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• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

What more is there to do?

• We would still really like to have “secure” schemes with short keys...

• We need to give up on perfect secrecy

Can we relax the security definition in a meaningful way?
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What if the adversary is not computationally unbounded?

Say that the adversary is only able to run algorithms for 2112 clock cycles. . .

• Cost of this computation: ≈ 10000 times the gross world product since 300 000BC

• Number of clock cycles of a supercomputer running since the Big-Bang

. . . and only manages to extract some information with probability 2−60

• It is more likely that the next meteorite that hits Earth lands in this square

Do we need to be concerned?



Computational secrecy

We relax perfect secrecy in two ways:

• We allow secrecy to fail with some tiny probability

• We only restrict our attention to “efficient” attackers
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Definition: A private key encryption scheme Π = (Gen,Enc,Dec) with
message space M is perfectly indistinguishable if for every A it holds:

Pr[PrivKeav
A,Π = 1] =

1

2

Our starting point is the following (equivalent) definition of perfect secrecy:

Computational secrecy

Two possible approaches:

• Concrete

• Asymptotic

We want to define a concept of computational indistinguishability



Reminder: Perfect indistinguishability

Adversary A
Verifier

(deterministic, computationally
unbounded algorithm)

m0,m1 ∈ M

Genk

b ← {0, 1}

c ← Enck(mb)challenge ciphertext

b′ guess about b
if b′ = b

if b′ ̸= b
PrivKeav

A,Π = 1 iff the adversay guesses correctly (b′ = b)
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Computational secrecy (concrete)

Candidate definition: A private key encryption scheme Π = (Gen,Enc,Dec) is
(t, ε)-indistinguishable if for every attacker A running in time at most t, it holds that:

Pr[PrivKeav
A,Π = 1] ≤ 1

2
+ ε

Observation: (∞, 0)-indistinguishability is equivalent to perfect indistinguishability

Example: A (2112, 2−60)-indistinguishable scheme remains secure against any adversary that runs
for at most 2112 clock cycles (the adversary’s advantage will be at most 2−60)
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Problems with the concrete definition

• If a scheme is (t, ε)-indistinguishable, what can we say about (t+ 1, ε)?

• What can we do in a clock cycle?

The definition depends on the exact details of the computational model...

• A scheme can be (t, ε)-indistinguishable for many choices of t and ε

— How do we pick t?

— What if computers become faster?

— We would like to have a scheme where users can adjust the security guarantees as desired

Does not lead to a clean theory
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Computational secrecy (asymptotic)

We only want to defend from efficient adversaries

• What does efficient mean?

Usually, in complexity theory, efficient = polynomial-time

• Polynomial with respect to what...?

Introduce a new security parameter n

— Allows to tune the security of the scheme (e.g., think of it as the key length)

— Chosen by the honest parties (Alice and Bob)

— Known by the adversary

Measure probabilities and running times as a function of n
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Computational secrecy (asymptotic)

We relax perfect secrecy in two ways:

• We allow secrecy to fail with some tiny probability

• We only restrict our attention to “efficient” attackers

probabilities that are negligible in n

polynomial running times
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Definitions

A function f : N+ → R+ is polynomially bounded if f(n) = O(nc) for some constant c.

A function η is negligible if, for every polynomial p, η(n) = O( 1
p(n) ).

• There exists a polynomial p such that f(n) ≤ p(n) for all n > 0

“f(n) grows at most as fast as some polynomial in n”

• For every polynomial p, there exists N ≥ 1 such that η(n) ≤ 1
p(n) for all n ≥ N

• For every c ≥ 0, there exists N ≥ 1 such that η(n) ≤ 1
nc for all n ≥ N

Equivalently:

“η(n) approaches 0 faster than the inverses of all polynomials in n”

Small abuse: f is
sometimes said to be

polynomial

Equivalently:

• There exists N and c such that f(n) ≤ nc for all n ≥ N .
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If f(n) and g(n) are polynomially bounded then h(n) = f(n) + g(n) is polynomially bounded

h(n) = f(n) + g(n) ≤ nc + nc′ ≤ 2nmax{c,c′} ≤ nmax{c,c′}+1

• There is some N and some c such that f(n) ≤ nc for all n ≥ N

• There is some N ′ and some c′ such that g(n) ≤ nc′ for all n ≥ N ′

• For all n ≥ max{N,N ′, 2}:

The time spent calling two polynomially bounded subroutines (sequentially) is polynomially bounded
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If f(n) and g(n) are polynomially bounded then h(n) = f(n) · g(n) is polynomially bounded

h(n) = f(n) · g(n) ≤ nc · nc′ ≤ nc+c′

• There is some N and some c such that f(n) ≤ nc for all n ≥ N

• There is some N ′ and some c′ such that g(n) ≤ nc′ for all n ≥ N ′

• For all n ≥ max{N,N ′}:

The time spent calling a polynomially bounded subroutine a polynomially bounded number of times is
polynomially bounded
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• There is some N ′ such that η(n) ≤ 1
nc+1 for all n ≥ N ′

• For all n ≥ max{N,N ′, 2}:

The probability of failure of an algorithm that calls two subroutines that fail with negligible probability is
negligible

• Pick any c, we show that there exists N ≥ 1 such that h(n) ≤ 1
nc for all n ≥ N

• There is some N ′′ such that f(n) ≤ 1
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Closure properties (negligible · poly)
If η(n) is negligible and f(n) is polynomially bounded then h(n) = η(n) · f(n) is negligible

h(n) = η(n) · f(n) ≤ 1
nc+c′ · nc′ = 1

nc

• There is some N ′ and some c′ such that f(n) ≤ nc′ for all n ≥ N ′

• For all n ≥ max{N,N ′}:

The probability of failure of an algorithm that makes a polynomially bounded number of calls to a
subroutine that fails with negligible probability is negligible

• Pick any c, we show that there exists N ≥ 1 such that h(n) ≤ 1
nc for all n ≥ N

• Pick N such that η(n) ≤ 1
nc+c′ for all n ≥ N Such N exists, why?

As a special case, the product of two negligible functions is negligible
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Private-key encryption schemes, redefined

Before defining computational secrecy, we need to redefine private-key encryption schemes to take into
account the security parameter

The default message space M is {0, 1}∗. A private-key encryption scheme consists of three algorithms:

• Gen is a randomized polynomial-time algorithm that takes 1n (i.e., n written in unary) as input and
outputs a key k ∈ K. W.l.o.g. we assume that |k| ≥ n. We write k ← Gen(1n)

• Enc is a (possibly randomized) polynomial-time algorithm that takes as input a key k ∈ K and a
message m ∈ M and outputs a ciphertext c.

• Dec is a deterministic polynomial-time algorithm that takes as input a key k ∈ K and a ciphertext
c ∈ C and outputs a message m ∈ M or an error, denoted by ⊥, if c cannot be obtained by
encrypting m.

If M = {0, 1}ℓ(n) then (Gen,Enc,Dec) is a fixed-length private-key encryption scheme
(for messages of length ℓ(n))
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b′ guess about b
if b′ = b

if b′ ̸= b
PrivKeav

A,Π(n) = 1 iff the adversay guesses correctly (b′ = b)

probabilistic polynomial-time
algorithm with input 1n

Notation includes the
security parameter
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Definition: A private key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions in the presence of an eavesdropper (is EAV-secure) if, for every probabilistic
polynomial-time adversary A, there is a negligible function ε such that:

Pr[PrivKeav
A,Π(n) = 1] ≤ 1

2
+ ε(n)

Observation: perfect indistinguishability implies EAV-security
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Consider a scheme where:

Example 1

• Gen(1n) returns a key chosen uniformly at random in {0, 1}n

• The best possible adversary A performs a brute-force search over the key space

Pr[PrivKeav
A,Π(n) = 1] ≤ 1

2
+O

�
t(n)

2n

�
• If the running time of the adversary is t(n) then:

Is this scheme EAV-secure? Yes!

For all polynomial running times t(n), all functions in O
�

t(n)
2n

�
are negligible
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Consider a scheme where:

• Enck(m) runs in n2 · |m| steps

• Breaking the scheme requires 2n steps

What happens when computers get four times faster?

• Alice and Bob can decide to increase the security parameter from n to 2n

• The number of steps of Enck(m) becomes (2n)2 · |m| = 4n2 · |m|, and the actual time spent stays
the same

• The number of steps required to break the scheme becomes 22n

• The time needed to break the scheme increases by a factor of 2n and decreases by a factor of 4

• Overall, the attack became 2n/4 = 2n−2 times slower.

A increase
in computing

power r
esulted

in a

more difficult att
ack!
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Example 3

Consider an adversary A that:

• Runs for n3 minutes

• Breaks the scheme with probability min{240 · 2−n, 1}

How large do we need to choose n?

n 48 64 128 256 512

running time

probability of success

2.5 months 6 months 4 years 32 years 255 years

1024

2041 years

1 in 256 ≈ 1 in 17 mil ≈ 3 in 1026 ≈ 3 in 1065 ≈ 1 in 10142 ≈ 2 in 10296
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Computational secrecy (asymptotic)

We relax perfect secrecy in two ways:

• We allow secrecy to fail with some tiny probability

• We only restrict our attention to “efficient” attackers

probabilities that are negligible in n

polynomial running times

Are both relaxations needed?

• The discussion in the previous lecture shows that, as soon as we use short keys,
there is an adversary that runs in polynomial-time and has some tiny advantage ϵ

4

• We can always run a brute-force attack on the scheme. The discussion in the
previous lecture shows that a computationally unbounded adversary has
advantage at least 1

8 for some pair of messages (when keys are at least one bit
shorter than messages)

Not negligible!
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Leaking the length of the message

In general, encryption does not hide the plaintext length

• This is captured in the indistinguishably experiment by requiring |m0| = |m1|

One should still be aware that leaking the plaintext length is. . .

• Inconsequential if the plaintext length is already public or is not sensitive

• Problematic in other cases!

– Revealing the length of a yes/no answer reveals the answer

– Revealing the number of (possibly binary) digits of a number can leak, e.g., the range of a salary

– Revealing the number of results of a search query leaks information on the popularity of the keyword

– If the plaintext is compressed then encrypted, the ciphertext length leaks information about the
amount of redundancy (entropy) of the plaintext

In Google maps, the map tiles are compressed and (essentially) static. The size of the
ciphertext can be used to determine the viewed location
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Where do we stand?

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

We have a security definition that allows for short keys and works against adversaries with polynomially
bounded running times

Is there a secure private-key encryption scheme (with short keys)
according to this new definition?

It depends...
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Pseudorandom Generators

If pseudorandom generators (PRGs) exist, then the answer is “yes”

• We don’t know if PRGs exist

• If PRGs exist then P ̸= NP

assume that PRGs exist (and hope for the best)

It is widely believed that P ̸= NP, although this would not imply that PRGs exist...

Pragmatic approach:

Equivalent assumption: one-way functions (OWF) exist
Inf. Functions that are easy to compute
but hard to invert even “on average”

• If PRGs exist then we know how to construct one
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Randomness

Which of the following binary strings is random?

Which of the following binary strings is uniform?

1001011011101001

00000000000000001001001001001001

0101010101010101 0000000011111111

These questions are meaningless...

• Randomness is captured by probability distributions

• Uniformity is a property of distributions (not binary strings)

• The uniform distribution over a set X assigns probability 1
|X| to every element in X

Informally, we sometimes say that x is “random / uniform” to mean that it was sampled from a
random/uniform distribution. . .

. . . and that x is “pseudorandom” if it is the output of a PRG
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Historically, a candidate PRG was considered good if its outputs were able to pass a collection of
statistical tests (that would be satisfied by “truly random” strings)

Examples:

• Is the first bit of the output 1 with probability ≈ 1
2?

• Is the parity of any subset of bits 1 with probability ≈ 1
2?

• If I interpret the string as a series of points in a square of side 2 centered in
the origin, is the fraction of points within the circle of radius 1 centered in
the origin ≈ π/4?

What if somebody comes up with a new, clever statistical test we did not think of before?

We would like a PRG to pass all conceivable statistical tests! Is this even possible?
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• Let n = |s| and consider a PRG that outputs ℓ bits. (recall that ℓ > n)

• Since G is deterministic, there are only 2n possible inputs x =⇒ at most 2n possible outputs G(s)

• There are 2ℓ binary strings with ℓ bits

2ℓ = 2ℓ−n · 2n ≥ 2 · 2n

• At least half of the ℓ-bit strings (actually a 2ℓ−n−1
2ℓ−n -fraction) can never be output by G !
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Pseudorandom strings are correctly identified with probability 2
3

Random strings are correctly identified with probability ≥ 1
2 · 2

3 + 1
2 · 1 = 2

3



Pseudorandomness

The following test detects whether a string w has been generated from G with probability ≥ 2
3 :
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Observation: This is not an efficient test.
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Pseudorandomness

The following test detects whether a string w has been generated from G with probability ≥ 2
3 :

• Otherwise, guess that w is random

• If w = G(s) for some s, guess that w is pseudorandom with probability 2
3

Observation: This is not an efficient test.

{0, 1}n
uniform

distribution

G

{0, 1}ℓ
possible outputs of G

{0, 1}ℓ
uniform distribution

Idea: If adversaries are polynomially bounded, we only need to pass statistical tests that run in
polynomial time
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Consider a polynomial-time algorithm G that outputs G(s) = 000...0| {z }
ℓ(n)>|s|

Is it a PRG? Intuition: No, because the output does not “look random”

Formal proof?

We need to come up with a distinguisher D(w) that guesses whether w comes
from the output of G(s) or it is chosen u.a.r. from {0, 1}ℓ(n)

Distinguisher D(w):

• If w = 000...0:

• Output 1 (guess that w “is pseudorandom”)

• Otherwise output 0 (guess that w “is truly random”)

• Pr[D(G(s) ) = 1] = 1

• Pr[D(r) = 1] = 1
2ℓ(n)

��1− 1
2ℓ(n)

�� is not negligible
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As far as polynomial-time algorithms are concerned, the output of G(s) with a random seed s
is indistinguishable (up to some negligible probability) from a random string r

Seed s ∈ {0, 1}n

G

Output string G(s) ∈ {0, 1}ℓ(n)

Why are PRGs useful?

If we have a randomized polynomial-time algorithm that uses ℓ(n) random bits, and we replace
those random bits with the output of G(s), the resulting (randomized) algorithm

“behaves the same” except for a negligible probability


