 D (kD k) D mo (commutativity + associativity)
=m1 @ 0...0D0ms (definition of @)
= my1 O ma (definition of &)

The adversary learns m; © ms

Do we care?



Caveats & Limitations of One-time Pad

e Frequency analysis!
(e.g.,ee=0...0)

Decimal

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
a1
52
53
54
55
56
a7
58
89
60
61
62
63

Binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
001071100
001071101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
0011101
00111100
00111101
00111110
0011111

Octal

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
Z2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3c
3D
3E
3F

ASCI

SP

B =

Ty

D 00 = M e L R =S O T

Decimal

64
65
66
67
68
69
70
71
72
73
74
75
76
[E
78
79
80
81
82
83
a4
85
86
87
88
89
90
91
92
93
94
95

Binary

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
0100101
01001100
0100111
01001110
0100111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
010110M
01011010
010110M
01011100
0101111
01011110
010111 M

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Hex

40
41
42
43
44
45
46
47
48
49
44
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
oA
5B
5C
5D
5E
5F

ASCI

CT R - T I Mmoo mEG

= - Hdwm@o_WOo To ==

=

i B NI

Decimal

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Binary

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
011010M
01101100
0110111
01101110
011011 M
01110000
01110001
01110010
0111001
01110100
01110101
01110110
011101 M
01111000
011110M
01111010
011 110M
01111100
0111111
01111110
011111 M

Octal

140
141
142
143
144
145
146
147
150
151
152
153
194
1585
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex

60
61
62
63
64
65
66
67
68
69
BA
6B
6C
60
6E
6F
70
71
72
73
74
75
76
[k
78
79
A
7B
iC
7D
7E
7F

ASCI

oL Thomn o 0O oW
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Caveats & Limitations of One-time Pad

e Frequency analysis!
(e.g.,ee=0...0)

e Patterns in the ASCII encoding

e The encoding of all letters starts
with 01...

e [he encoding of a space starts
with 00. ..

Decimal

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
a1
52
53
54
55
56
a7
58
89
60
61
62
63

Binary

00100000

TTooo L
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
001071100
001071101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
0011101
00111100
00111101
00111110
0011111

Octal

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
Z2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3c
3D
3E
3F

ASCI

SP

B =

Ty

D 00 = M e L R =S O T

Decimal

64
65
66
67
68
69
70
71
72
73
74
75
76
[E
78
79
80
81
82
83
a4
85
86
87
88
89
90
91
92
93
94
95

Binary

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
0100101
01001100
0100111
01001110
0100111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
010110M
01011010
010110M
01011100
0101111
01011110
010111 M

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Hex

40
41
42
43
44
45
46
47
48
49
44
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
oA
5B
5C
5D
5E
5F

ASCI

CT R - T I Mmoo mEG

= - Hdwm@o_WOo To ==

=

i B NI

Decimal

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Binary

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
011010M
01101100
0110111
01101110
011011 M
01110000
01110001
01110010
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Caveats & Limitations of One-time Pad

e Frequency analysis!
(e.g.,ee=0...0)

e Patterns in the ASCII encoding

e The encoding of all letters starts
with 01...

e [he encoding of a space starts
with 00. ..

e Trivial to identify the exclusive-or
of letter and space!
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
a1
52
53
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3c
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Decimal

64
65
66
67
68
69
70
71
72
73
74
75
76
[E
78
79
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82
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Binary
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Hex
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43
44
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4F
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53
54
55
56
57
58
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oA
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5D
5E
5F
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97
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106
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115
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119
120
121
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01100010
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01110010
0111001
01110100
01110101
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011 110M
01111100
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011111 M

Octal
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141
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145
146
147
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174
175
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A
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7F
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m = 010100000100000101011001 01001001 ...00110010 0000000100000100

N

PAY IBAN AMOUNT (520)
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TV TV
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Caveats & Limitations of One-time Pad

m = 010100000100000101011001 01001001 ...00110010 0000000100000100

N

PAY IBAN AMOUNT (520)

¢ =0011011000101010000110101 11010001

N

AMOUNT

7700000100000101011001 01001001 ... 00110010 1000000100000100

N N

PAY IBAN AMOUNT (33028)

=5



One-time pad in practice

The “red phone”: a symbol of the Moscow—Washington hotline

e Actually consisted of two full-duplex telegraph lines, with
teletype terminals at the endpoints

e Text-only: speech can be easily misinterpreted
e Text is encrypted using one-time pad

e Keys were exchanged via the embassies, using trusted
couriers with briefcases containing sheets of paper with
random characters
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e Alice notices that, when £ = 000...0:
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The all-zeros key (Alice's version of OTP)

e Alice notices that, when £ = 000...0:
N—_——

¢ times

Enci,(im)=k®m=m
The ciphertext coincides with the plaintext!

e How is this compatible with perfect secrecy?

o Alice decides to “fix" this problem by redefining X = {0,1}¢\ {000...0}

Is this modified one-time pad cipher perfectly secret? No!

Using the alternative definition:

For any m' = m and ¢ = m: PrlEncxg(m) =¢ =Pr[K =00...0] =0
PrlEncg(m') =c| =Pr[K =m'® ¢ #0
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Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme
with message space M and key space IC, then || > | M|
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Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme
with message space M and key space IC, then || > | M|

Proof:

We prove the contrapositive statement:
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If |KC| < |M] then the encryption scheme is not perfectly secret.



Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme
with message space M and key space IC, then || > | M|

Proof:

We prove the contrapositive statement:

If |KC| < |M] then the encryption scheme is not perfectly secret.

In particular, we argue that there must exist some m’ for which:

PrlM =m/| #PrM=m'| C =
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Limitations of Perfect Secrecy

m e > 0 C ®

denotes that the plaintext m can
be encrypted to the ciphertext c
(using a suitable key)
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Consider the uniform distribution over M and let ¢ be a ciphertext that occurs with positive probability

Let M, denote all messages m € M
such that m = Decy(c) for some k € K

C

o
Since Dec is a deterministic algorithm: /‘
~a
M| < K| < M| Pra
J
M\ M, # 0 *

Pick any m’ € M\ M,

o PrilM =m'] >0
e PriM =m'|C=¢c =0




Limitations of Perfect Secrecy

Consider the uniform distribution over M and let ¢ be a ciphertext that occurs with positive probability

Let M, denote all messages m € M
such that m = Decy(c) for some k € K

C

o
Since Dec is a deterministic algorithm: /‘
~a
M| < K| < M| Pra
J
M\ M, # 0 *

Pick any m’ € M\ M,

o PrilM =m'] >0 )

‘PT:M:m/‘C:c]:O ¢ ﬁPI’[M:m/]%Pr[M:m/‘C:C]
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Corollary: Any perfectly secret encryption scheme with M = {0,1}¢ and K C {0,1}* is such that
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Limitations of Perfect Secrecy

Theorem: If (Gen, Enc, Dec) is a perfectly secret encryption scheme
with message space M and key space K, then |K| > | M|

Corollary: Any perfectly secret encryption scheme with M = {0,1}¢ and K C {0,1}* is such that
maxkcic |k| > £, where |k| denotes the number of bits of k

Inf. If an encryption scheme is perfectly secret and is able to encrypt any message of length £ (over the
binary alphabet) then it must require the use of at least one key with length at least /.

Proof:

If all keys have length at most ¢/ < ¢ then the encryption scheme cannot be perfectly secret. Indeed:

¢ ¢
K<) {01} =) 20 =2 —1<2f — 1< 2f = | M|
1=0 1=0




A concrete attack

The proof of the theorem shows that there are some m, m’ € M, ¢ € C such that:
e me M, (ie. Pr[Enckx(m) = c| = e for some ¢ > 0)
e m' ¢ M. (ie, PrlEnckg(m’) = =0)
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Another concrete attack: advantage?

PrlEncx(m) € C;pr] =1 — € for some € > 0

PriPrivkE =1] =3+ = > 62.5%

How big is 7

If keys are just one bit shorter than the messages then there is a pair of messages m, m’ for which ¢ > %

1

The advantage is is at least ¢ !

See, e.g., Theorem 17.9 in “A Course in Cryptography” (3rd edition) by Rafael Pass and Abhi Shelat for
a proof.
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Limitations of Perfect Secrecy

In Alice's version of OTP we have |K| < | M|, therefore the scheme cannot be perfectly secure!

No private-key encryption scheme can handle arbitrarily long messages and be perfectly secret
(recall that IC is a finite set).

Individuals occasionally claim they have developed a radically new
encryption scheme that is “unbreakable” and achieves the security
of the one-time pad without using keys as long as what is being
encrypted. [...] Anyone making such claims either knows very little
about cryptography or is blatantly lying.
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1. Every key in K is chosen with probability |—,1C| by Gen.

2. For every m € M and every c € C, there is a unique key k € K such that Enci(m) = c.

Proof:
perfect secrecy — 1.
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Shannon’s Theorem: Let (Gen, Enc, Dec) be an encryption scheme with |M| = || = |C]|.
The scheme is perfectly secret if and only If:

1. Every key in K is chosen with probability |—,1C| by Gen.

2. For every m € M and every c € C, there is a unique key k € K such that Enci(m) = c.

Theorem: The one-time pad encryption scheme is perfectly secret.

Proof:

e M = K =C therefore [ M| = |K| =|C|

e Every key is chosen with probability 2—12 = |—,1€|
e Given m and ¢, there is a unique key k such that Encg(m) = ¢, namely ¢ ® m

(recall that Encg(m) = k & m)

The claim follows from Shannon's theorem.




