Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

For EAV-security we had to rely on PRGs

Pseudorandom Functions

How do we build a CPA-secure encryption scheme?

- For EAV-security we had to rely on PRGs
- For CPA-security we need a new cryptographic primitive: **pseudorandom functions** (PRFs)

What does it mean for a function $f:\{0,1\}^* \to \{0,1\}^*$ to be random?

What does it mean for a function $f:\{0,1\}^* \to \{0,1\}^*$ to be random?

The question is ill-posed!

• It does not make sense to say that a *fixed* function is random

What does it mean for a function $f: \{0,1\}^* \to \{0,1\}^*$ to be random?

The question is ill-posed!

- It does not make sense to say that a *fixed* function is random
- Just like it does not make sense to say that 0010110 is random, or that the number 4 is random

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

xkcd.com

What does it mean for a function $f: \{0,1\}^* \to \{0,1\}^*$ to be random?

The question is ill-posed!

- It does not make sense to say that a *fixed* function is random
- Just like it does not make sense to say that 0010110 is random, or that the number 4 is random

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

xkcd com

We need to talk about probability distributions over functions instead

This is formalized using the notion of keyed functions

A keyed function is a function $F:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

This function has two inputs. The first input is called the **key**

A keyed function is a function $F:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

This function has two inputs. The first input is called the **key**

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input $k \in \{0,1\}^*$ and $x \in \{0,1\}^*$, and computes F(k,x)

A **keyed function** is a function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input $k \in \{0,1\}^*$ and $x \in \{0,1\}^*$, and computes F(k,x)

We are usually interested in keyed function in which:

- ullet The key has some fixed length ℓ_{key}
- ullet The second input has some fixed length ℓ_{in}
- ullet The output has some fixed length ℓ_{out}

A **keyed function** is a function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input $k \in \{0,1\}^*$ and $x \in \{0,1\}^*$, and computes F(k,x)

We are usually interested in keyed function in which:

- The key has some fixed length $\ell_{key}(n)$
- The second input has some fixed length $\ell_{in}(n)$
- The output has some fixed length ℓ_{out} (n)

These quantities are actually functions of the security parameter!

A **keyed function** is a function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

This function has two inputs. The first input is called the key

A keyed function is said to be **efficient** if there is a polynomial-time algorithm that takes as input $k \in \{0,1\}^*$ and $x \in \{0,1\}^*$, and computes F(k,x)

We are usually interested in keyed function in which:

- The key has some fixed length $\ell_{key}(n)$
- The second input has some fixed length $\ell_{in}(n)$
- The output has some fixed length ℓ_{out} (n)

These quantities are actually functions of the security parameter!

Simplifying assumption (can be removed): F is **length-preserving**

$$\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n$$

Let Func_n be the set of all functions $f:\{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Let Func_n be the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Think of the function as a huge table:

	x	F(x)
	00000	10011
	00001	01010
2^n rows	00010	00110
	• • •	:
	11111	10001

Let Func_n be the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Think of the function as a huge table:

	x	F(x)
	00000	10011
	00001	01010
2^n rows	00010	00110
	: :	:
	11111	10001

How many distinct tables?

Let Func_n be the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Think of the function as a huge table:

		x	F(x)	We have 2^n choices
		00000	10011	per row
		00001	01010	
2^n rows	{	00010	00110	
		:	• •	
		11111	10001	

How many distinct tables?

Let Func_n be the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Think of the function as a huge table:

How many distinct tables?

$$(\text{choices per row})^{\#\text{rows}} = (2^n)^{2^n} = 2^{n \cdot 2^n}$$

Let Func_n be the set of all functions $f:\{0,1\}^n \to \{0,1\}^n$

How big is $Func_n$?

Think of the function as a huge table:

How many distinct tables?

$$(\text{choices per row})^{\#\text{rows}} = (2^n)^{2^n} = 2^{n \cdot 2^n}$$

For n=4 there 2^{64} functions

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set $Func_n$

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set Func_n

By the principle of deferred decisions, we can equivalently think of f:

• As a function whose outputs are completely determined at sampling time (i.e., for each x, choose a random string f(x) in $\{0,1\}^n$)

Random functions

When we talk about a random function f (for some security parameter n), we actually mean that f is sampled **uniformly at random** from the set Func_n

By the principle of deferred decisions, we can equivalently think of f:

- As a function whose outputs are completely determined at sampling time (i.e., for each x, choose a random string f(x) in $\{0,1\}^n$)
- As a function whose outputs are decided **lazily**: whenever we need to evaluate f(x):
 - If f(x) was never evaluated before with input x:
 - Return a binary string chosen u.a.r. from $\{0,1\}^n$
 - ullet Otherwise, return the previously chosen string for input x

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

Choosing k is equivalent to choosing a function F_k from Func_n

Pick a uniform k. We now have a **distribution** over the functions in Func_n

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

Choosing k is equivalent to choosing a function F_k from Func_n

Pick a uniform k. We now have a **distribution** over the functions in Func_n

How big is the support of this distribution?

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

Choosing k is equivalent to choosing a function F_k from Func_n

Pick a uniform k. We now have a **distribution** over the functions in Func_n

How big is the support of this distribution?

There can be at most as many functions F_k as keys $k \in \{0,1\}^n \implies$ at most 2^n functions!

(out of $2^{n \cdot 2^n}$)

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

Choosing k is equivalent to choosing a function F_k from Func_n

Pick a uniform k. We now have a **distribution** over the functions in Func_n

How big is the support of this distribution?

There can be at most as many functions F_k as keys $k \in \{0,1\}^n \implies$ at most 2^n functions!

For n=4 there are $2^4=16$ possible choices... out of 2^{64} possible functions! (out of $2^{n\cdot 2^n}$)

We will typically use efficient keyed functions as follows:

- Choose some key $k \in \{0,1\}^n$
- Evaluate the function F(k,x) for different choices of x, while k stays the same
- Is is then convenient to define the **single-input** function $F_k(x) = F(k,x)$

Choosing k is equivalent to choosing a function F_k from Func_n

Pick a uniform k. We now have a **distribution** over the functions in Func_n

How big is the support of this distribution?

There can be at most as many functions F_k as keys $k \in \{0,1\}^n \implies$ at most 2^n functions!

For n=4 there are $2^4=16$ possible choices... out of 2^{64} possible functions!

(out of $2^{n \cdot 2^n}$)

We can only sample a **tiny** fraction of the functions in $Func_n!$

Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!

Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

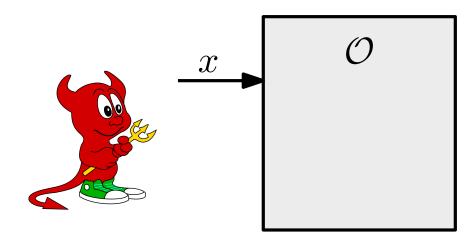
Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

Workaround: we give \mathcal{D} oracle access to F_k and f and input $\mathbf{1}^n$:

ullet There is an oracle $\mathcal O$ that can be queried with a string $x\in\{0,1\}^n$

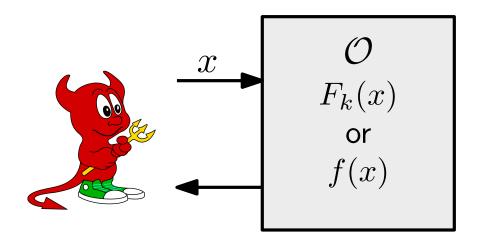


Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

- ullet There is an oracle $\mathcal O$ that can be queried with a string $x\in\{0,1\}^n$
- ullet O either always answers with $F_k(x)$, or it always answers with f(x)

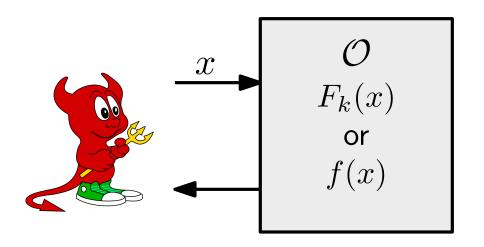


Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

- ullet There is an oracle $\mathcal O$ that can be queried with a string $x\in\{0,1\}^n$
- ullet O either always answers with $F_k(x)$, or it always answers with f(x)
- ullet $\mathcal D$ can query $\mathcal O$ many times

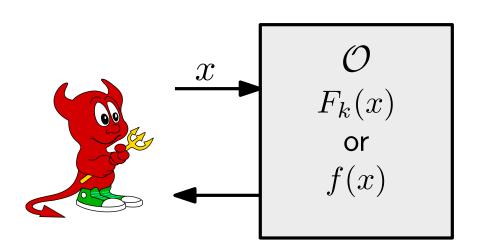


Intuition: $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is pseudorandom if no polynomial-time algorithm \mathcal{D} can distinguish the function F_k (where k is chosen u.a.r.) from a random function $f \in \mathsf{Func}_n$, except for a negligible probability.

Caution! What's the input to \mathcal{D} ?

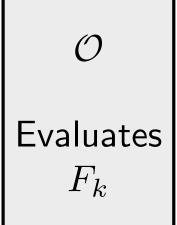
- ullet We cannot use an encoding of F_k and f as the input to ${\mathcal D}$
- Such an encoding would be (super)exponential in n!
- ullet needs to run in a time that is polynomially bounded by the size of its input

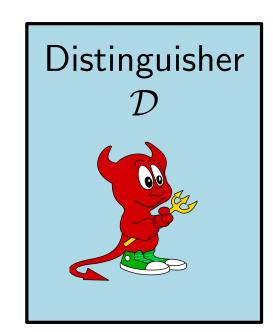
- ullet There is an oracle $\mathcal O$ that can be queried with a string $x\in\{0,1\}^n$
- ullet O either always answers with $F_k(x)$, or it always answers with f(x)
- ullet $\mathcal D$ can query $\mathcal O$ many times
- ullet $\mathcal D$ needs to guess whether $\mathcal O$ is evaluating F_k or f



"World 1":

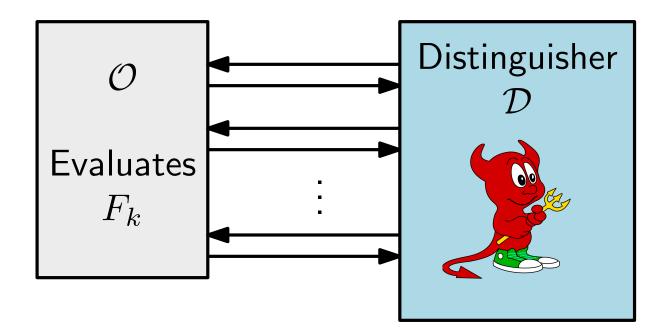
k is chosen u.a.r. in $\{0,1\}^n$





"World 1":

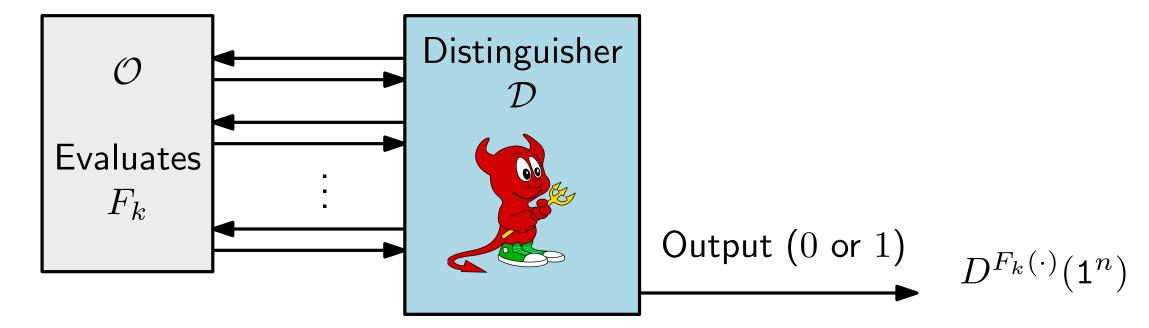
k is chosen u.a.r. in $\{0,1\}^n$



......

"World 1":

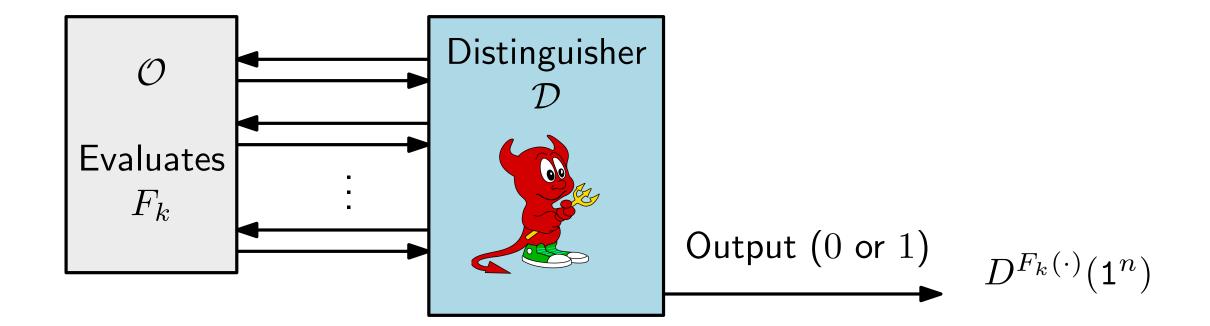
k is chosen u.a.r. in $\{0,1\}^n$



......

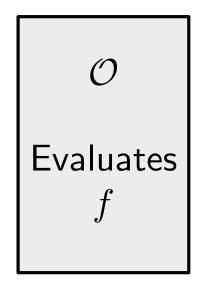
"World 1":

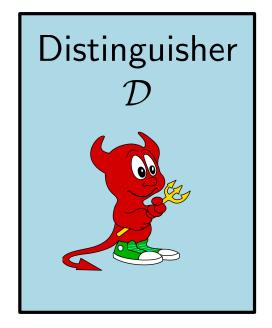
k is chosen u.a.r. in $\{0,1\}^n$



"World 0":

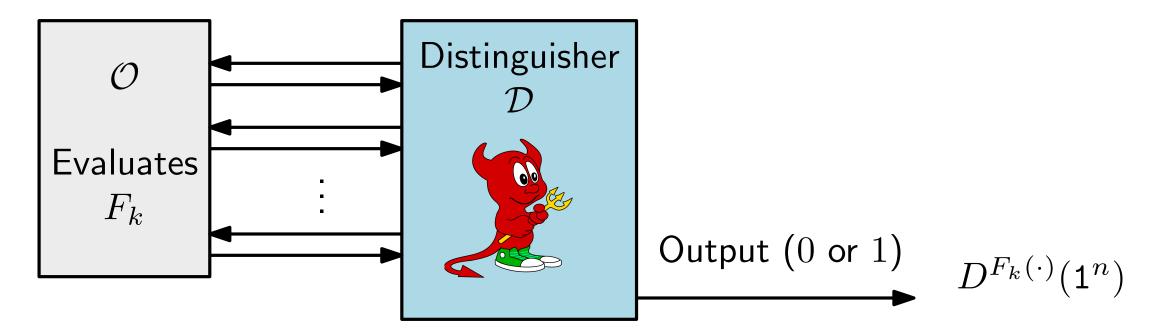
f is chosen u.a.r. in Func $_n$





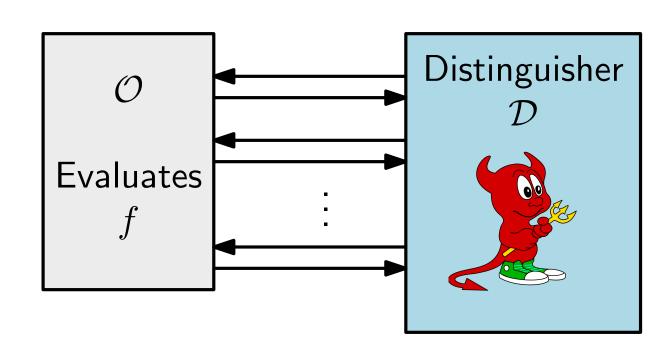
"World 1":

k is chosen u.a.r. in $\{0,1\}^n$



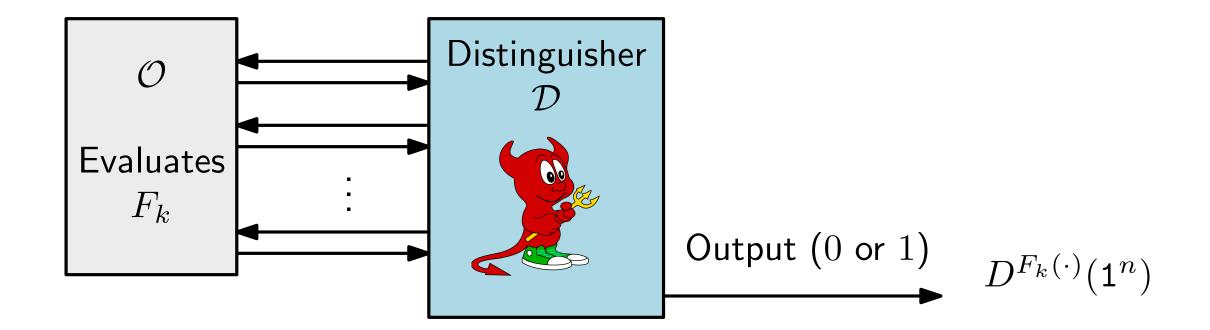
"World 0":

f is chosen u.a.r. in Func_n



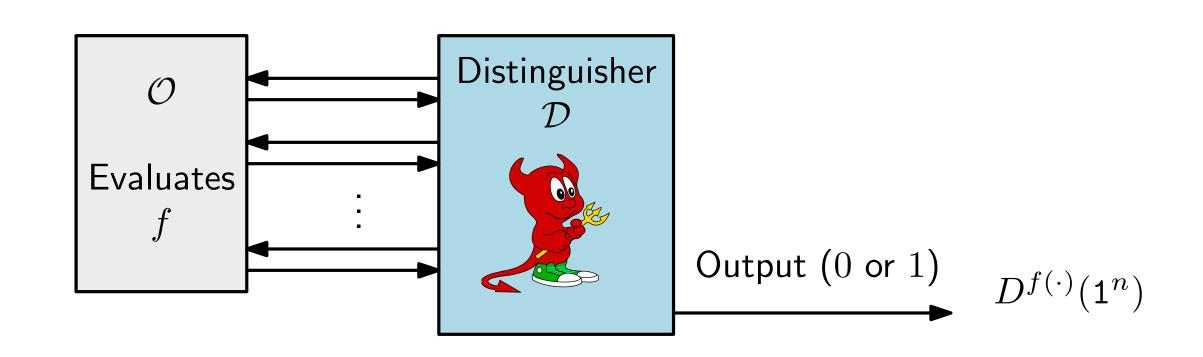
"World 1":

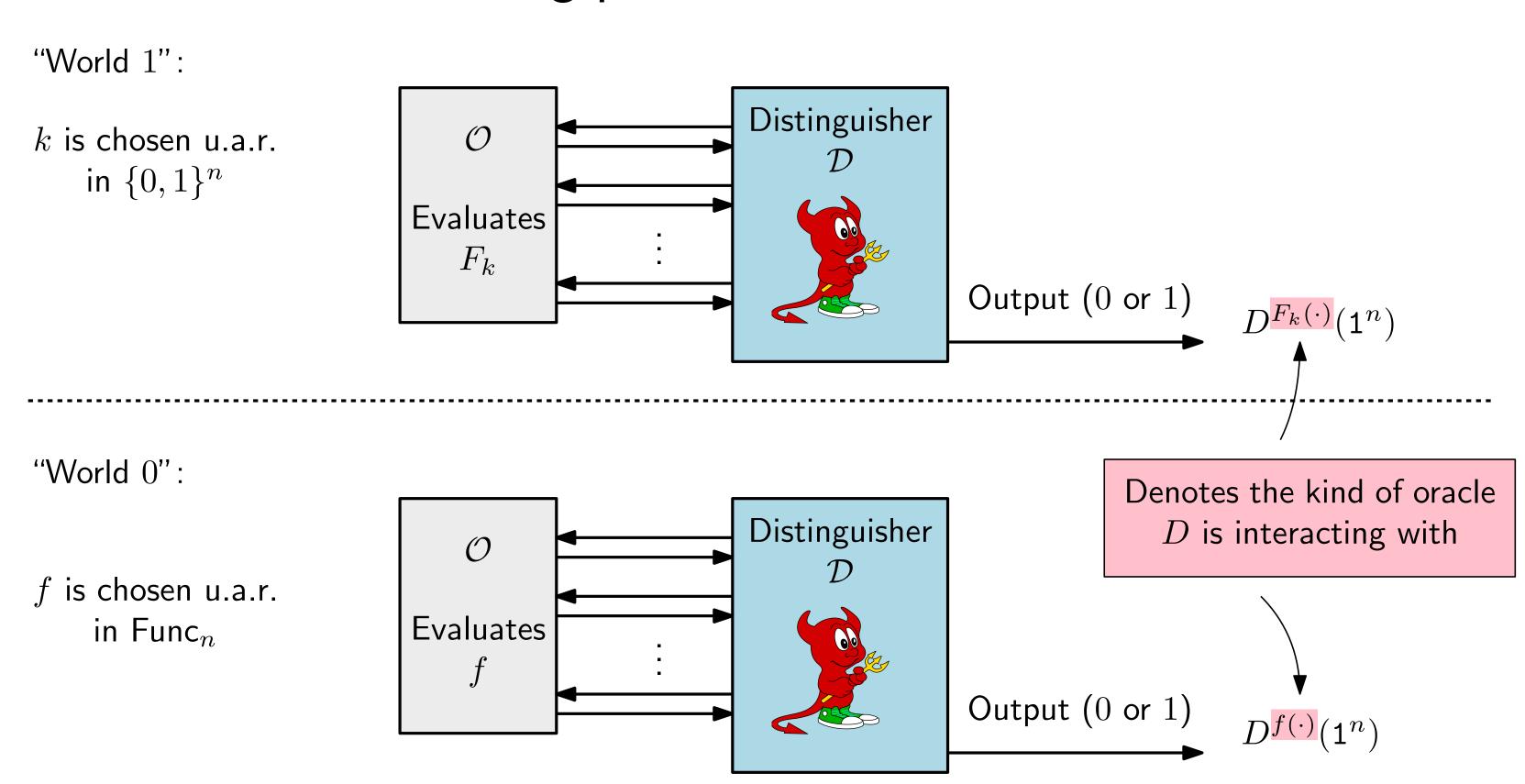
k is chosen u.a.r. in $\{0,1\}^n$

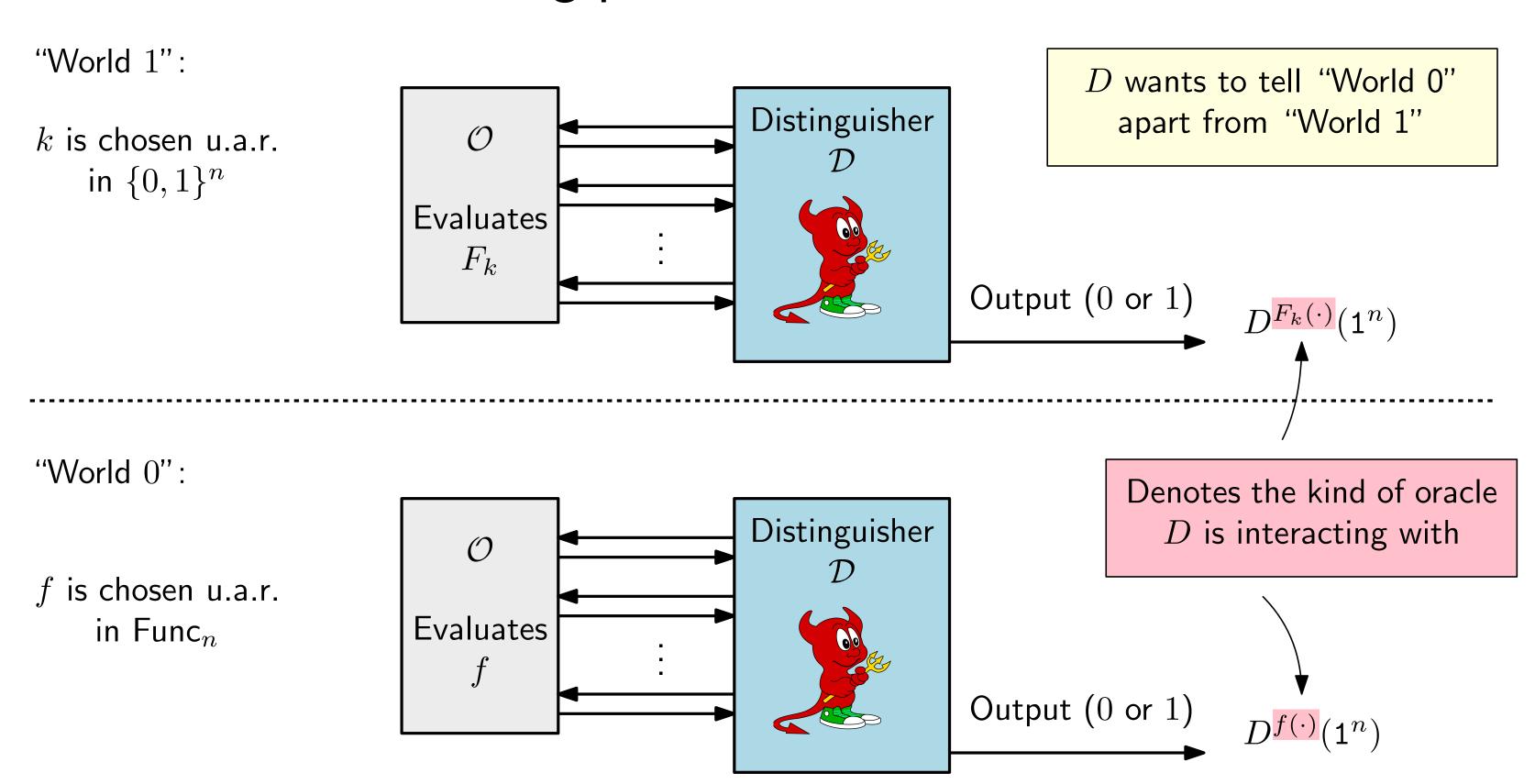


"World 0":

f is chosen u.a.r. in Func $_n$







Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\left| \Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \right| \le \varepsilon(n)$$

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$|\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] | \le \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of \boldsymbol{k}

Defining pseudorandom functions (formal)

Definition: An efficient, length preserving, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **pseudorandom function** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\left| \operatorname{Pr}[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[D^{f(\cdot)}(\mathbf{1}^n) = 1] \right| \le \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of \boldsymbol{k}

Probability over the randomness of the distinguisher and the uniform choice of $f \in \mathsf{Func}_n$

Examples

What are some possible distinguishers from the following (failed attempts at) pseudorandom functions?

- $\bullet \ F(k,x) = \mathbf{1}^n$
- $\bullet \ F(k,x) = k$
- \bullet $F(k,x) = k \vee x$
- $\bullet \ F(k,x) = k \wedge x$
- $\bullet \ F(k,x) = k \oplus x$

If we have a PRF F(k,x) we can use it to build a PRG G.

G(s)

• Return $F_s(0...000) \parallel F_s(0...001)$

expansion factor $\ell(n) = 2n$

If we have a PRF F(k,x) we can use it to build a PRG G.

G(k):

• Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \ldots \parallel F_k(\langle L \rangle)$

 $\langle x \rangle = \text{binary}$ encoding of x with n bits

expansion factor $\ell(n) = n \cdot L$

(for L = O(poly(n)))

If we have a PRF F(k,x) we can use it to build a PRG G.

```
G(k):
• Return F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \ldots \parallel F_k(\langle L \rangle)
```

 $\langle x \rangle = \text{binary}$ encoding of x with x

expansion factor $\ell(n) = n \cdot L$

(for L = O(poly(n)))

Proof that G is a PRG? Security reduction ("breaking G implies breaking F")

- ullet Suppose that G is not a PRG, then there is some distinguisher D for G (with non negligible gap)
- Use D to build a distinguisher A for F (with non negligible gap)
- ullet This contradicts the fact that F is a PRF (i.e., no such D can exist)

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \ldots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

$$D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$$

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

$$D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$

G(k):

- Return $F_k(\langle 0 \rangle) \| F_k(\langle 1 \rangle) \| \dots \| F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

$$D(\Phi(\langle 0 \rangle) \| \Phi(\langle 1 \rangle) \| \dots \| \Phi(\langle L \rangle))$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$
 $\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

$$D(\ \Phi(\langle \mathbf{0} \rangle) \ \|\ \Phi(\langle \mathbf{1} \rangle) \ \|\ \dots \ \|\ \Phi(\langle \mathbf{L} \rangle)\)$$
 Random string in $\{0,1\}^{L \cdot n}$
$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$$

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \ldots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

$$D(\ \Phi(\langle \mathbf{0} \rangle) \ \|\ \Phi(\langle \mathbf{1} \rangle) \ \|\ \dots \ \|\ \Phi(\langle \boldsymbol{L} \rangle)\)$$
 Random string in $\{0,1\}^{L \cdot n}$
$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$$

$$\left| \operatorname{Pr}[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] \right| = \left| \operatorname{Pr}[D(G(k))] - \operatorname{Pr}[D(r)] \right| = \varepsilon(n)$$

G(k):

- Return $F_k(\langle 0 \rangle) \parallel F_k(\langle 1 \rangle) \parallel \dots \parallel F_k(\langle L \rangle)$
- ullet Suppose that G is not a PRG, then there is some D such that:

$$|\Pr[D(G(k)) = 1] - \Pr[D(r) = 1]| = \varepsilon(n)$$
 where $\varepsilon(n)$ is not negligible

• We design a distinguisher \mathcal{A} for F. \mathcal{A}^{Φ} has access to an oracle Φ and returns:

$$D(|\Phi(\langle \mathbf{0} \rangle)| |\Phi(\langle \mathbf{1} \rangle)| \dots ||\Phi(\langle \mathbf{L} \rangle)|)$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(G(k)) = 1]$$

$$\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] = \Pr[D(r) = 1]$$
Random string in $\{0, 1\}^{L \cdot n}$

$$\left| \operatorname{Pr}[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \operatorname{Pr}[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1] \right| = \left| \operatorname{Pr}[D(G(k))] - \operatorname{Pr}[D(r)] \right| = \varepsilon(n)$$

 \bullet Therefore F is not a PRF.

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

A simple case: consider a PRG G(k) with expansion factor $\ell(n) = n \cdot 2^{t(n)}$

G(k) = 11011010010010110000101001011110

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

A simple case: consider a PRG G(k) with expansion factor $\ell(n) = n \cdot 2^{t(n)}$

Divide the output of G(k) into $2^{t(n)}$ "chunks" of n bits each

$$G(k) = 1101101001001011000010101011110$$

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

	x	$F_k(x)$
A simple case: consider a PRG $G(k)$ with expansion factor $\ell(n) = n \cdot 2^{t(n)}$	000	1101
	001	1010
Divide the output of $G(k)$ into $2^{t(n)}$ "chunks" of n bits each	010	0100
	011	1011
G(k) = 110110100100111000010101011110	100	0000
$G(\kappa) = 1101 1010 0100 1011 0000 1010 0101 1110$	101	1010
	110	0101
	111	1110

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

	x	$F_k(x)$
A simple case: consider a PRG $G(k)$ with expansion factor $\ell(n) = n \cdot 2^{t(n)}$	000	1101
	001	1010
Divide the output of $G(k)$ into $2^{t(n)}$ "chunks" of n bits each	010	0100
	011	1011
G(k) = 1101101001001011000010101011110	100	0000
	101	1010
	110	0101
$F_k(\langle i \rangle)$ returns the <i>i</i> -th group of bits (counting from 0) of $G(k)$	111	1110
$\ell_{in}(n) = t(n)$, $\ell_{out}(n) = n$		

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

	x	$F_k(x)$
A simple case: consider a PRG $G(k)$ with expansion factor $\ell(n) = n \cdot 2^{t(n)}$	000	1101
	001	1010
Divide the output of $G(k)$ into $2^{t(n)}$ "chunks" of n bits each	010	0100
	011	1011
G(k) = 110110100100101100001010011110	100	0000
	101	1010
	110	0101
$F_k(\langle i \rangle)$ returns the <i>i</i> -th group of bits (counting from 0) of $G(k)$	111	1110
$\ell_{in}(n) = t(n)$, $\ell_{out}(n) = n$		

Caveat: To construct the table in polynomial time we need $t(n) = O(\log n)$

If we have a PRF F(k,x) we can use it to build a PRG G.

Are PRFs a stronger cryptographic primitive than PRGs?

No. PRFs exist ← PRGs exist

If we have a PRG G we can use it to build a PRF F(k,x).

	x	$F_k(x)$
A simple case: consider a PRG $G(k)$ with expansion factor $\ell(n) = n \cdot 2^{t(n)}$	000	1101
	001	1010
Divide the output of $G(k)$ into $2^{t(n)}$ "chunks" of n bits each	010	0100
	011	1011
G(k) = 1101101001001011000010101011110	100	0000
	101	1010
	110	0101
$F_k(\langle i \rangle)$ returns the <i>i</i> -th group of bits (counting from 0) of $G(k)$	111	1110
$\ell_{in}(n) = t(n)$, $\ell_{out}(n) = n$		

Caveat: To construct the table in polynomial time we need $t(n) = O(\log n) \implies F$ has short inputs

Proof of security:

$$G(k) = 11011010010010110000101001011110$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1]\mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

Proof of security:

$$G(k) = 1101101001001011000010101011110$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1]\mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before

x	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101
111	1110

Proof of security:

$$G(k) = 1101101001001011000010101011110$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1] \mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before
 - D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries $\Phi(x)$, D answers with the output of the row labeled x in the table

\underline{x}	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101
111	1110

Proof of security:

$$G(k) = 11011010010010110000101001011110$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1] \mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before
 - D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries $\Phi(x)$, D answers with the output of the row labeled x in the table
 - ullet D returns the same output as ${\cal A}$

x	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101
111	1110

Proof of security:

$$G(k) = 11011010010010110000101001011110$$

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1] \mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before
 - D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries $\Phi(x)$, D answers with the output of the row labeled x in the table
 - ullet D returns the same output as ${\cal A}$

•	$\Pr[D(G(k))]$) = 1] =	$\Pr[\mathcal{A}^{F_k}($	(1^n)	=1
---	----------------	----------	--------------------------	---------	----

x	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101
111	1110

PRFs and PRGs

Proof of security:

$$G(k) = 1101101001001011000010101011110$$

ullet Suppose that F is not a PRF, then there is ${\mathcal A}$ such that

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1] \mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before
 - D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries $\Phi(x)$, D answers with the output of the row labeled x in the table
 - ullet D returns the same output as ${\cal A}$

•	$\Pr[D(G(k))]$	=1]=P	$\Pr[\mathcal{A}^{F_k(\cdot)}]$	$(1^n) = 1$	1]
---	----------------	-------	---------------------------------	-------------	----

•
$$\Pr[D(r) = 1] = \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]$$

x	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101
111	1110

PRFs and PRGs

Proof of security:

$$G(k) = 11011010010010110000101001011110$$

ullet Suppose that F is not a PRF, then there is ${\mathcal A}$ such that

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1] \mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

$\underline{}$	$F_k(x)$
000	1101
001	1010
010	0100
011	1011
100	0000
101	1010
110	0101

111

- Consider the following distinguisher D(w) for G:
 - ullet D splits w into blocks, and builds a table as before
 - D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries $\Phi(x)$, D answers with the output of the row labeled x in the table
 - ullet D returns the same output as ${\cal A}$

•
$$\Pr[D(G(k)) = 1] = \Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1]$$

• $\Pr[D(r) = 1] = \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]$ $\Longrightarrow |\Pr[D(G(k))] - \Pr[D(r)]| = \varepsilon(n)$ non negligible

PRFs and PRGs

Proof of security:

$$G(k) = 1101101001001011000010101011110$$

ullet Suppose that F is not a PRF, then there is ${\mathcal A}$ such that

$$\Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n)=1]-\Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n)=1]\mid = \varepsilon(n)$$
 for non-negligible $\varepsilon(n)$

• Consider the following distinguisher D(w) for G:

Consider the following distinguisher
$$D(w)$$
 for G :

• D splits w into blocks, and builds a table as before

• D simulates the oracle Φ and calls \mathcal{A}^{Φ} . Whenever \mathcal{A} queries

• D answers with the output of the row labeled x in the table

• D returns the same output as \mathcal{A}

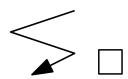
•
$$\Pr[D(G(k)) = 1] = \Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1]$$

•
$$\Pr[D(r) = 1] = \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]$$

•
$$\Pr[D(G(k)) = 1] = \Pr[\mathcal{A}^{F_k(\cdot)}(\mathbf{1}^n) = 1]$$

• $\Pr[D(r) = 1] = \Pr[\mathcal{A}^{f(\cdot)}(\mathbf{1}^n) = 1]$ $\Longrightarrow |\Pr[D(G(k))] - \Pr[D(r)]| = \varepsilon(n)$ non negligible

$$\implies G$$
 is not a PRG



 $F_k(x)$

1101

1010

 ${\mathcal X}$

000

001

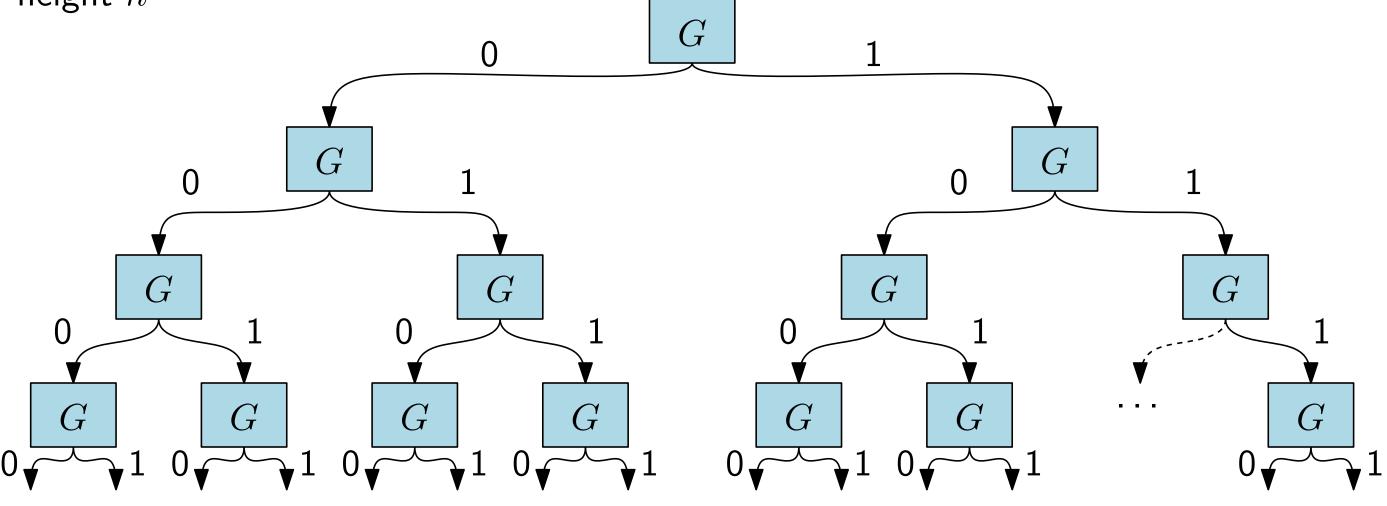
Let G be a *length-doubling* PRG, i.e., $\ell(n) = 2n$.

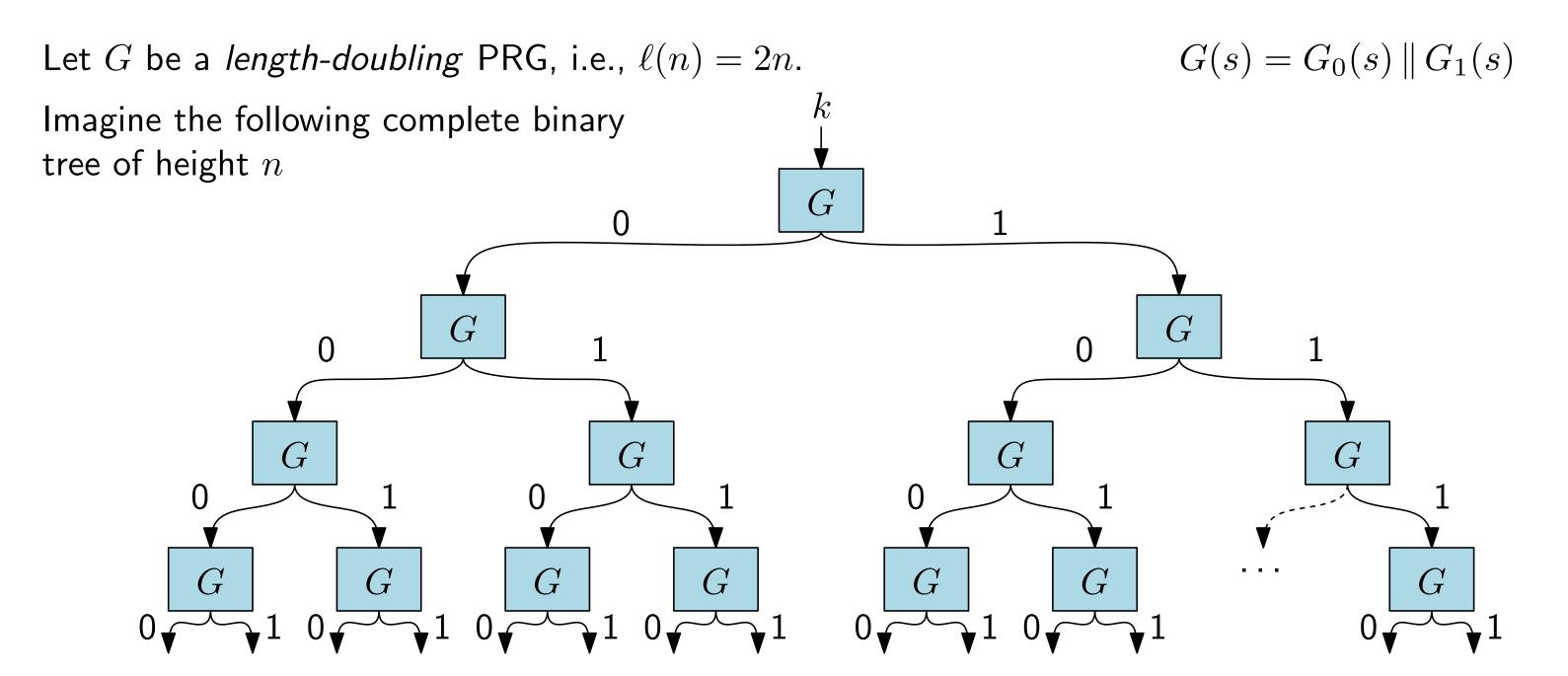
$$G(s) = G_0(s) \parallel G_1(s)$$

Let G be a length-doubling PRG, i.e., $\ell(n) = 2n$.

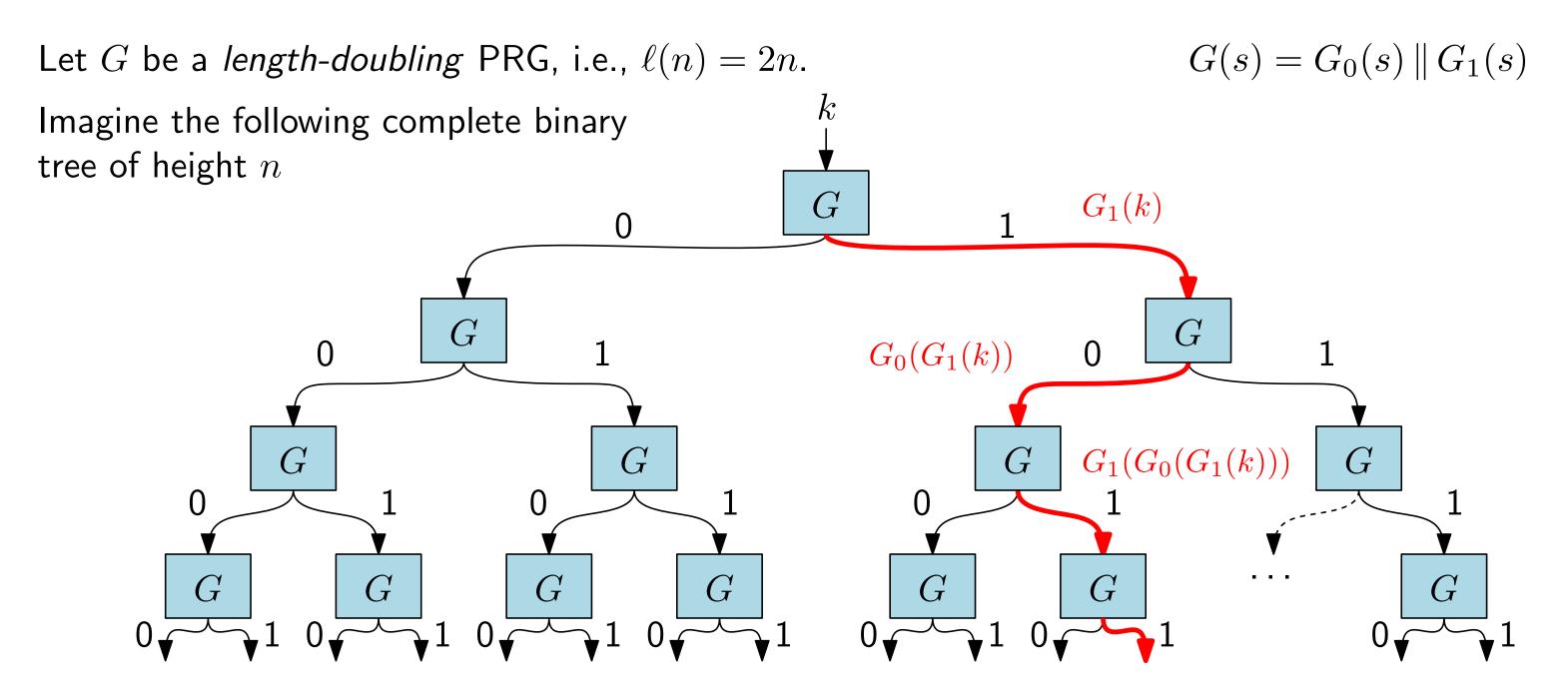
$$G(s) = G_0(s) \parallel G_1(s)$$

Imagine the following complete binary tree of height \boldsymbol{n}



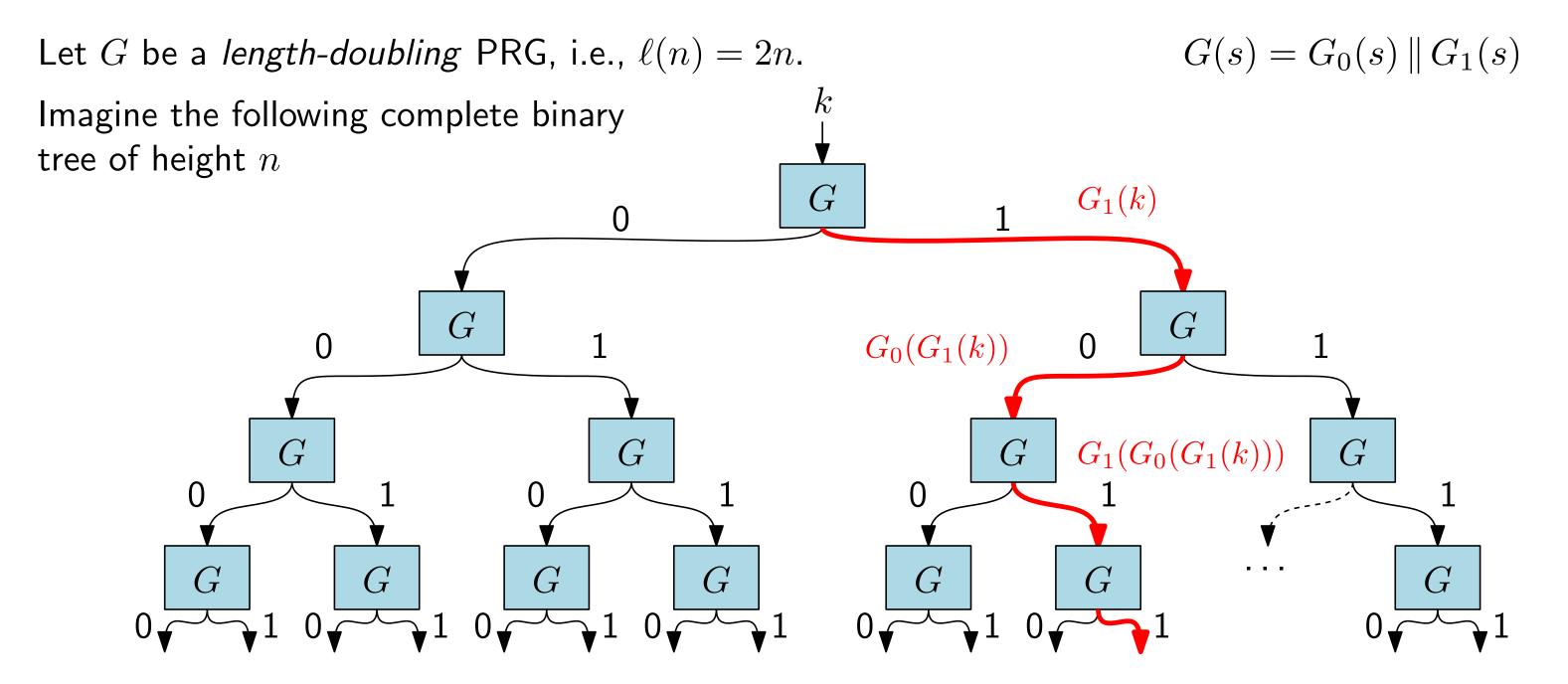


Interpret the key k of F(k,x) as the seed of the root of the tree



F(k, 1011)

Interpret the key k of F(k,x) as the seed of the root of the tree Interpret the binary digits of x as a path in the tree



Interpret the key k of F(k,x) as the seed of the root of the tree

Interpret the binary digits of x as a path in the tree

Interpret the output of the leaf as the output of F(k,x)

$$F(k, 1011) = G_1(G_1(G_0(G_1(k))))$$

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

What if don't have a length-doubling PRG?

If G is a secure length-doubling PRG, then the Goldreich-Goldwasser-Micali construction is a PRF

We won't see a proof of this fact (see Section 8.5 of the textbook if interested).

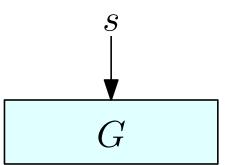
What if don't have a length-doubling PRG?

We can build one from any PRG, even if the expansion factor is just $\ell(n) = n + 1$

In fact, we can build a PRG with expansion factor n + p(n) for any polynomial p(n)

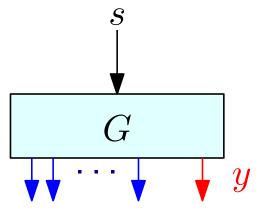
An easy case: increasing the expansion factor by 1

• Start from a PRG G with expansion factor $\ell(n) = n+1$



An easy case: increasing the expansion factor by 1

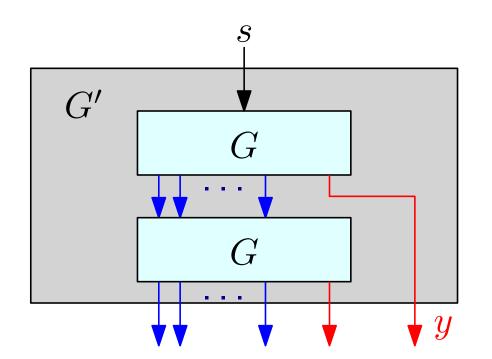
- Start from a PRG G with expansion factor $\ell(n) = n+1$
- ullet Call G(s) and interpret the first n bits $x_1x_2\dots x_n$ of the output as a new seed
- Let the last bit of G(s) be y



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

An easy case: increasing the expansion factor by 1

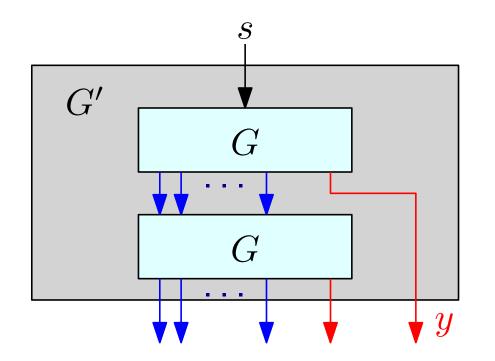
- Start from a PRG G with expansion factor $\ell(n) = n+1$
- ullet Call G(s) and interpret the first n bits $x_1x_2\dots x_n$ of the output as a new seed
- Let the last bit of G(s) be y
- Return $G(x_1x_2...x_n) \parallel y$



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

An easy case: increasing the expansion factor by 1

- Start from a PRG G with expansion factor $\ell(n) = n+1$
- ullet Call G(s) and interpret the first n bits $x_1x_2\dots x_n$ of the output as a new seed
- Let the last bit of G(s) be y
- Return $G(x_1x_2...x_n) \parallel y$



$$G(s) = x_1 x_2 x_3 \dots x_n y$$

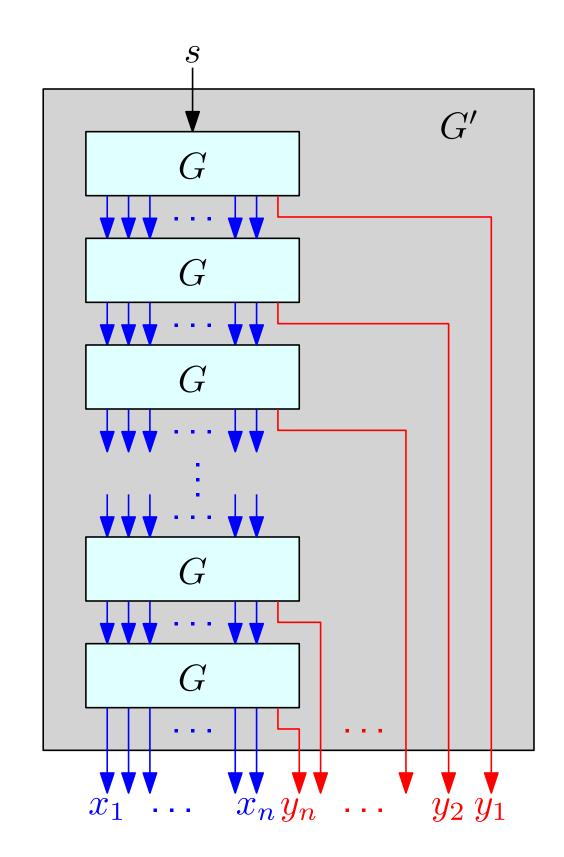
Overall expansion factor $\ell(n) = n + 2$

Increasing the expansion factor (length-doubling)

Increasing the expansion factor from n+1 to 2n

- Start from a PRG G with expansion factor $\ell(n) = n+1$
- ullet Repeat the previous idea for n levels
- The i-th intermediate level outputs n+1 bits
 - n bits are used as a seed for the next level
 - The (n+1)-th bit y_i will be part of the output of the whole construction
- The last level outputs n+1 bits $x_1x_2 \dots x_ny_n$
- The final output is $x_1x_2 \dots x_ny_ny_{n-1} \dots y_1$

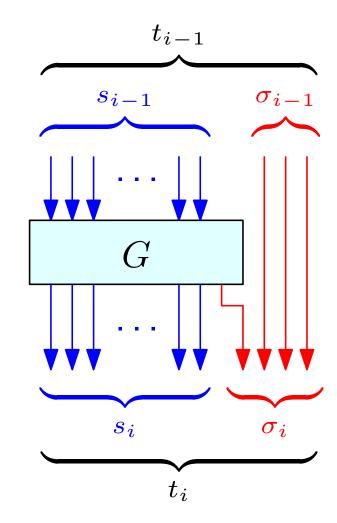
Overall expansion factor: $\ell(n) = n + n = 2n$



Repeat the previous idea p(n) times

Algorithm $\widehat{G}(s)$: (here $s \in \{0,1\}^n$)

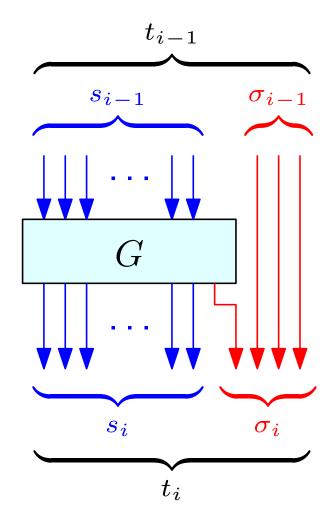
- \bullet $t_0 \leftarrow s$
- For i = 1, 2, ..., p(n):
 - Interpret t_{i-1} as $s_{i-1} \| \sigma_{i-1}$ where $|s_{i-1}| = n$ and $|\sigma_{i-1}| = i-1$
 - $t_i \leftarrow G(s_{i-1}) \| \sigma_{i-1} \|$
- Return $t_{p(n)}$



Repeat the previous idea p(n) times

Algorithm
$$\widehat{G}(s)$$
: (here $s \in \{0,1\}^n$)

- \bullet $t_0 \leftarrow s$
- For i = 1, 2, ..., p(n):
 - Interpret t_{i-1} as $s_{i-1} || \sigma_{i-1}$ where $|s_{i-1}| = n$ and $|\sigma_{i-1}| = i-1$
 - $t_i \leftarrow G(s_{i-1}) \| \sigma_{i-1} \|$
- Return $t_{p(n)}$



Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Define H_n^j to be the distribution on strings of length n+p(n) output by the following process:

- Choose t_j u.a.r. from $\{0,1\}^{n+j}$
- ullet Run \widehat{G} starting from iteration j+1 of the for loop and return its output

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Define H_n^j to be the distribution on strings of length n+p(n) output by the following process:

- Choose t_j u.a.r. from $\{0,1\}^{n+j}$
- ullet Run \widehat{G} starting from iteration j+1 of the for loop and return its output

Note that: H_n^0 is the output distribution of $\widehat{G}(s)$ for a seed s choosen u.a.r. from $\{0,1\}^n$

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Define H_n^j to be the distribution on strings of length n+p(n) output by the following process:

- Choose t_j u.a.r. from $\{0,1\}^{n+j}$
- ullet Run \widehat{G} starting from iteration j+1 of the for loop and return its output

Note that: H_n^0 is the output distribution of $\widehat{G}(s)$ for a seed s choosen u.a.r. from $\{0,1\}^n$ $H_n^{p(n)}$ is a string of length p(n)+n chosen u.a.r. from $\{0,1\}^{n+p(n)}$

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Define H_n^j to be the distribution on strings of length n+p(n) output by the following process:

- Choose t_j u.a.r. from $\{0,1\}^{n+j}$
- ullet Run \widehat{G} starting from iteration j+1 of the for loop and return its output

Note that: H_n^0 is the output distribution of $\widehat{G}(s)$ for a seed s choosen u.a.r. from $\{0,1\}^n$ $H_n^{p(n)}$ is a string of length p(n)+n chosen u.a.r. from $\{0,1\}^{n+p(n)}$

We prove that if there exists a polynomial-time distinguisher \widehat{D} (with non-negligible gap) for \widehat{G} , then there is a also a distinguisher D for G

Theorem: If there exists a pseudorandom generator G with expansion factor n+1 then, for any polynomial p, \widehat{G} is a pseudorandom generator with expansion factor n+p(n).

Proof:

Define H_n^j to be the distribution on strings of length n+p(n) output by the following process:

- Choose t_j u.a.r. from $\{0,1\}^{n+j}$
- ullet Run \widehat{G} starting from iteration j+1 of the for loop and return its output

Note that: H_n^0 is the output distribution of $\widehat{G}(s)$ for a seed s choosen u.a.r. from $\{0,1\}^n$ $H_n^{p(n)}$ is a string of length p(n)+n chosen u.a.r. from $\{0,1\}^{n+p(n)}$

We prove that if there exists a polynomial-time distinguisher \widehat{D} (with non-negligible gap) for \widehat{G} , then there is a also a distinguisher D for G

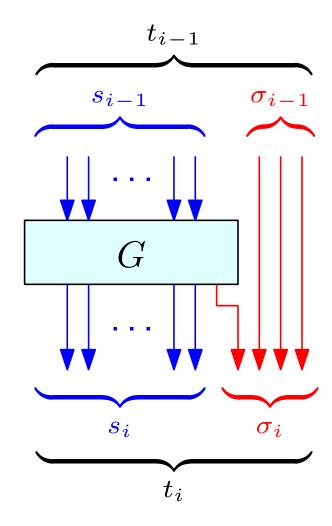
Let D be a distinguisher such that:

$$\left| \operatorname{Pr}_s[\widehat{D}(\widehat{G}(s))] - \operatorname{Pr}_r[\widehat{D}(r)] \right| = \varepsilon(n)$$
 for some non-negligible $\varepsilon(n)$

Consider the following distinguisher D' for G:

```
Algorithm D(w): (here w \in \{0,1\}^{n+1})
```

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- ullet Run $\widehat{D}(t_{p(n)})$ and copy its output

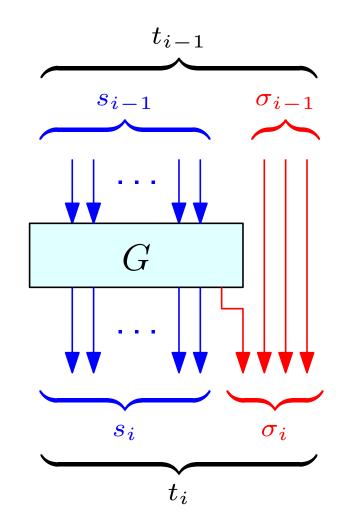


Consider the following distinguisher D' for G:

```
Algorithm D(w): (here w \in \{0,1\}^{n+1})
```

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$

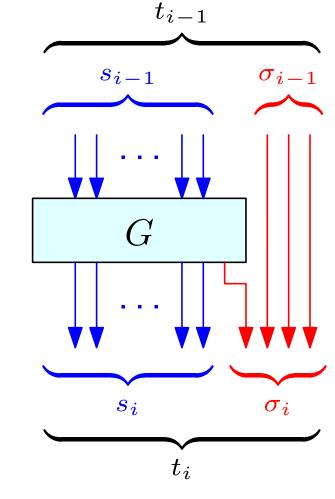


Consider the following distinguisher D' for G:

Algorithm D(w): (here $w \in \{0,1\}^{n+1}$)

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is a uniform string in $\{0, 1\}^{n+1}$:



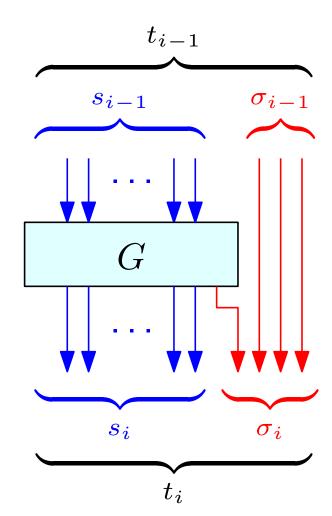
ullet Both w and σ'_{j-1} are chosen u.a.r., therefore t_{j^*} is a uniform string in $\{0,1\}^{n+j^*}$

Consider the following distinguisher D' for G:

Algorithm D(w): (here $w \in \{0,1\}^{n+1}$)

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is a uniform string in $\{0, 1\}^{n+1}$:



- ullet Both w and σ'_{j-1} are chosen u.a.r., therefore t_{j^*} is a uniform string in $\{0,1\}^{n+j^*}$
- The distribution of $t_{p(n)}$ is exactly $H_n^{j^*}$

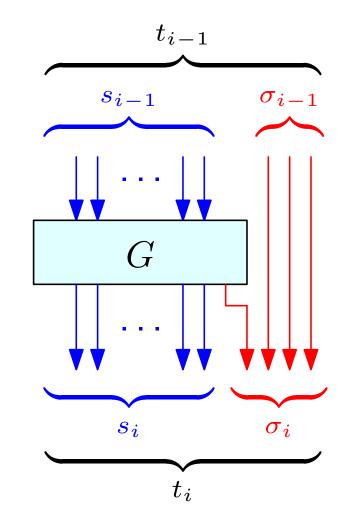
$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

Consider the following distinguisher D' for G:

```
Algorithm D(w): (here w \in \{0,1\}^{n+1})
```

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from $\{0, 1\}^n$:



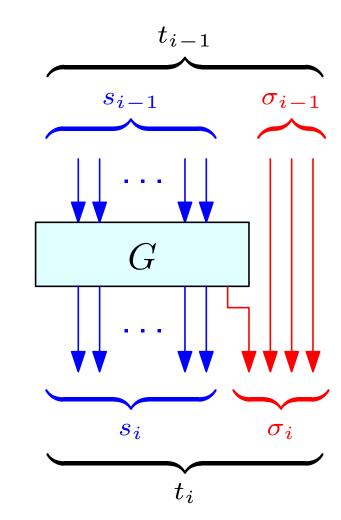
Consider the following distinguisher D' for G:

Algorithm D(w): (here $w \in \{0,1\}^{n+1}$)

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from $\{0, 1\}^n$:

• Define $t_{j^*-1} = s \| \sigma'_{j-1}$ and notice that t_{j^*-1} is a uniform string in $\{0,1\}^{n+j^*-1}$



Consider the following distinguisher D' for G:

Algorithm D(w): (here $w \in \{0,1\}^{n+1}$)

- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from $\{0, 1\}^n$:

 t_{i-1}

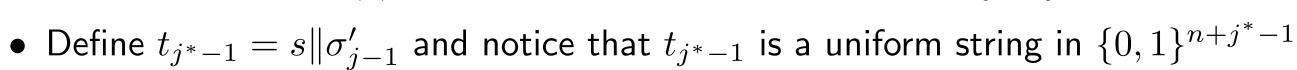
- Define $t_{j^*-1} = s \| \sigma'_{j-1}$ and notice that t_{j^*-1} is a uniform string in $\{0,1\}^{n+j^*-1}$
- Imagine running the j^* -th iteration of \widehat{G} . We would have $t_{j^*} = G(s) \|\sigma'_{j-1} = w\|\sigma'_{j-1}$

Consider the following distinguisher D' for G:

Algorithm D(w): (here $w \in \{0,1\}^{n+1}$)

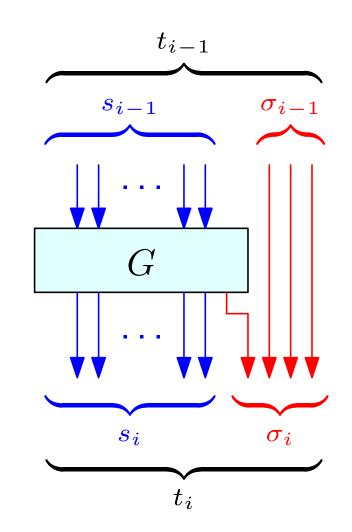
- Choose j u.a.r. in $\{1, 2, \ldots, p(n)\}$
- Choose σ'_{j-1} u.a.r. in $\{0,1\}^{j-1}$
- Set $t_j = w \| \sigma'_{j-1}$ and run \widehat{G} from iteration j+1 to compute $t_{p(n)}$
- Run $\widehat{D}(t_{p(n)})$ and copy its output

Fix $j^* \in \{1, 2, \dots, p(n)\}$ and consider what happens when D chooses $j = j^*$ If w is the output of G(s) on some seed s choosen u.a.r. from $\{0, 1\}^n$:



- Imagine running the j^* -th iteration of \widehat{G} . We would have $t_{j^*} = G(s) \|\sigma'_{j-1} = w\|\sigma'_{j-1}$
- The distribution of $t_{p(n)}$ is exactly $H_n^{j^*-1}$

$$\Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$



$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^*=1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*]$$

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^*=1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*]$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] - \Pr_{r}[D(r) = 1]$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\left| \text{ Pr}_{s}[D(G(s)) = 1] - \text{Pr}_{r}[D(r) = 1] \right| = \left| \frac{1}{p(n)} \cdot \left(\sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] \right) \right|$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\left| \text{ Pr}_{s}[D(G(s)) = 1] - \text{Pr}_{r}[D(r) = 1] \right| = \left| \frac{1}{p(n)} \cdot \left(\sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] \right) \right|$$

$$= \frac{1}{p(n)} \cdot \left| \text{ Pr}_{t \leftarrow H_{n}^{p(n)}} [\widehat{D}(t) = 1] - \Pr_{t \leftarrow H_{n}^{0}} [\widehat{D}(t) = 1] \right|$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$|\Pr_{s}[D(G(s)) = 1] - \Pr_{r}[D(r) = 1]| = \left| \frac{1}{p(n)} \cdot \left(\sum_{j^{*}=1}^{p(n)} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] - \sum_{j^{*}=0}^{p(n)-1} \Pr_{t \leftarrow H_{n}^{j^{*}}} [\widehat{D}(t) = 1] \right) \right|$$

$$= \frac{1}{p(n)} \cdot \left| \Pr_{t \leftarrow H_{n}^{p(n)}} [\widehat{D}(t) = 1] - \Pr_{t \leftarrow H_{n}^{0}} [\widehat{D}(t) = 1] \right|$$

$$= \frac{1}{p(n)} \cdot \left| \Pr_{r}[\widehat{D}(r) = 1] - \Pr_{s}[\widehat{D}(\widehat{G}(s)) = 1] \right| = \frac{\varepsilon(n)}{p(n)}$$

We have shown that:

$$\Pr_r[D(r) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1] \qquad \Pr_s[D(G(s)) = 1 \mid j = j^*] = \Pr_{t \leftarrow H_n^{j^*-1}}[\widehat{D}(t) = 1]$$

$$\Pr_r[D(r) = 1] = \sum_{j^* = 1}^{p(n)} \Pr_r[D(r) = 1 \mid j = j^*] \cdot \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

$$\Pr_{s}[D(G(s)) = 1] = \sum_{j^*=1}^{p(n)} \Pr_{s}[D(G(s)) = 1 \mid j = j^*] \Pr[j = j^*] = \frac{1}{p(n)} \sum_{j^*=0}^{p(n)-1} \Pr_{t \leftarrow H_n^{j^*}}[\widehat{D}(t) = 1]$$

we can now bound:
$$\left| \begin{array}{l} \Pr_s[D(G(s)) = 1] - \Pr_r[D(r) = 1] \, \left| \begin{array}{l} = \left| \frac{1}{p(n)} \cdot \left(\sum_{j^* = 1}^{p(n)} \Pr_{t \leftarrow H_n^{j^*}} [\widehat{D}(t) = 1] - \sum_{j^* = 0}^{p(n) - 1} \Pr_{t \leftarrow H_n^{j^*}} [\widehat{D}(t) = 1] \right) \right| \\ = \frac{1}{p(n)} \cdot \left| \begin{array}{l} \Pr_{t \leftarrow H_n^{p(n)}} [\widehat{D}(t) = 1] - \Pr_{t \leftarrow H_n^{0}} [\widehat{D}(t) = 1] \right| \end{array} \right| \begin{array}{l} \operatorname{Not} \\ \operatorname{negligible!} \\ = \frac{1}{p(n)} \cdot \left| \begin{array}{l} \Pr_r[\widehat{D}(r) = 1] - \Pr_s[\widehat{D}(\widehat{G}(s)) = 1] \right| \end{array} \right| \begin{array}{l} \varepsilon(n) \\ F(n) \end{array} \right|$$

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

		x	F(x)
2^n rows		00000	10011
		00001	01010
	{	00010	00110
		• •	:
		11111	10001

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

		x	F(x)	
		00000	10011	2^n choices
		00001	01010	
2^n rows	{	00010	00110	
10005		:	: :	
		11111	10001	

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

		x	F(x)
2^n rows		00000	10011 2^n choices
		00001	01010 2^n-1 choices
	{	00010	00110
		•	- - -
		11111	10001

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

		\boldsymbol{x}	F(x)
2^n rows		00000	10011 2^n choices
		00001	01010 2^n-1 choices
	{	00010	00110
		• •	• • • •
		11111	10001 only 1 choice

To achieve CPA-security we need one more ingredient: pseudorandom permutations (PRPs)

Informal: A pseudorandom permutation is a pseudorandom function that is bijective

- Let Perm_n denote the set of all permutations in $\{0,1\}^n$, i.e., the set of all functions $F:\{0,1\}^n \to \{0,1\}^n$ that are bijective
- How big is $Perm_n$?

	\boldsymbol{x}	F(x)	
$\begin{cases} 2^n \\ rows \end{cases}$	00000	2^n choices	
	00001	01010 2^n-1 choices	5
	00010	00110	$ Perm_n = 2^n \cdot (2^n - 1) \cdot \dots \cdot 1$
		• • •	$= (2^n)!$
	11111	10001 \bullet only 1 choice	

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

$$\lim_{n o\infty}rac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|}$$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

$$\lim_{n\to\infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n\to\infty} \frac{(2^n)!}{2^{n2^n}}$$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

$$\lim_{n\to\infty}\frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n\to\infty}\frac{(2^n)!}{2^{n2^n}} = \lim_{t\to\infty}\frac{t!}{t^t}$$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

$$\lim_{n \to \infty} \frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n \to \infty} \frac{(2^n)!}{2^{n2^n}} = \lim_{t \to \infty} \frac{t!}{t^t} = \lim_{t \to \infty} \frac{\sqrt{2\pi t} \cdot t^t}{e^t \cdot t^t}$$

Stirling's approximation:
$$t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

$$\lim_{n\to\infty}\frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n\to\infty}\frac{(2^n)!}{2^{n2^n}} = \lim_{t\to\infty}\frac{t!}{t^t} = \lim_{t\to\infty}\frac{\sqrt{2\pi t}\cdot t^t}{e^t\cdot t^t} = \lim_{t\to\infty}\frac{\sqrt{2\pi t}\cdot t^t}{e^t}$$

Stirling's approximation:
$$t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$$

Since a function $F \in \mathsf{Perm}_n$ is bijective, it must be **invertible**

$$F^{-1}$$
 exists and $F(x) = y \iff F^{-1}(y) = x$

What's the (asymptotic) proportion of functions in $Func_n$ that are also permutations (i.e., invertible)?

$$\lim_{n\to\infty}\frac{|\mathsf{Perm}_n|}{|\mathsf{Func}_n|} = \lim_{n\to\infty}\frac{(2^n)!}{2^{n2^n}} = \lim_{t\to\infty}\frac{t!}{t^t} = \lim_{t\to\infty}\frac{\sqrt{2\pi t}\cdot t^t}{e^t\cdot t^t} = \lim_{t\to\infty}\frac{\sqrt{2\pi t}}{e^t} = 0$$

Stirling's approximation:
$$t! \sim \sqrt{2\pi t} \left(\frac{t}{e}\right)^t$$

Asymptotically, almost no function in $Func_n$ is a permutation!

Keyed permutations

A keyed permutation is a keyed function $F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$ such that:

- $\ell_{in}(n) = \ell_{out}(n)$ (this quantity is called the **block length**); and
- For every $k \in \{0,1\}^{\ell_{key}(n)}$, the function $F_k(x) = F(k,x)$ is a permutation

Keyed permutations

A keyed permutation is a keyed function $F: \{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$ such that:

- $\ell_{in}(n) = \ell_{out}(n)$ (this quantity is called the **block length**); and
- For every $k \in \{0,1\}^{\ell_{key}(n)}$, the function $F_k(x) = F(k,x)$ is a permutation

A keyed permutation is **efficient** if:

- There is a polynomial-time algorithm that computes F(x) given x; and
- There is a polynomial-time algorithm that computes $F^{-1}(y)$ given y

Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed permutation $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of \boldsymbol{k}

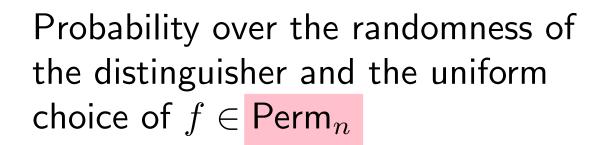
Probability over the randomness of the distinguisher and the uniform choice of $f \in \operatorname{Perm}_n$

Pseudorandom permutations, formal definition

Definition: An efficient, length preserving, keyed permutation $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\Pr[D^{F_k(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot)}(\mathbf{1}^n) = 1] \mid \leq \varepsilon(n)$$

Probability over the randomness of the distinguisher and the choice of k



Intuitition: a keyed permutation is pseudorandom permutation if no polynomial-time algorithm can distinguish it from a random permutation

Recall that (asymptotically) almost no function in $Func_n$ is a permutation

Nevertheless:

- As soon as $\ell_{in}(n) \ge n$, a PRP is indistinguishable (in polynomial time, with non-negligible gap) from PRF
- Since a PRF is indistinguishable from a random function, this implies that PRPs with $\ell_{in}(n) \geq n$ are also indistinguishable from random functions!

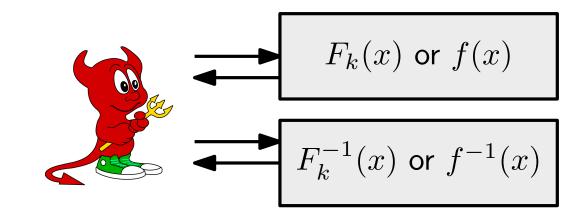
Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

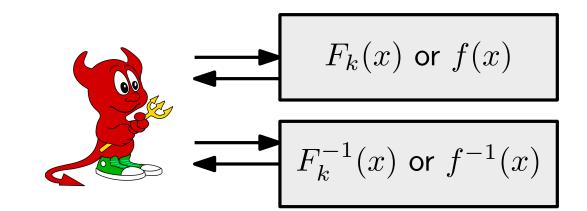
We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



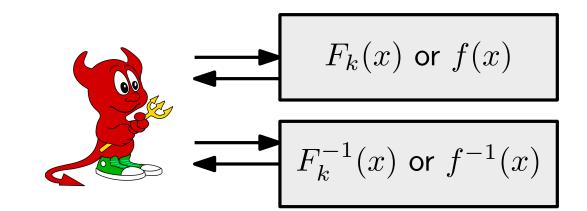
Definition: An efficient, length preserving, keyed permutation $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **strong pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\Pr[D^{F_k(\cdot), F_k^{-1}(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot), f^{-1}(\cdot)}(\mathbf{1}^n) = 1] \mid \le \varepsilon(n)$$

Sometimes we need even even "stronger" functions than pseudorandom permutation

The adversary might be able to exploit the fact that a pseudorandom permutation is invertible to gain a non-negligible advantage

We define **strong** pseudorandom permutations that are indistinguishable from random permutation even if the adversary has oracle access to **both** the permutation and its inverse



Definition: An efficient, length preserving, keyed permutation $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **strong pseudorandom permutation** if for all probabilistic polynomial-time distinguishers D, there is a negligible function ε such that:

$$\Pr[D^{F_k(\cdot), F_k^{-1}(\cdot)}(\mathbf{1}^n) = 1] - \Pr[D^{f(\cdot), f^{-1}(\cdot)}(\mathbf{1}^n) = 1] \mid \le \varepsilon(n)$$

