
Recap

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

Recap

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

• We have a security definition that allows for short keys and works against adversaries with
polynomially bounded running times

Recap

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

• We have a security definition that allows for short keys and works against adversaries with
polynomially bounded running times

Is there a secure private-key encryption scheme (with short keys)
according to this new definition?

Recap: Pseudorandom Generators (formal)

Let G be a deterministic polynomial-time algorithm such that for any n and any input s ∈ {0, 1}n , the
output G(s) is a string of length ℓ(n)

G is a pseudorandom generator (PRG) if the following conditions hold:

• Expansion: For every n ≥ 1, ℓ(n) > n

• Pseudorandomness: For any probabilistic polynomial-time algorithm D, there is a negligible
function η such that

∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣∣ ≤ η(n)

where s is a uniform random variable in {0, 1}n and r is a uniform random variable in {0, 1}ℓ(n)

Expansion factor of G

Recap: Pseudorandom Generators (formal)

Let G be a deterministic polynomial-time algorithm such that for any n and any input s ∈ {0, 1}n , the
output G(s) is a string of length ℓ(n)

G is a pseudorandom generator (PRG) if the following conditions hold:

• Expansion: For every n ≥ 1, ℓ(n) > n

• Pseudorandomness: For any probabilistic polynomial-time algorithm D, there is a negligible
function η such that

∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣∣ ≤ η(n)

where s is a uniform random variable in {0, 1}n and r is a uniform random variable in {0, 1}ℓ(n)

Expansion factor of G

Probability over the
randomness of D and
the choice of s

Recap: Pseudorandom Generators (formal)

Let G be a deterministic polynomial-time algorithm such that for any n and any input s ∈ {0, 1}n , the
output G(s) is a string of length ℓ(n)

G is a pseudorandom generator (PRG) if the following conditions hold:

• Expansion: For every n ≥ 1, ℓ(n) > n

• Pseudorandomness: For any probabilistic polynomial-time algorithm D, there is a negligible
function η such that

∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣∣ ≤ η(n)

where s is a uniform random variable in {0, 1}n and r is a uniform random variable in {0, 1}ℓ(n)

Expansion factor of G

Probability over the
randomness of D and
the choice of s

Probability over the
randomness of D and
the choice of r

Distinguishers

D

polynomial-time
algorithm

output

w

input

0 or 1

Distinguishers

D

polynomial-time
algorithm

output

w

input

Uniform distribution
over {0, 1}ℓ(n)

0 or 1

Distinguishers

D

polynomial-time
algorithm

output

w

input

PRG G

Uniform distribution
over {0, 1}n

0 or 1

Distinguishers

D

polynomial-time
algorithm

output

w

input

PRG G

Uniform distribution
over {0, 1}n

0 or 1

Regardless of how the input x is generated, the probability that D outputs 1 should be almost the same

(the two probabilities differ by at most a negligible function)

Examples

Consider a polynomial-time algorithm G that, with input s = s1s2 . . . sn outputs G(s) = s ∥
∨n

i=1 si

s = 001011 G(s) = 0010111

s = 000000 G(s) = 0000000

Is it a PRG?

Examples

Consider a polynomial-time algorithm G that, with input s = s1s2 . . . sn outputs G(s) = s ∥
∨n

i=1 si

s = 001011 G(s) = 0010111

s = 000000 G(s) = 0000000

Is it a PRG?

Distinguisher D(w):

• If wn+1 = 1:

• Output 1 (guess that w “is pseudorandom”)

• Otherwise output 0 (guess that w “is truly random”)

w = w1w2 . . . wnwn+1

Examples

Consider a polynomial-time algorithm G that, with input s = s1s2 . . . sn outputs G(s) = s ∥
∨n

i=1 si

s = 001011 G(s) = 0010111

s = 000000 G(s) = 0000000

Is it a PRG?

Distinguisher D(w):

• If wn+1 = 1:

• Output 1 (guess that w “is pseudorandom”)

• Otherwise output 0 (guess that w “is truly random”)

w = w1w2 . . . wnwn+1 • Pr[D(G(s)) = 1]

= Pr[s contains at least a 1]

= 1− 1
2n

Examples

Consider a polynomial-time algorithm G that, with input s = s1s2 . . . sn outputs G(s) = s ∥
∨n

i=1 si

s = 001011 G(s) = 0010111

s = 000000 G(s) = 0000000

Is it a PRG?

Distinguisher D(w):

• If wn+1 = 1:

• Output 1 (guess that w “is pseudorandom”)

• Otherwise output 0 (guess that w “is truly random”)

w = w1w2 . . . wnwn+1 • Pr[D(G(s)) = 1]

• Pr[D(r) = 1] = Pr[wn+1 = 1] = 1
2

= Pr[s contains at least a 1]

= 1− 1
2n

Examples

Consider a polynomial-time algorithm G that, with input s = s1s2 . . . sn outputs G(s) = s ∥
∨n

i=1 si

s = 001011 G(s) = 0010111

s = 000000 G(s) = 0000000

Is it a PRG?

Distinguisher D(w):

• If wn+1 = 1:

• Output 1 (guess that w “is pseudorandom”)

• Otherwise output 0 (guess that w “is truly random”)

w = w1w2 . . . wnwn+1 • Pr[D(G(s)) = 1]

• Pr[D(r) = 1] = Pr[wn+1 = 1] = 1
2

∣∣1− 1
2n −

1
2

∣∣ = 1
2 −

1
2n is not negligible

= Pr[s contains at least a 1]

= 1− 1
2n

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator? No Can we prove that?

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

We need to design a distinguisher D for G...

No Can we prove that?

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

We need to design a distinguisher D for G...

No Can we prove that?

D(w1w2 . . . , wn+1) :

• If wn+1 =
⊕n

i=1 wi: return 1

• Otherwise, return 0

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

We need to design a distinguisher D for G...

No Can we prove that?

D(w1w2 . . . , wn+1) :

• If wn+1 =
⊕n

i=1 wi: return 1

• Otherwise, return 0

Pr[D(G(s)) = 1] = Pr[wi+1 =
⊕n

i=1 si] = 1

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

We need to design a distinguisher D for G...

No Can we prove that?

D(w1w2 . . . , wn+1) :

• If wn+1 =
⊕n

i=1 wi: return 1

• Otherwise, return 0

Pr[D(G(s)) = 1] = Pr[wi+1 =
⊕n

i=1 si] = 1

Pr[D(r) = 1]= Pr[ri+1 =
⊕n

i=1 ri] = 1
2

Example

Consider a (polynomial-time) algorithm G that takes a binary string s = s1 . . . sn ∈ {0, 1}n and
outputs a string in f(s) ∈ {0, 1}n+1 such that:

G(s) = s
∥∥∥

n⊕

i=1

si

Is G a pseudorandom generator?

We need to design a distinguisher D for G...

No Can we prove that?

D(w1w2 . . . , wn+1) :

• If wn+1 =
⊕n

i=1 wi: return 1

• Otherwise, return 0

Pr[D(G(s)) = 1] = Pr[wi+1 =
⊕n

i=1 si] = 1

Pr[D(r) = 1]= Pr[ri+1 =
⊕n

i=1 ri] = 1
2

∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣∣ =

1

2
Not negligible!

As far as polynomial-time algorithms are concerned, the output of G(s) with a random seed s

is indistinguishable (up to some negligible probability) from a random string r

Seed s ∈ {0, 1}n

G

Output string G(s) ∈ {0, 1}ℓ(n)

Why are PRGs useful?

If we have a randomized polynomial-time algorithm that uses r random bits, and we replace
those random bits with the output of G(s), the resulting (randomized) algorithm

“behaves the same” except for a negligible probability

One-time pad (redefined with security parameter)

• Gen(1ℓ): return a key k chosen u.a.r. from {0, 1}ℓ

• Enck(m):

• Deck(c):

return c := k ⊕m

return m := k ⊕ c

Gen k ← {0, 1}ℓ

Encm

k

c := m⊕ k

Decc

k

m := c⊕ k

security parameter ℓ = length of the message

1ℓ

(for convenience we name the security parameter ℓ instead of n)

One-time pad (redefined with security parameter)

• Gen(1ℓ): return a key k chosen u.a.r. from {0, 1}ℓ

• Enck(m):

• Deck(c):

return c := k ⊕m

return m := k ⊕ c

Gen k ← {0, 1}ℓ

Encm

k

c := m⊕ k

Decc

k

m := c⊕ k

security parameter ℓ = length of the message

1ℓ

(for convenience we name the security parameter ℓ instead of n)

One-time pad, encryption

message m

key k

ciphertext c

ℓ bits︷ ︸︸ ︷

ℓ bits︷ ︸︸ ︷ ℓ bits︷ ︸︸ ︷
⊕

message m ciphertext c

ℓ bits︷ ︸︸ ︷

ℓ bits︷ ︸︸ ︷ ℓ bits︷ ︸︸ ︷
⊕

PRG G

key k

n bits︷ ︸︸ ︷

pseudo-key

Pseudo one-time pad, encryption

message m ciphertext c

ℓ bits︷ ︸︸ ︷

ℓ bits︷ ︸︸ ︷ ℓ bits︷ ︸︸ ︷
⊕

PRG G

key k

n bits︷ ︸︸ ︷

pseudo-key

Pseudo one-time pad, encryption

Intuitively, the output (distribution) should be indistinguishable to any polynomial-time
adversary (except for a negligible probability)

message m ciphertext c

ℓ bits︷ ︸︸ ︷

ℓ bits︷ ︸︸ ︷ ℓ bits︷ ︸︸ ︷
⊕

PRG G

key k

n bits︷ ︸︸ ︷

pseudo-key

Pseudo one-time pad, encryption

Intuitively, the output (distribution) should be indistinguishable to any polynomial-time
adversary (except for a negligible probability)

The key is now
shorter than
the message!

message m ciphertext c

ℓ bits︷ ︸︸ ︷

ℓ bits︷ ︸︸ ︷ ℓ bits︷ ︸︸ ︷
⊕

PRG G

key k

n bits︷ ︸︸ ︷

pseudo-key

Pseudo one-time pad, encryption

Intuitively, the output (distribution) should be indistinguishable to any polynomial-time
adversary (except for a negligible probability)

The key is now
shorter than
the message!

This is just a “temporary” value that
is only needed at encryption

(and decryption) time

Does not need to be shared

Pseudo one-time pad

• Gen(1n): return a key k chosen u.a.r. from {0, 1}n

• Enck(m):

• Deck(c):

return c := G(k)⊕m

return m := G(k)⊕ c

Gen k ← {0, 1}n

Encm

k

c := m⊕G(k)

Decc

k

m := c⊕G(k)

Let G be a PRG with expansion factor ℓ(n)

1n

Pseudo one-time pad

• Gen(1n): return a key k chosen u.a.r. from {0, 1}n

• Enck(m):

• Deck(c):

return c := G(k)⊕m

return m := G(k)⊕ c

Gen k ← {0, 1}n

Encm

k

c := m⊕G(k)

Decc

k

m := c⊕G(k)

Let G be a PRG with expansion factor ℓ(n)

1n

Pseudo one-time pad

• Gen(1n): return a key k chosen u.a.r. from {0, 1}n

• Enck(m):

• Deck(c):

return c := G(k)⊕m

return m := G(k)⊕ c

Gen k ← {0, 1}n

Encm

k

c := m⊕G(k)

Decc

k

m := c⊕G(k)

Let G be a PRG with expansion factor ℓ(n)

1n

Key space: {0, 1}n

Message space: {0, 1}ℓ(n)

Cryptographic assumptions

Is pseudo OTP EAV-secure?

Cryptographic assumptions

We cannot prove security unconditionally

Is pseudo OTP EAV-secure?

Cryptographic assumptions

We cannot prove security unconditionally

We can hope to prove security based on some cryptographic assumption

• The weaker the assumption, the better

Is pseudo OTP EAV-secure?

Cryptographic assumptions

We cannot prove security unconditionally

We can hope to prove security based on some cryptographic assumption

• The weaker the assumption, the better

In our case we prove security of pseudo-OTP, conditioned on the assumption that PRGs exist

• Stronger than P ̸= NP

Is pseudo OTP EAV-secure?

Cryptographic assumptions

We cannot prove security unconditionally

We can hope to prove security based on some cryptographic assumption

• The weaker the assumption, the better

In our case we prove security of pseudo-OTP, conditioned on the assumption that PRGs exist

• Stronger than P ̸= NP

Is pseudo OTP EAV-secure?

In general, even stronger cryptographic assumptions might be needed to prove that a scheme is secure

Reductions

Think about (Cook) reductions in complexity theory:

• Let A and B be two decision problems, where B is NP-complete

Reductions

Think about (Cook) reductions in complexity theory:

• Assume to have access an efficient (polynomial-time) “black-box” (an oracle) OA that solves A

• Let A and B be two decision problems, where B is NP-complete

OA

Reductions

Think about (Cook) reductions in complexity theory:

• Assume to have access an efficient (polynomial-time) “black-box” (an oracle) OA that solves A

• Show that there is a polynomial-time algorithm that interacts with OA and solves B

• Let A and B be two decision problems, where B is NP-complete

OA

polynomial-time
procedure

instance of B

output

Algorithm B

Reductions

Think about (Cook) reductions in complexity theory:

• Assume to have access an efficient (polynomial-time) “black-box” (an oracle) OA that solves A

• Show that there is a polynomial-time algorithm that interacts with OA and solves B

• Let A and B be two decision problems, where B is NP-complete

• If A is solvable in polynomial-time then B is solvable in polynomial-time

OA

polynomial-time
procedure

instance of B

output

Algorithm B

Reductions

Think about (Cook) reductions in complexity theory:

• Assume to have access an efficient (polynomial-time) “black-box” (an oracle) OA that solves A

• Show that there is a polynomial-time algorithm that interacts with OA and solves B

• Let A and B be two decision problems, where B is NP-complete

• If A is solvable in polynomial-time then B is solvable in polynomial-time

OA

polynomial-time
procedure

instance of B

output

=⇒ assuming P ̸= NP, A is not solvable in polynomial time

Algorithm B

Security reductions

We want to show that Π is secure. We start from some problem X that is (conjectured to be)
“hard to break” with a non-negligible advantage

Security reductions

• Assume that there is some polynomial-time adversary A that breaks Π

i.e., A “wins” the PrivKeav
A,Π(n) with non-negligible advantage ε(n)

We want to show that Π is secure. We start from some problem X that is (conjectured to be)
“hard to break” with a non-negligible advantage

A
breaks Π

Security reductions

• Assume that there is some polynomial-time adversary A that breaks Π

i.e., A “wins” the PrivKeav
A,Π(n) with non-negligible advantage ε(n)

We want to show that Π is secure. We start from some problem X that is (conjectured to be)
“hard to break” with a non-negligible advantage

• Use A as a “black box” in a polynomial-time algorithm A′ that interacts with A and “breaks” X

with non-negligible advantage (e.g., advantage at least ε(n)
p(n) , for some polynomial p)

A
polynomial-time

procedure

instance of X

output

Algorithm A′

non-negligible advantage
breaks Π

Security reductions

• Assume that there is some polynomial-time adversary A that breaks Π

i.e., A “wins” the PrivKeav
A,Π(n) with non-negligible advantage ε(n)

We want to show that Π is secure. We start from some problem X that is (conjectured to be)
“hard to break” with a non-negligible advantage

• Use A as a “black box” in a polynomial-time algorithm A′ that interacts with A and “breaks” X

with non-negligible advantage (e.g., advantage at least ε(n)
p(n) , for some polynomial p)

• Since X cannot be broken with non-negligible advantage, no A exists

A
polynomial-time

procedure

instance of X

output

Algorithm A′

non-negligible advantage
breaks Π

Security reductions

• Assume that there is some polynomial-time adversary A that breaks Π

i.e., A “wins” the PrivKeav
A,Π(n) with non-negligible advantage ε(n)

We want to show that Π is secure. We start from some problem X that is (conjectured to be)
“hard to break” with a non-negligible advantage

• Use A as a “black box” in a polynomial-time algorithm A′ that interacts with A and “breaks” X

with non-negligible advantage (e.g., advantage at least ε(n)
p(n) , for some polynomial p)

• Since X cannot be broken with non-negligible advantage, no A exists

=⇒ all poly-time adversaries for Π have negligible advantage (Π is secure)

A
polynomial-time

procedure

instance of X

output

Algorithm A′

non-negligible advantage
breaks Π

Roadmap of our reduction

In our case, the problem X is that of telling apart the output of a PRG G from a random string

Roadmap of our reduction

• Assume that there is a polynomial-time adversary A that “breaks” pseudo OTP with
non-negligible advantage

In our case, the problem X is that of telling apart the output of a PRG G from a random string

Roadmap of our reduction

• Assume that there is a polynomial-time adversary A that “breaks” pseudo OTP with
non-negligible advantage

• Use A to build a polynomial-time distinguisher D for G

In our case, the problem X is that of telling apart the output of a PRG G from a random string

Roadmap of our reduction

• Assume that there is a polynomial-time adversary A that “breaks” pseudo OTP with
non-negligible advantage

• Use A to build a polynomial-time distinguisher D for G

• Since G is a PRG, no such D can exist

In our case, the problem X is that of telling apart the output of a PRG G from a random string

Roadmap of our reduction

• Assume that there is a polynomial-time adversary A that “breaks” pseudo OTP with
non-negligible advantage

• Use A to build a polynomial-time distinguisher D for G

• Since G is a PRG, no such D can exist

In our case, the problem X is that of telling apart the output of a PRG G from a random string

=⇒ no such adversary A exists

Roadmap of our reduction

• Assume that there is a polynomial-time adversary A that “breaks” pseudo OTP with
non-negligible advantage

• Use A to build a polynomial-time distinguisher D for G

• Since G is a PRG, no such D can exist

In our case, the problem X is that of telling apart the output of a PRG G from a random string

=⇒ no such adversary A exists

=⇒ pseudo OTP is secure

The actual reduction

Theorem: If G is a pseudorandom generator with expansion factor ℓ(n), then pseudo OTP
is an EAV-secure, fixed-length private-key encryption scheme for messages of length ℓ(n).

Proof:

Let Π denote the pseudo-OTP scheme, and let Π̃ be the “real” OTP scheme

The actual reduction

Theorem: If G is a pseudorandom generator with expansion factor ℓ(n), then pseudo OTP
is an EAV-secure, fixed-length private-key encryption scheme for messages of length ℓ(n).

Proof:

Assume that there is a polynomial-time adversary A such that Pr[PrivKeav
A,Π(n)] =

1
2 + ε(n) for a

non-negligible ε(n)

Let Π denote the pseudo-OTP scheme, and let Π̃ be the “real” OTP scheme

The actual reduction

Theorem: If G is a pseudorandom generator with expansion factor ℓ(n), then pseudo OTP
is an EAV-secure, fixed-length private-key encryption scheme for messages of length ℓ(n).

Proof:

Assume that there is a polynomial-time adversary A such that Pr[PrivKeav
A,Π(n)] =

1
2 + ε(n) for a

non-negligible ε(n)

Distinguisher D(w):

• Get the two messages m0,m1 from A

• Pick b u.a.r. in {0, 1} and let c = mb ⊕ w

• Send c to A and obtain a guess b′ ∈ {0, 1}

• Output 1 if b′ = b and 0 otherwise

Let Π denote the pseudo-OTP scheme, and let Π̃ be the “real” OTP scheme

The actual reduction

Theorem: If G is a pseudorandom generator with expansion factor ℓ(n), then pseudo OTP
is an EAV-secure, fixed-length private-key encryption scheme for messages of length ℓ(n).

Proof:

Assume that there is a polynomial-time adversary A such that Pr[PrivKeav
A,Π(n)] =

1
2 + ε(n) for a

non-negligible ε(n)

Distinguisher D(w):

• Get the two messages m0,m1 from A

• Pick b u.a.r. in {0, 1} and let c = mb ⊕ w

• Send c to A and obtain a guess b′ ∈ {0, 1}

• Output 1 if b′ = b and 0 otherwise

We need to bound
∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]

∣∣∣

Let Π denote the pseudo-OTP scheme, and let Π̃ be the “real” OTP scheme

The actual reduction

A
breaks Π

D(w)

w

length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

D(w)

w

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w

D(w)

w

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

D(w)

w

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

D(w)

w

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

wPRG G

Uniform distribution
over {0, 1}n

s

G(s)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

PrivKeav
A,Π(n)

PRG G

Uniform distribution
over {0, 1}n

s

G(s)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

PrivKeav
A,Π(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1]

PRG G

Uniform distribution
over {0, 1}n

s

G(s)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

PrivKeav
A,Π(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1]

PRG G

Uniform distribution
over {0, 1}n

= 1
2 + ε(n)

s

G(s)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

PrivKeav
A,Π(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1]

PRG G

Uniform distribution
over {0, 1}n

= 1
2 + ε(n) non-negligible

s

G(s)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

string chosen uniformly at
random over {0, 1}ℓ(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

string chosen uniformly at
random over {0, 1}ℓ(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

PrivKeav

A,Π̃
(n)

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

string chosen uniformly at
random over {0, 1}ℓ(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

PrivKeav

A,Π̃
(n)

Pr[D(r) = 1] = Pr[PrivKeav

A,Π̃
(n) = 1]

length ℓ(n)
length ℓ(n)

The actual reduction

A
breaks Π

m0,m1

b← {0, 1}

c← mb ⊕ w c

b′

Output

{
1 if b′ = b

0 otherwise

D(w)

w

string chosen uniformly at
random over {0, 1}ℓ(n)

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

PrivKeav

A,Π̃
(n)

Pr[D(r) = 1] = Pr[PrivKeav

A,Π̃
(n) = 1] = 1

2 (Π̃ is perfectly secret)

length ℓ(n)
length ℓ(n)

The actual reduction

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

Pr[D(r) = 1] = Pr[PrivKeav

A,Π̃
(n) = 1] = 1

2 (Π̃ is perfectly secret)

We need to bound
∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]

∣∣∣

The actual reduction

Pr[D(G(s)) = 1] = Pr[PrivKeav
A,Π(n) = 1] = 1

2 + ε(n) non-negligible

Pr[D(r) = 1] = Pr[PrivKeav

A,Π̃
(n) = 1] = 1

2 (Π̃ is perfectly secret)

We need to bound
∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]

∣∣∣

∣∣∣ Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣∣ =

∣∣∣ 1
2 + ε(n)− 1

2

∣∣∣=
∣∣∣ ε(n)

∣∣∣ non-negligible!

□

Once again

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

• We have a security definition that allows for short keys and works against adversaries with
polynomially bounded running times

We came up with a (conditionally) secure private-key encryption scheme
with keys shorter than the messages according to this new definition

Once again

• We have a perfectly secret encryption scheme (one-time pad)...

• . . . but it requires long keys

• This is inevitable if we insist on perfect secrecy (recall that, in a perfectly secret scheme, |K| ≥ |M|)

• We have a security definition that allows for short keys and works against adversaries with
polynomially bounded running times

We came up with a (conditionally) secure private-key encryption scheme
with keys shorter than the messages according to this new definition

Are we done yet?

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

• How do we build the PRG G in practice?

we don’t even know if PRGs exist...

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

• How do we build the PRG G in practice?

we don’t even know if PRGs exist...

CPA security, psedorandom functions,
pseudorandom permutations, block
ciphers

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

• How do we build the PRG G in practice?

we don’t even know if PRGs exist...

CPA security, psedorandom functions,
pseudorandom permutations, block
ciphers

message authentication codes,
authenticated encryption

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

• How do we build the PRG G in practice?

we don’t even know if PRGs exist...

CPA security, psedorandom functions,
pseudorandom permutations, block
ciphers

message authentication codes,
authenticated encryption

stream ciphers

Several issues remain...

We can now use keys of length n to encrypt messages of length ℓ(n) > n

• What about messages of length ℓ(n) + 1?

• What about very long messages?

• What about sending multiple messages?

• What about the malleability of OTP (and pseudo-OTP)?

• How do we build the PRG G in practice?

we don’t even know if PRGs exist...

CPA security, psedorandom functions,
pseudorandom permutations, block
ciphers

message authentication codes,
authenticated encryption

stream ciphers

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• The two lists must have the same number t of messages (chosen by the adversary)

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• The two lists must have the same number t of messages (chosen by the adversary)

• b is chosen u.a.r. from {0, 1}

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• All messages in M⃗b are encrypted (using the same key) to produce a list C⃗ = ⟨c1, c2, . . . , ct⟩ of
chipertexts

• The two lists must have the same number t of messages (chosen by the adversary)

• b is chosen u.a.r. from {0, 1}

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• All messages in M⃗b are encrypted (using the same key) to produce a list C⃗ = ⟨c1, c2, . . . , ct⟩ of
chipertexts

• The two lists must have the same number t of messages (chosen by the adversary)

• b is chosen u.a.r. from {0, 1}

• The list C⃗ is given to the adversary

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• All messages in M⃗b are encrypted (using the same key) to produce a list C⃗ = ⟨c1, c2, . . . , ct⟩ of
chipertexts

• The adversary needs to provide a guess b′ for the value of b

• The two lists must have the same number t of messages (chosen by the adversary)

• b is chosen u.a.r. from {0, 1}

• The list C⃗ is given to the adversary

Multiple messages

To handle the case in which multiple messages are encrypted, we need to update our security definition
accordingly

• The adversary provides two lists M⃗0 = ⟨m0,1,m0,2, . . . ,m0,t⟩, M⃗1 = ⟨m1,1,m1,2, . . . ,m1,t⟩ of
messages with |m0,i| = |m1,i|

• All messages in M⃗b are encrypted (using the same key) to produce a list C⃗ = ⟨c1, c2, . . . , ct⟩ of
chipertexts

• The adversary needs to provide a guess b′ for the value of b

• The two lists must have the same number t of messages (chosen by the adversary)

• b is chosen u.a.r. from {0, 1}

• The list C⃗ is given to the adversary

PrivKmult
A,Π(n) =

{
1 if b′ = b

0 otherwise

Multiple messages: security definition

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable multiple
encryptions in the presence of an eavesdropper if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKmult
A,Π(n) = 1] ≤

1

2
+ ε(n)

Multiple messages: security definition

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable multiple
encryptions in the presence of an eavesdropper if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKmult
A,Π(n) = 1] ≤

1

2
+ ε(n)

Observation: This is a stronger requirement than having indistinguishable encryptions
in the presence of an eavesdropper

Multiple messages: security definition

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable multiple
encryptions in the presence of an eavesdropper if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKmult
A,Π(n) = 1] ≤

1

2
+ ε(n)

Observation: This is a stronger requirement than having indistinguishable encryptions
in the presence of an eavesdropper

The adversary is more powerful!

(it can simulate an adversary for the PrivKeav
A,Π experiment)

Multiple messages: security definition

Definition: A private key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable multiple
encryptions in the presence of an eavesdropper if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKmult
A,Π(n) = 1] ≤

1

2
+ ε(n)

Observation: This is a stronger requirement than having indistinguishable encryptions
in the presence of an eavesdropper

The adversary is more powerful!

If a scheme has indistinguishable multiple encryptions in the presence of an eavesdropper then it is
also EAV-secure

(it can simulate an adversary for the PrivKeav
A,Π experiment)

⇒

Multiple message (in)security of OTP

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

• If b = 0, then c1 = c2 = Enck(0
ℓ) =⇒ A guesses correctly with probability 1

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

• If b = 0, then c1 = c2 = Enck(0
ℓ) =⇒ A guesses correctly with probability 1

• If b = 1, then c1 = Enck(0
ℓ) and c2 = Enck(1

ℓ)

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

• If b = 0, then c1 = c2 = Enck(0
ℓ) =⇒ A guesses correctly with probability 1

• If b = 1, then c1 = Enck(0
ℓ) and c2 = Enck(1

ℓ)

=⇒ c1 ̸= c2 since otherwise either Deck(c1) ̸= 0ℓ or Deck(c2) ̸= 1ℓ

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

• If b = 0, then c1 = c2 = Enck(0
ℓ) =⇒ A guesses correctly with probability 1

• If b = 1, then c1 = Enck(0
ℓ) and c2 = Enck(1

ℓ)

=⇒ A guesses correctly with probability 1

=⇒ c1 ̸= c2 since otherwise either Deck(c1) ̸= 0ℓ or Deck(c2) ̸= 1ℓ

Pr[PrivKmult
A,Π(n) = 1] = 1

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

• Upon receiving C⃗ = ⟨c1, c2⟩:

• Output b′ = 0 if c1 = c2

• Otherwise output b′ = 1

Distinguisher A:

• Output M⃗0 = ⟨0ℓ, 0ℓ⟩ and M⃗1 = ⟨0ℓ, 1ℓ⟩

Multiple message (in)security of OTP

Advantage?

• If b = 0, then c1 = c2 = Enck(0
ℓ) =⇒ A guesses correctly with probability 1

• If b = 1, then c1 = Enck(0
ℓ) and c2 = Enck(1

ℓ)

=⇒ A guesses correctly with probability 1

=⇒ c1 ̸= c2 since otherwise either Deck(c1) ̸= 0ℓ or Deck(c2) ̸= 1ℓ

Pr[PrivKmult
A,Π(n) = 1] = 1

Does OTP have indistinguishable multiple encryptions in the presence of an eavesdropper?

We are exploiting the
fact that, in OTP

(and in pseudo OTP),
the function Enck is

deterministic!

Multiple message security and deterministic schemes

Observation: The previous adversary works against all schemes with a deterministic encryption function

Multiple message security and deterministic schemes

Theorem If Π = (Gen,Enc,Dec) is a encryption scheme in which Enc is a deterministic
function of the key and the message, then Π cannot have indistinguishable multiple

encryptions in the presence of an eavesdropper.

Observation: The previous adversary works against all schemes with a deterministic encryption function

Multiple message security and deterministic schemes

Theorem If Π = (Gen,Enc,Dec) is a encryption scheme in which Enc is a deterministic
function of the key and the message, then Π cannot have indistinguishable multiple

encryptions in the presence of an eavesdropper.

Observation: The previous adversary works against all schemes with a deterministic encryption function

Not just a theoretical result: consider the case of yes/no messages

How do we circumvent this limitation?

Multiple message security and deterministic schemes

Theorem If Π = (Gen,Enc,Dec) is a encryption scheme in which Enc is a deterministic
function of the key and the message, then Π cannot have indistinguishable multiple

encryptions in the presence of an eavesdropper.

Observation: The previous adversary works against all schemes with a deterministic encryption function

Not just a theoretical result: consider the case of yes/no messages

How do we circumvent this limitation?

• Randomized encryption functions: multiple encryptions of the same message result in different
ciphertexts

Multiple message security and deterministic schemes

Theorem If Π = (Gen,Enc,Dec) is a encryption scheme in which Enc is a deterministic
function of the key and the message, then Π cannot have indistinguishable multiple

encryptions in the presence of an eavesdropper.

Observation: The previous adversary works against all schemes with a deterministic encryption function

Not just a theoretical result: consider the case of yes/no messages

How do we circumvent this limitation?

• Randomized encryption functions: multiple encryptions of the same message result in different
ciphertexts

• Stateful schemes: Enc stores some additional information that is preserved between calls and it is
used to produce different ciphertexts even when the same message is encrypted twice

An even stronger threat model

We will not focus on designing schemes with indistinguishable multiple encryptions

An even stronger threat model

We will not focus on designing schemes with indistinguishable multiple encryptions

We adopt an even stronger threat model instead!

security against chosen-plaintext attacks (CPA)

An even stronger threat model

We will not focus on designing schemes with indistinguishable multiple encryptions

We adopt an even stronger threat model instead!

security against chosen-plaintext attacks (CPA)

All modern encryption schemes should be at least CPA-secure

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

Encrypted data

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = NZISDNZOASDSAHJAF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = NZISDNZOASDSAHJAF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = NZISDNZOASDSAHJAF

m = We are planning to attack AF

The U.S. cryptanalysts believed that AF meant Midway Island, but they were not 100% sure

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

They sent a fake unencrypted message from Midway Island

m = We are out of fresh water

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

They sent a fake unencrypted message from Midway Island

m = We are out of fresh water

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = AFMSDIASDHIADLAX

Chosen-plaintext attack

The adversary learns the ciphertexts corresponding to one or more plaintexts of its choice.

How can the adversary learn ciphertexts of the desired plaintexts?

The adversary wants to deduce information about the underlying plaintext of some other ciphertext
produced using the same key

c = AFMSDIASDHIADLAX

m = AF is short on water

Modeling CPA security

Encryption oracle

A key k ← Gen(1n) is generated and the adversary A is given access to an encryption oracle

Modeling CPA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption c of m

Encryption oracle
m

c
c← Enck(m)

A key k ← Gen(1n) is generated and the adversary A is given access to an encryption oracle

Modeling CPA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption c of m

Encryption oracle

c← Enck(m)

• There is no limit on the number of queries the adversary can make
(other than the time limit of the aversary, each query requries constant time)

A key k ← Gen(1n) is generated and the adversary A is given access to an encryption oracle

Modeling CPA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption c of m

• All messages are encrypted using the same key k, i.e., the oracle returns c← Enck(m)

Encryption oracle

c← Enck(m)

• There is no limit on the number of queries the adversary can make
(other than the time limit of the aversary, each query requries constant time)

A key k ← Gen(1n) is generated and the adversary A is given access to an encryption oracle

Modeling CPA security

• The encryption oracle acts as a black-box that can be queried with a message m and returns an
encryption c of m

• All messages are encrypted using the same key k, i.e., the oracle returns c← Enck(m)

Encryption oracle

c← Enck(m)

• There is no limit on the number of queries the adversary can make
(other than the time limit of the aversary, each query requries constant time)

A key k ← Gen(1n) is generated and the adversary A is given access to an encryption oracle

• The key k is unknown to the adversary

Modeling CPA security

VerifierEncryption
oracle

Adversary
A

A key k ← Gen(1n) is generated

key k

Modeling CPA security

VerifierEncryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

Modeling CPA security

Verifier

m0,m1 ∈M

Encryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

|m0| = |m1|

Modeling CPA security

Verifier

m0,m1 ∈M

c← Enck(mb)

Encryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

b← {0, 1}

challenge ciphertext

|m0| = |m1|

Modeling CPA security

Verifier

m0,m1 ∈M

c← Enck(mb)

Encryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

b← {0, 1}

challenge ciphertext

...

|m0| = |m1|

Modeling CPA security

Verifier

m0,m1 ∈M

c← Enck(mb)

b′

Encryption
oracle

Adversary
A

...

A key k ← Gen(1n) is generated

key k

b← {0, 1}

challenge ciphertext

...

guess about b

if b′ = b

if b′ ̸= b

|m0| = |m1|

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message spaceM,

we denote the following experiment by PrivKcpa
A,Π

Modeling CPA security

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message spaceM,

we denote the following experiment by PrivKcpa
A,Π

• A chooses two distinct messages m0,m1 ∈M with |m0| = |m1|

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by Enck(mb), and given to A

Modeling CPA security

• A key k ← Gen(1n) is generated

• A can interact with an encryption oracle that provides access to Enck(·)

• A can interact with an encryption oracle that provides access to Enck(·)

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

Formally, if Π = (Gen,Enc,Dec) is a private key encryption scheme with message spaceM,

we denote the following experiment by PrivKcpa
A,Π

• A chooses two distinct messages m0,m1 ∈M with |m0| = |m1|

• A uniform random bit b ∈ {0, 1} is generated

• The challenge ciphertext c is computed by Enck(mb), and given to A

Modeling CPA security

• A key k ← Gen(1n) is generated

• A can interact with an encryption oracle that provides access to Enck(·)

• A can interact with an encryption oracle that provides access to Enck(·)

• A outputs a guess b′ ∈ {0, 1} about b

• The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise

k and b are
unknown to A

Definition: A private-key encryption scheme Π has indistinguishable encryptions under a
chosen-plaintext attack (is CPA-secure) if, for every probabilistic polynomial-time adversary
A, there is a negligible function ε such that:

Pr[PrivKcpa
A,Π(n) = 1] ≤

1

2
+ ε(n)

Definition of CPA-security

CPA-security

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

CPA-security

If Π is CPA-secure then Π has indistinguishable multiple encryptions
in the presence of an eavesdropper (and hence it is also EAV-secure)

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

⇒

CPA-security

If Π is CPA-secure then Π has indistinguishable multiple encryptions
in the presence of an eavesdropper (and hence it is also EAV-secure)

No stateless and deterministic encryption scheme has indistinguishable
multiple encryptions in the presence of an eavesdropper

+

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

⇒

CPA-security

If Π is CPA-secure then Π has indistinguishable multiple encryptions
in the presence of an eavesdropper (and hence it is also EAV-secure)

No stateless and deterministic encryption scheme has indistinguishable
multiple encryptions in the presence of an eavesdropper

+

⇒
No stateless and deterministic encryption scheme can be CPA-secure

Any private-key encryption scheme that is CPA-secure is also
CPA-secure for multiple encryptions

⇒

